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Abstract

Background: West Nile Virus (WNV) is a mosquito-borne pathogen that has become established in North America.
Risk for human infection varies geographically in accordance with climate and population factors. Though often
asymptomatic, human WNV infection can cause febrile illness or, rarely, neurologic disease. WNV has become a
public health concern in Canada since its introduction in 2001.

Methods: To identify predictors of human WNV incidence at the public health unit (PHU) level in Ontario, Canada,
we combined data on environmental and population characteristics of PHUs with historical mosquito and human
surveillance records from 2002 to 2013. We examined the associations between annual WNV incidence and monthly
climate indices (e.g. minimum and maximum temperature, average precipitation), land cover (e.g. deciduous forest,
water), population structure (e.g. age and sex composition) and the annual percentage of WNV-positive mosquito
pools from 2002 to 2013. We then developed a generalized linear mixed model with a Poisson distribution adjusting
for spatial autocorrelation and repeat measures. Further to this, to examine potential ‘early season’ predictors of WNV
incidence in a given year, we developed a model based on winter and spring monthly climate indices.

Results: Several climate indices, including mean minimum temperature (o C) in February (RR = 1.58, CI: [1.42, 1.75]), and
the annual percentage of WNV-positive mosquito pools (RR = 1.07, CI: [1.04, 1.11]) were significantly associated with
human WNV incidence at the PHU level. Higher winter minimum temperatures were also strongly associated with
annual WNV incidence in the ‘early season’ model (e.g. February minimum temperature (RR = 1.91, CI: [1.73, 2.12]).

Conclusions: Our study demonstrates that early season temperature and precipitation indices, in addition to the
percentage of WNV-positive mosquito pools in a given area, may assist in predicting the likelihood of a more severe
human WNV season in southern regions of Ontario, where WNV epidemics occur sporadically.
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Background
West Nile virus (WNV) is a global emerging infectious dis-
ease. Initially characterized in Uganda in 1937, WNV first
appeared in North America in 1999 in New York, USA,
with subsequent spread to Canada in 2001 [1]. The lifecycle
of this flavivirus is sustained in a mosquito-avian enzootic
cycle, with spillover to humans and other mammals [2].

The majority of human infections are asymptomatic, al-
though approximately 20% of infections cause febrile illness
and 1% of infections lead to neuroinvasive disease [1, 3].
In Ontario, Canada, WNV incidence peaks in May to

October each year corresponding to the period of mos-
quito and virus activity. High incidence years occur in-
frequently, with epidemics in 2002 and 2012 resulting in
high WNV incidence rates, of 3.5 and 2.0 WNV cases
per 100,000 population, respectively [4]. Importantly, the
sporadic nature of the disease poses a challenge for plan-
ning and sustaining public health surveillance and inter-
vention strategies to prevent human infection.
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Environmental factors, such as climate and land cover,
have an important influence on WNV transmission
through their effects on mosquito population dynamics
and ecology. Higher winter temperatures often correspond
with increased mosquito abundance, mosquito biting
rates, viral replication and rates of transmission [5–9],
while grasslands, wetlands and urban cover have all been
associated with WNV activity [10–12]. Notably, the rela-
tive importance of different environmental factors can
vary greatly across large geographic areas due to differ-
ences in primary vector species. In western Canada, Culex
tarsalis is the predominant vector species, while in eastern
Canada, Culex pipiens/restuans dominates [13]. These
two species have different lifecycles and habitat prefer-
ences, which in turn affect the nature of environmental
risk factors for disease transmission.
In addition to the environment, individual and popula-

tion characteristics, such as age, sex, and behavioural
risk factors can also influence the incidence of WNV in
a given area. Human behaviour, and hence contact with
mosquitoes, can vary greatly within and between popula-
tion groups [14]. Variance in population structure be-
tween areas, such as the male/female ratio of a region
[15] and the number of senior households in a given
area [10] have been identified as predictors of WNV in-
cidence. Importantly, the spatial dependence of factors
that contribute to WNV incidence requires consider-
ation of geographically-specific risk factors.
In Ontario, a limited number of studies have investi-

gated local predictors of high WNV incidence seasons, i.
e. years with elevated numbers of reported WNV cases
during the May to October transmission season. This
study aimed to determine PHU-level predictors of an-
nual WNV incidence specific to Ontario, recognizing
that early identification of WNV risk can assist PHUs in
tailoring their surveillance and response efforts. Herein
we used a mixed modelling approach combining climate,
land cover, population and surveillance data to ascertain
environmental and population predictors of human
WNV incidence in southern Ontario.

