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Abstract

Background: Nursing home residents are frequently colonized with various strains of methicillin-resistant
Staphylococcus aureus (MRSA) but the intra-facility dynamics of strain-specific MRSA remains poorly understood. We
aimed at identifying and quantifying the associations between acquisition and carriage of MRSA strains and their
potential risk factors in community nursing homes using mathematical modeling.

Methods: The data was collected during a longitudinal MRSA surveillance study in six nursing homes in South
Central Wisconsin. MRSA cultures were obtained from subjects every 3 months for up to one year. MRSA isolates
were subsequently strain-typed by pulsed-field gel electrophoresis (PFGE), and their genetic similarity was
established based on the Dice coefficients. Bayesian network analysis, logistic regression and elastic net were used
to quantify the associations between acquisition and carriage of MRSA strains discriminated at 80% and 95% strain
similarity thresholds and potentially modifiable resident characteristics including previous antibiotic exposure,
comorbidity, medical devices, chronic wounds, functional and cognitive status and recent hospitalizations.

Results: Absence of severe cognitive impairment as well as presence of a wound, device and severe comorbidity
was associated with elevated probability of USA100 carriage although there was a variation based on the
combination of those risk factors. Residents with severe comorbidity and cognitive status and presence of device
and wound were identified as certain carriers of USA100 in our sample. Residents with a chronic wound were more
likely to carry USA100 MRSA (OR = 2.77, 95% CI = 1.37–5.87). Functional status was identified as an important
determinant of carriage of USA100 and USA300 strains. Comorbidity and cognitive status were the two factors
associated with carriage of all clonal groups in the study (USA100, USA300 and USA1200).

Conclusions: The combination of Bayesian network analysis, logistic regression and elastic net can be used to identify
associations between acquisition and carriage of MRSA strains and their potential risk factors in the face of scarce data.
The revealed associations may be used to generate hypothesis for further study of determinants of acquisition and
carriage of selected MRSA subtypes and to better inform infection control efforts in community nursing homes.
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Background
Methicillin-resistant Staphylococcus aureus (MRSA) is a
major cause of infection in health-care facilities and the
community [1]. Infections due to MRSA are associated
with higher morbidity, mortality and costs compared
with infections caused by methicillin-susceptible strains
[2–4]. Colonization with MRSA is known to increase the
risk of a subsequent infection in hospital patients and
nursing homes residents [5–7]. Nursing homes, where
MRSA is endemic [8–11], may play an important role in
the regional spread of MRSA [12–14]. The emergence of
USA300 clone of MRSA in the community and its sub-
sequent spread to healthcare settings in recent years [11,
15, 16] has become a serious problem due to its higher
potential for virulence, persistence and transmissibility
compared with healthcare-associated strains [17–19].
The dynamics of MRSA within nursing homes could be

influenced by a number of factors. Studies, many of which
were conducted in Veteran Affairs nursing homes or
skilled-care facilities, demonstrated that poor functional
status, comorbidity, invasive medical devices, chronic
wounds, recent antibiotic exposure and hospitalization
were risk factors for MRSA colonization in long-term care
facilities [9, 10, 20–23]. However, the impact of these fac-
tors on the strain-specific dynamics of MRSA in commu-
nity nursing homes remains poorly understood. Previously,
we used Markov chain models to predict the steady-state
distribution of residents colonized with USA300 and non-
USA300 MRSA and to assess the impact of potential risk
factors on strain-specific acquisition of MRSA in commu-
nity nursing homes [24]. We found that antibiotic use in
the previous 3 months significantly increased acquisition
rates of strain-independent MRSA and non-USA300. The
effect of antibiotic exposure on the acquisition rate of
USA300 and the influence of other potentially modifiable
resident characteristics on MRSA acquisition were quite
pronounced, but the statistical significance at the 95% con-
fidence level was not achieved. In addition, we employed
compartmental and stochastic models in order to evaluate
the epidemic potential of strain-specific MRSA and to as-
sess the conditions for MRSA reduction and elimination
from community nursing homes [25]. Our results sug-
gested that, while MRSA elimination from nursing homes
was unlikely in practice, considerable reductions in MRSA
prevalence could be achieved through decolonization ther-
apy that could sustain higher clearance rates over time.
Based on our models, antibiotic use in the past 3 months
elevated the prevalence of non-USA300 and USA300
MRSA in the facilities, but was unlikely to lead to an out-
break. Moreover, large-scale MRSA outbreaks were not
predicted to occur in this setting. However, due to low
numbers of observations in some subgroups, especially
among subjects colonized with USA300 and exposed to risk
factors, our capacity to ascertain whether the candidate risk