Methods
Data sources
Epidemiological data
We obtained data on confirmed and probable human
WNV cases in Ontario from 2002 to 2014 from the Inte-
grated Public Health Information System (iPHIS) of
Public Health Ontario (PHO), which documents cases of
reportable diseases [16]. Cases are reported to the med-
ical officer of health by laboratories and physicians and
these data are updated in iPHIS on a weekly basis. Due
to low incidence rates, we aggregated weekly case counts
to obtain yearly case numbers for each PHU. We re-
stricted our analysis to the 29 PHUs in the southern

portion of Ontario (Fig. 1), since northern PHUs have
low climatic suitability for the virus and vector and
hence few cases of WNV.

Population data
We obtained 2011 census populations for each PHU
from the Statistics Canada Health Profile, December
2013 [17] and constructed variables to reflect the popu-
lation structure of each PHU: percentage of population
in each age category (based on ten-year age groups), per-
centage male population, and population density [15]
(Additional file 1: Table S1).

Climate data
To capture variation in monthly temperature and pre-
cipitation over the study period, 2001–2014, we obtained
estimates of mean monthly minimum and maximum
temperature (o C) and mean monthly precipitation
(millimetres of rainfall) from Natural Resources Canada.
Estimates were extracted from interpolated climate
datasets for each PHU centroid (geometric centre) [18].

Environmental data
To assess the associations between different ecosystem
types and WNV incidence, we used a 27 class raster file
for land cover (year 2000) from the Ontario Ministry of
Natural Resources [19]. The percentage of land in each
land cover class was calculated for each PHU using the
‘Tabulate area’ tool in ArcMap 10.2 (ESRI, Redlands,
USA). To reduce the risk of multicollinearity, the num-
ber of land cover class variables was reduced by combin-
ing highly correlated categories after examining
Spearman rank correlation coefficients generated using
SAS 9.4 © 2012 (SAS Institute Inc., Cary, NC, USA);
classes with Spearman correlation values above 0.7 were
aggregated. The final categories included: Swamp (con-
iferous swamp, deciduous swamp), Coniferous (mainly
coniferous, dense coniferous forest, sparse coniferous
forest), Cuts and burns (old cuts and burns, recent
burns, recent cutovers), Bog and fen (open bog, treed
bog, treed fen), Deciduous (sparse deciduous forest,
mainly deciduous forest), Dense deciduous forest, Open
fen, Settlement and developed land, and Water.

Mosquito surveillance data
Data on the frequency and location of mosquito trap-
ping and results of mosquito species identification and
WNV testing were obtained from the Vector Surveil-
lance dataset maintained by Public Health Ontario.
WNV surveillance in Ontario is conducted by individual
PHUs during the transmission season, with mosquito
traps placed at pre-determined locations for weekly mos-
quito collection. Collected mosquitoes are pooled to-
gether by trap-date and species, with up to 50 individual
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female mosquitoes per pool, and WNV vector species
are tested for WNV [20]. The annual percentage of
WNV-positive mosquito pools for each PHU was calcu-
lated as the total number of WNV-positive mosquito
pools divided by the total number of pools tested in a
given year and PHU.

Statistical modelling
SAS statistical software (using the procedure Glimmix)
was used for analyses (SAS 9.4 © 2012, SAS Institute
Inc., Cary, NC, USA). We constructed a generalized lin-
ear mixed model with Poisson distribution using annual
WNV incidence per PHU as the dependent variable and
the natural log of the population size as an offset. Candi-
date predictor variables were entered as fixed effects. To
account for spatial autocorrelation, we specified PHU as
a random effect with a spherical spatial correlation struc-
ture based on latitude and longitude. We accounted for
correlation in repeated measures on the same PHU over
time using year as a random effect with the residual state-
ment. To reduce the number of candidate variables we
first constructed models exploring each category of vari-
ables (i.e. land cover, population structure, mean monthly
maximum and minimum temperature, mean monthly
precipitation). We then tested significant variables in a

multivariable model using a stepwise selection procedure
with inclusion and exclusion significance levels set at 10%.
Goodness of fit was evaluated using studentized and con-
ditional studentized residuals. A separate model was con-
structed to investigate the association between ‘early
season’ climate variables (i.e. those that are measurable
prior to the onset of the WNV transmission season), and
annual WNV incidence. In this model, we considered
monthly temperature and precipitation indices from Janu-
ary to April that were significant in the category-specific
models, and excluded estimates of WNV-positive mos-
quito pools.

Results
Data characteristics
Environmental and population structure characteristics
of the study area PHUs during the study period are de-
scribed in Table 1. The average cumulative incidence of
WNV per PHU was 7.13 per 100,000 (7.17 SD), with the
highest incidence in the Windsor-Essex County PHU
(Fig. 1). Mean minimum monthly temperature ranged
from − 9.90 °C (4.23 SD) in January to 15.54 °C in July
(1.59 SD). Mean maximum monthly temperature ranged
from − 1.99 °C (3.24 SD) in January to 27.02 °C (1.84
SD) in July. The highest mean monthly precipitation was

Fig. 1 Map of cumulative human WNV incidence (cases per 100,000) in southern Ontario Public Health Units (PHUs), 2002–2013
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observed in July (86.43 mm; 28.90 SD) and the lowest
was 57.43 mm (24.64 SD) in February. Human WNV
cases were concentrated during the transmission season
(mid-April to October).

Statistical modelling
Based on category-specific models, we identified that sev-
eral monthly climate indices and the annual percentage of
WNV-positive mosquito pools were significantly associated
with annual human WNV incidence, while associations
with different land cover classes and population structure
variables were not significant (Table 2). August and April
mean maximum temperature and March, July and August
mean minimum temperature were not initially found to be
significant but were tested in the final multivariable model
based on their relevance to the mosquito lifecycle. In the
final multivariable model, we identified that several climatic
indices and the percentage of annual WNV-positive mos-
quito pools were significantly predictive of human WNV
cases, after adjusting for spatial dependence and repeat
measures (Table 2). A one-degree Celsius increase in mean
minimum temperature for January, February, July and Au-
gust increased the risk of human WNV infection by 5%
(RR = 1.05; CI: [1.00, 1.10]), 58% (RR = 1.58, CI: [1.42, 1.75])
, 20% (RR = 1.20; CI: [1.05, 1.40]) and 41% (RR = 1.41; CI:
[1.02, 1.55]), respectively. Increases in March and April
mean minimum temperatures by one degree Celsius de-
creased risk by 22% (RR = 0.78; CI: [0.71, 0.83]) and 47%
(RR = 0.53; CI: [0.42, 0.63]), respectively. An increase in
April mean maximum temperature by one degree Celsius
was found to decrease risk by 15% (RR = 0.85; [0.75, 0.94]),
while a one degree Celsius increase in August mean max-
imum temperature increased risk by 20% (RR = 1.02; CI: [1.
02, 1.54]). The influence of precipitation was less clear, with

Table 1 Descriptive characteristics of 29 southern Ontario
Public Health Units (PHUs), 2002–2013

Category Variable Mean Standard
Deviation

Cumulative Human WNVa

Incidence (cases per
100,000 population)

7.13 7.17

Land Cover (%; N = 29) Swamp 2.12 2.15

Coniferous 7.56 8.82

Bog and fen 0.17 0.37

Deciduous 6.18 6.87

Dense deciduous forest 11.55 4.75

Open fen 0.17 0.28

Settlement and
developed land

6.68 15.39

Water 3.30 4.25

Population Structure
(N = 29)

% Ages 1–14 16.64 1.67

% Ages 15–24 13.0 0.83

% Ages 25–34 11.17 1.43

% Ages 35–44 12.49 1.43

% Ages 45–54 16.19 0.60

% Ages 55+ 30.52 4.34

% Male Population 49.00 0.44

Monthly Mean Minimum
Temperature (oCb; N = 348)