factors for acquisition and durability of colonization
differed by MRSA strain type was limited. Furthermore,
while our compartmental and stochastic models assumed
that acquisition of one strain was independent from
carriage of the other strain, whether this assumption holds
in reality is not known.
Bayesian networks have become an increasingly common

method for modeling complex and uncertain data in many
fields, including medicine [26–28]. A Bayesian network is a
graphical representation of a joint probability distribution
between entities of interest, the number of which can be
too large to be modeled successfully using traditional ap-
proaches (e.g., regression analysis) [29, 30]. The elastic net
(ENET), a new regularization and variable selection
method, is another novel approach that gains popularity in
modeling scarce data with many predictors [31]. In this
study, we sought to use the combination of Bayesian
networks, logistic regression and elastic net modeling to
identify and quantify the associations between acquisition
and carriage of MRSA strains and potentially modifiable
resident characteristics in community nursing homes. The
identified associations would aid in determining resident
characteristics suggestive of a higher risk for acquisition or
carriage of specific MRSA strains. The specific aims of this
study were: (1) to identify subtypes of MRSA and candidate
risk factors associated with acquisition and carriage of the
pathogens using Bayesian network analysis; (2) to quantify
the strength of the associations between acquisition and
carriage of the MRSA subtypes and their potential risk
factors using the combination of Bayesian network, elastic
net and mixed effects logistic regression modeling.

Methods
Overview
A Bayesian network approach was used to examine the
associations between candidate risk factors and acquisition
and carriage of MRSA strains discriminated at the 80% and
95% strain similarity thresholds. Mixed effects logistic
regression modeling and elastic net were subsequently
applied to quantify the strength of the associations revealed
by the network. All of the analyses were performed in R
version 3.1.2 or higher [32]. The study was reviewed and
approved by the Health Sciences Institutional Review Board
of the University of Wisconsin-Madison.

Data
The data were collected for a prospective longitudinal study
of MRSA colonization in six community nursing homes
(size, ≥ 60 beds) in south-central Wisconsin between
February 2008 and October 2010 [33]. Four hundred and
forty nine of the 851 residents approached (53%) provided
written informed consent and participated in the study.
Facility-level characteristics and MRSA trends in the study
facilities have been previously described [24, 33]. The study