January −9.90 4.23

February −9.82 3.08

March −4.76 2.84

April 1.47 1.46

May 7.27 1.79

June 13.00 1.55

July 15.54 1.59

August 14.51 1.47

September 10.73 1.53

October 4.85 1.87

November −0.05 1.94

December −5.94 2.86

Monthly Mean Maximum
Temperature (oC; N = 348)

January −1.99 3.24

February −1.02 2.19

March 4.99 2.93

April 12.38 1.87

May 19.02 1.97

June 24.19 1.56

July 27.02 1.84

August 25.85 1.24

September 22.00 1.68

October 14.03 1.81

November 7.95 1.93

December 0.93 2.40

January 68.33 24.33

Table 1 Descriptive characteristics of 29 southern Ontario
Public Health Units (PHUs), 2002–2013 (Continued)

Category Variable Mean Standard
Deviation

Monthly Mean Precipitation
(mm;c N = 348)

February 57.43 24.64

March 60.10 24.50

April 75.87 29.46

May 82.95 31.27

June 79.70 31.90

July 86.43 28.90

August 70.00 25.57

September 84.52 31.31

October 86.10 34.16

November 80.15 29.62

December 78.80 26.75
aWNV =West Nile Virus
b°C = degrees Celsius
cmm =millimetres
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Table 2 Results of the category-specific and final nultivariable Poisson regression analyses to identify predictors of annual WNV
incidence in southern Ontario Public Health Units (PHUs), 2002–2013

Category-Specific Multivariable

Category Variable Relative Risk 95% CI Relative Risk 95% CI

Land Cover (%) Swamp 1.13 [0.72,1.77] – –

Coniferous 0.86 [0.71,1.04] – –

Bog and fen 2.17 [0.12,38.69] – –

Deciduous 1.09 [0.92,1.29] – –

Dense deciduous forest 0.94 [0.85,1.03] – –

Open fen 0.92 [0.13,6.48] – –

Settlement and developed land 1 [0.98,1.03] – –

Water 0.99 [0.90,1.09] – –

Population Structure % Ages 1–14 0.94 [0.64,1.38] – –

% Ages 15–24 0.98 [0.54,1.78] – –

% Ages 25–34 0.71 [0.42,1.20] – –

% Ages 35–44 1.5 [0.87,2.61] – –

% Ages 45–54 0.45 [0.20,1.02] – –

% Ages 55+ 0.97 [0.90,1.04] – –

% Male population 0.53 [0.19,1.47] – –

Monthly Mean Minimum
Temperature (°C)

January 1.20 [0.89,1.60] 1.05 [1.00,1.10]

February 1.82 [1.31,2.53] 1.58 [1.42,1.75]

March 0.82 [0.56,1.21] 0.78 [0.71,0.83]

April 0.50 [0.31,0.79] 0.53 [0.42,0.63]

May 1.03 [0.74,1.42] – –

June 1.11 [0.61,2.03] – –

July 0.98 [0.64,1.51] 1.20 [1.05,1.40]

August 1.46 [0.91,2.34] 1.41 [1.02,1.55]

September 0.96 [0.58,1.58] – –

October 1.71 [1.05,2.77] – –

November 0.64 [0.35,1.16] – –

December 0.70 [0.42,1.15] – –

Monthly Mean Maximum
Temperature (°C)

January 0.86 [0.59,1.27] – –

February 0.91 [0.67,1.25] – –

March 0.87 [0.64,1.19] – –

April 1.08 [0.82,1.43] 0.85 [0.75,0.94]

May 1.26 [0.94,1.68] – –

June 0.60 [0.37,0.98] – –

July 1.38 [0.87,2.20] – –

August 1.10 [0.67,1.80] 1.2 [1.02,1.54]

September 1.60 [1.06,2.44] – –

October 0.79 [0.53,1.17] – –

November 1.04 [0.66,1.65] – –

December 1.50 [0.89,2.51] – –

Monthly Mean
Precipitation (mm)

January 0.99 [0.98,1] – –

February 0.98 [0.97,1] 0.99 [0.98,0.99]

March 0.99 [0.98,1] 1 [0.97,1.01]
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a one-millimetre increase in February precipitation associ-
ated with a 1% (RR = 0.99; CI: [0.98, 0.99]) decreased risk. A
1 % increase in the annual percentage of WNV-positive
mosquito pools increased risk by 7% (RR = 1.07, CI: [1.04,
1.11]). All category-specific and multivariable model results
are summarized in Table 2. Plots of residuals revealed some
overdispersion indicated by a chi-square/ degrees of free-
dom value of 1.58, particularly for the Windsor-Essex
region.
Results of the ‘early season’ model using only variables

available prior to the WNV season (i.e. those measures that
would be available to public health practitioners before the
onset of WNV transmission in a given year – which effect-
ively excludes mosquito surveillance data) are presented in
Table 3. This model showed similar results to the full
model; however, the relative risks were noticeably different.
Notably, an increase in mean minimum temperature by
one degree Celsius in February resulted in an 91% (RR = 1.
91; CI:[1.73, 2.12]) increase in WNV incidence for any
given PHU. An increase in early spring (March and April)
mean minimum temperatures by one degree Celsius de-
creased risk of WNV by 35% (RR = 0.65; CI:[0.60, 0.70])
and 52% (RR = 0.48; CI: [0.39, 0.60]), respectively. Finally,
we found that increasing the February mean precipitation
by 1 mm decreased WNV risk by 3% (RR = 0.97; CI:[0.97,
0.98]). No mean monthly maximum temperature values or

precipitation values other than February were found to be
significantly associated with WNV incidence.

Discussion
To address the knowledge gap on population level pre-
dictors of human WNV incidence in Ontario, we applied
a multivariable mixed modelling approach that incorpo-
rated key environmental and population factors at the
PHU level. Monthly climate indices, particularly Febru-
ary, March and April minimum temperature and Febru-
ary precipitation, and the annual percentage of WNV-
positive mosquito pools in a given PHU, were signifi-
cantly predictive of human WNV incidence across PHUs
of the southern portion of Ontario. When considering
only ‘early season’ variables, which effectively excludes
mosquito surveillance data, January and February mean
minimum temperatures were of primary importance,
highlighting the utility of climate data in predicting
WNV risk in the upcoming transmission season.
Our findings are similar to previous studies, which also

found higher winter temperatures to be significantly pre-
dictive of increased rates of WNV transmission in an up-
coming season. For example, Wimberly et al. found that
winter temperature variables had the greatest influence on
West Nile virus human infection rate in the United States
in 2014; December and January temperatures in particular

Table 2 Results of the category-specific and final nultivariable Poisson regression analyses to identify predictors of annual WNV
incidence in southern Ontario Public Health Units (PHUs), 2002–2013 (Continued)

Category-Specific Multivariable

Category Variable Relative Risk 95% CI Relative Risk 95% CI

April 0.99 [0.99,1] – –

May 1.00 [1,1.02] – –

June 0.99 [0.98,1] – –

July 1.00 [0.99,1] – –

August 1.00 [1,1.01] – –

September 1.01 [1,1.02] – –

October 1.00 [1,1.01] – –

November 1.01 [1,1.02] – –

December 1.00 [0.99,1.01] – –

Annual Percent Positive
Mosquito Pools

1.29 [1.27,1.34] 1.07 [1.04,1.11]

Table 3 Significant predictors of annual WNV Incidence in southern Ontario Public Health Units (PHUs), 2002–2013, based on
Poisson modelling of pre-season climate indices

Category Variable Relative Risk Confidence Interval

Monthly Mean Minimum Temperature (°C) January 1.08 [1.03, 1.12]

February 1.91 [1.73, 2.12]

March 0.65 [0.60, 0.70]

April 0.48 [0.39, 0.60]