Batina et al. BMC Infectious Diseases  (2017) 17:752 Page 2 of 11



subjects were screened for MRSA colonization at multiple
anatomical locations at baseline and every three months for
up to one year, provided the subjects remained in the facility.
Surface cultures of the nares, skin of the axilla, groin and
peri-rectal region were obtained using sterile Dacron-tipped
swabs. Additional surface cultures were collected from open
wounds and the insertion sites of non-urinary invasive de-
vices, when applicable; urine specimens were obtained from
subjects with indwelling urinary devices [24, 33]. MRSA
specimens were enriched in trypticase soy broth supple-
mented with 6.5% NaCl and allowed to incubate for 24 h
before plating onto Mannitol Salt agar (Remel, Lenexa, KS)
containing cefoxitin (4 μg/mL) [33]. The methods used to
construct the data set employed in this study have been pre-
viously described [24]. Subject exposures that might impact
their colonization status were also obtained. These candidate
risk factors were characterized as static, that is, ascertained
at baseline only, and time-varying which were collected every
3 months. The static risk factors comprised comorbidity
(Comorb), functional status (Func) and cognitive status
(Cogn). For the purpose of this study, they were dichoto-
mized into non-severe (coded as 0) and severe (coded as 1).
The subjects with Charlson Comorbidity Index [34] score ≥
3, Katz Activities of Daily Living (ADL) [35] score < 2 and
Minimum Data Set (MDS) Cognitive Performance Scale
(CPS) [36] score ≥ 5 were classified at a severe level of the
corresponding factor, and at a non-severe level otherwise.
Time-varying risk factors included antibiotic exposure within
the previous 3 months (AB), hospitalizations in the previous
3 months (Hosp), presence of a chronic wound (Wnd) and
presence of an invasive medical device such as indwelling
urinary catheter, percutaneous feeding tube, central venous
catheter, or tracheostomy (Dev). The time-varying risk
factors were also used as dichotomous variables in our study
(Non-exposed was coded as 0 and Exposed was coded as 1).
The data from the six study nursing homes were aggregated
for the analysis, so that the findings of our study would be
representative of the hypothetical “average” nursing home in
Wisconsin.
For the purpose of this study, MRSA strains recovered

from the study subjects were considered genetically distinct
at the 80% strain similarity threshold if their pulsed-field gel
electrophoresis (PFGE) banding patterns differed by 4–6
bands [37]. Seven unique strains at the 80% similarity thresh-
old were identified in our study. For each of them, two di-
chotomous outcome variables were created. These variables
indicated the occurrence of strain acquisition (transition
from non-colonized to colonized) and carriage (continuous
colonization) events. The variables were denoted by T (for
acquisition) and C (for carriage) followed by 2 digits indica-
tive of respective MRSA clonal groups in agreement with the
CDC classification (i.e., “01” represented USA100 MRSA,
“03” specified USA300, and “12” stood for USA1200 clonal
group). For example, outcome variables T01 and C01 were

created to denote acquisition and carriage of USA100,
respectively. For each strain, an acquisition event was consid-
ered to occur at time t > 0 if the strain was recovered at time
t but not at time t-1. A strain-specific carriage event was
assumed to occur at time t = 0 if the strain was recovered
during the baseline examination. For subsequent examina-
tions, a carriage event for a strain was considered to occur at
time t if the subject was colonized with the strain at time t-1
and remained colonized with the same strain at time t. For
each outcome variable, the event occurrence was coded as 1
and non-occurrence as 0. This data set was reduced by
removing strain-specific acquisition and carriage vari-
ables for which the event occurred in less than 1% of
the subjects (this corresponded to fewer than 4 event
occurrences in the data set). The reduced data set
retained acquisition variables for USA100 (T01) and
USA300 (T03), and carriage variables for USA100
(C01), USA300 (C03) and USA1200 (C12). The counts
of these events per facility and risk factor exposure are
presented in Additional file 1: Table S1.
Notably, acquisition and carriage events of closely-