Monthly Mean Precipitation (mm) February 0.97 [0.97,0.98]
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were most significant [21]. Similarly, Manore et al., found
mean minimum January temperature to be a highly sig-
nificant predictor of human WNV [9]. Our analysis indi-
cates that January and February temperatures may be
relevant predictors for WNV incidence in the southern
portion of Ontario. Temperatures during the winter
months have a considerable impact on the ability of WNV
to survive into the spring, and in colder years effective
overwintering of mosquitoes is lessened [22].
Maximum temperatures also had a significant influence

on WNV activity. It was found that lower April and higher
August mean maximum temperatures were significantly re-
lated to human WNV incidence. The significance of the
April mean maximum temperature may be related to virus
amplification in the avian host, which is believed to occur
in the early spring [8]. Warmer temperatures during this
period may be unfavourable since spring temperatures that
are too warm might result in faster melting of snow which
could dilute nutrients in standing water or flush Culex
breeding sites, impeding larval proliferation [23]. The causal
association between warmer August maximum tempera-
tures and human WNV infection is expected, as warmer
summer temperatures increase mosquito abundance and
biting rates and decrease viral amplification time [24].
In addition to temperature associations, precipitation

was found to contribute significantly to increased human
WNV risk, albeit more subtly. We found that lower Feb-
ruary and March mean precipitation was associated with
higher WNV incidence in a given year. While this is in
contrast to some studies in the United States that found
increased March precipitation to be associated with out-
breaks, these results may be attributable to the variable
influence of precipitation across the study region and
differences in primary vector species [21]. Further to
this, it has been proposed that early spring drought may
concentrate vectors and hosts around pools of water,
and allow for low populations of vector predators [25].
Finally, we found that the annual percentage of WNV-

positive mosquito pools was significantly predictive of hu-
man WNV incidence, confirming our expectation that
higher mosquito infection rates should result in more
transmission events. This has been previously remarked by
Brownstein et al., who noted that mosquito surveillance
data is the most sensitive marker for human risk with posi-
tive mosquito pools accounting for 38% of human risk [26],
and suggested that this data should be included in any sur-
veillance system. The association between WNV-positive
mosquito pools and human WNV case counts has also
been noted by Rochlin et al., who found a strong associ-
ation between human risk and proximity to a single WNV-
positive mosquito pool [10], and Liu et al., who found that
presence of a WNV-positive pool in the last 30 days was
significantly predictive of risk for human infection [14]. The
results of our study indicate that a 1% increase in annual

WNV-positive mosquito pools would result in a 7% in-
crease in the annual human WNV incidence rate.
This study identifies several predictors of human WNV

incidence in southern Ontario that can be of practical use
for public health. Importantly, readily available data on cli-
mate indices may be used by public health officials for
predicting more severe WNV seasons at the PHU level.
Limitations include the fact that data were aggregated at
the PHU level, which may have masked smaller-scale vari-
ations in WNV incidence and predictor variables (includ-
ing land cover and population structure) and hence
associations. Avian data was not included in the analyses
due to paucity of data. Since birds are the main reservoir
hosts of WNV, bird dynamics may substantially influence
seasonal risk, and previous studies have found links be-
tween bird community composition and WNV incidence
[27]. Future studies may seek to include this type of data
to produce a more comprehensive model. In addition,
PHU-level census data availability was restricted to 2011,
which may have limited the importance of population
structure variables in our analysis. Finally, while the pro-
posed multivariable model was successful in identifying
key predictors of human WNV incidence in southern On-
tario PHUs, some overdispersion was noted particularly
for the most southern PHUs, which could affect the reli-
ability of model estimates for these areas.
Despite these limitations, the variables identified as sig-

nificant in our model may be useful for public health plan-
ning. In practical terms, this could entail monitoring of
monthly average temperature and precipitation trends in
an area, and comparing the data to normal or historical
values. Identification of higher than average minimum win-
ter temperatures and lower than average spring precipita-
tion at the PHU level could serve as indicators of elevated
risk of WNV in an upcoming transmission season. These
early year estimates of virus activity could then be used to
inform decisions regarding the quantity of resources that
could be put towards in-season risk measures based on
mosquito surveillance. This is important, since small scale
weather events such as sudden heavy rains or short cold pe-
riods, which affect mosquito survival, can have a large im-
pact on WNV risk [8]. While early season predictors may
be useful, our results support the ongoing monitoring of
climate and entomological indices to more accurately pre-
dict WNV risk at the local scale.

Conclusion
Overall, although WNV does not consistently pose a
public health risk to the majority of Ontarians, our re-
sults indicate that by using measures of risk that are de-
tectable early in the year it may be possible to estimate
the level of WNV activity for the upcoming season,
allowing PHUs to tailor appropriate preventive strategies
and decrease risk to public health.
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