related strains may get different designations when con-
sidered at different discriminatory thresholds. For ex-
ample, if a subject carried strain X from USA100 clonal
group at time t, but only strain Y from the same clonal
group was recovered at time t + 1, this event at time t + 1
would be classified as carriage at the 80% strain similarity
threshold and as acquisition at a higher discriminatory
threshold. To assess the impact of this phenomenon on
the associations between strain-specific acquisition and
carriage events and candidate risk factors, the analysis of
the strains discriminated at the 95% similarity threshold
was also performed. In this study, MRSA isolates were
considered genetically distinct at the 95% strain similarity
thresholds if their PFGE banding patterns differed by 1–3
bands [37]. A total of 75 unique strains at the 95% similar-
ity threshold were identified in the study. As done with
the isolates at the 80% strain similarity threshold, two di-
chotomous outcome variables were created for each
unique MRSA isolate identified at the 95% threshold. The
variables were coded as T (for acquisition) or C (for car-
riage) followed by a 4-digit sequence. The first two digits
were indicative of the respective MRSA clonal group, and
the other two digits were assigned based on the genetic
similarity to isolates maintained in the University of
Wisconsin Infectious Disease Research Laboratory [37].
For example, outcome variables T0101 and C0101 were
created to denote acquisition and carriage of the strain
from USA100 clonal group. Likewise, the data set was
reduced by removing the outcome variables that occurred
in less than 1% of the subjects. The reduced data set con-
tained 11 strain-specific acquisition variables with 4–12
event occurrences and 16 carriage variables with 4–38
event occurrences (Additional file 2: Table S2).
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Associations at the 80% similarity threshold
To assess probabilistic dependencies between strain-specific
acquisition and carriage events and potential risk factors, we
used Bayesian network models. Bayesian networks are prob-
abilistic graphical models that represent conditional depend-
encies between a set of random variables using directed
acyclic graphs [29]. In Bayesian networks, random variables
are represented by nodes (or vertices), and the conditional
dependencies are shown by directed arcs that connect the
nodes. For structure learning, we used model averaging to
build a network containing only significant arcs [29]. The
averaged network was constructed by applying bootstrap re-
sampling to the data to learn a set of 1000 network struc-
tures. The arcs that appeared with higher frequency than the
significance threshold estimated from the graphs were
retained in the averaged network. The graph structure of
each of the 1000 networks was learned with the score-based
hill-climbing algorithm [29]. In this algorithm, the goodness
of fit is assessed by the network score. The search begins
with an empty network, and arcs are added, removed or
reversed one at a time until the network score is no longer
improving. Akaike information criterion (AIC) was used as a
score function in the algorithm. The established network

structure was used to estimate conditional probabilities of
the strain-specific acquisition and carriage events. Candidate
risk factors closely related to the strain-specific acquisition
and carriage events were identified from the network with
the so-called Markov blankets. The Markov blanket of a
node in a Bayesian network comprises its parent nodes,
children nodes and all other nodes that share a child with
this node [29] (e.g., in Fig. 1, Func is the parent node of C03,
Dev and Cogn are the children nodes of C03, and the nodes
AB, Comorb, Func, and Hosp share a child with C03). The
Markov blanket of each strain-specific acquisition and car-
riage event was determined from the averaged network and
was used to quantify the strength of the associations between
MRSA strains and potential risk factors. Focusing further
analysis on the Markov blankets of the strain-specific events
reduced the dimension of the model by removing non-
informative factors [38]. The bnlearn package in R version
3.1.2 or higher [32] was used to fit Bayesian networks and to
determine Markov blankets.
To quantify the strength of the association between

strain-specific acquisition and carriage events and candidate
risk factors, mixed effects logistic regression (MELR)
models with logit link function were fitted. The outcome

Fig. 1 Averaged Bayesian network that includes all potential risk factors and events for MRSA clonal groups. The network was built by averaging 1000
networks learned from bootstrap resampling of the data. The averaged network included only significant arcs. T and C followed by a 2-digit sequence
indicate acquisition and carriage events for the associated strain, respectively (e.g., T01 and C01 denote acquisition and carriage for USA100, T03 and
C03 for USA300). AB, antibiotic use in the previous 3 months (0 = Non-exposed, 1 = Exposed); Hosp, hospitalizations in the previous 3 months
(0 = Non-exposed, 0 = Exposed); Dev, invasive device (0 = Non-exposed, 1 = Exposed); Wnd, wound (0 = Non-exposed, 1 = Exposed); Comorb,
comorbidities (0 = Non-severe, 1 = Severe); Func, functional status (0 = Non-severe, 1 = Severe); Cogn, cognitive status (0 = Non-severe, 1 = Severe)
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variables were acquisition and carriage events for MRSA
clonal groups. Specifically, those were acquisition and
carriage of USA100 (T01 and C01, respectively), acquisition
and carriage of USA300 (T03 and C03, respectively), and
carriage of USA1200 (C12). The independent variables in
each original model were the Markov blankets of the
corresponding outcome variable (the network is shown in
Fig. 1). The models accounted for variability between the
facilities by including the facilities variable, Facility, as a
random effects term for the intercept. Different observa-
tions on the same resident were assumed independent in
our study, where 128 subjects (29%) had only baseline ob-
servation [24]. The likelihood ratio test was used in the
model building, and statistical significance was declared at
95% confidence level. Multilevel bootstrapping with 5000
replications was performed to derive 95% percentile
confidence intervals (CI) for the estimated model coeffi-
cients. The coefficients of the significant predictors and
their bootstrapped 95% CI’s were exponentiated to obtain
odds ratios (OR) and their 95% CI’s. Exponentiated model
intercepts denoted the odds of the outcome occurrence in
the reference group (that is, when all predictors in the
model were fixed at 0). The R (version 3.1.2 or higher)
package lmer was used for model fitting [32].
In addition, the associations between strain-specific ac-

quisition and carriage events at the 80% similarity and their
candidate risk factors were quantified using the elastic net
modeling approach. The elastic net is a regularization and
variable selection method that produces sparse models with
good prediction accuracy when the number of predictors is
much higher than the number of observations [31]. In our
ENET models, the strain-specific acquisition and carriage
events served as outcome variables, while the covariates
included the Markov blankets of the respective outcome
variables and Facility. Cross-validation with 485-folds and α
= 0.5 (the parameter controlling the penalty) was used to
find the optimal tuning parameter λ. The number of folds
in cross-validation was chosen to be about a third of the
number of observations. The model coefficients were esti-
mated based on the optimal tuning parameter at which the
minimal mean-squared error (MSE) was achieved. The
ENET models were fitted by using the glmnet package in R
version 3.1.2 or higher [32].

Associations at 95% similarity threshold
To obtain a preliminary understanding of the overall de-
pendence structure between strain-specific transition and
carriage events and candidate risk factors, we constructed a
minimal BIC forest. The minimal BIC forest is a graphical
model that represents the optimal forest for the data in
which the penalized likelihood criterion, Bayesian Informa-
tion Criterion (BIC), is optimized [39]. The nodes of the
forest denote random variables. The edges between the
nodes identify variables that are conditionally dependent

given the other variables in the model. Likewise, the
absence of edges between nodes identifies conditionally in-
dependent variables given the other variables. The minimal
BIC forest was found and plotted by using the gRapHD
package in R version 3.1.2 or higher [32]. Each vertex in the
plot was determined by using the algorithm proposed by
Fruchterman & Reingold [40] with 5000 iterations. To
further our understanding of the associations between the
potential risk factors and strain-specific acquisition and
carriage events for MRSA strains at the 95% similarity
threshold, we built an averaged Bayesian network, similarly
to the network that involved clonal groups.
In order to explore the associations between each individ-

ual potential risk factor and strain-specific acquisition and
carriage events while attenuating the impact of other risk
factors, we considered 7 Bayesian networks, each of which
included a single potential risk factor and all acquisition
and carriage events. Similarly to constructing the Bayesian
network that included all potential risk factors, each of the
7 networks was built by applying bootstrap resampling to
data to learn a set of 1000 network structures and building
an averaged network that included only significant arcs. In
each averaged network, the Markov blanket of the potential
risk factor was determined. To quantify the strength of the
association between each potential risk factor and the
strain-specific events that formed its Markov blanket, we
attempted to employ logistic regression. However, logistic
regression models could not be fitted successfully due to
small number of observations and relatively large number
of predictors. Elastic net models were fitted instead. In
those models, the potential risk factor was considered a
dependent variable, while the independent variables were
strain-specific acquisition and carriage events that formed
the Markov blanket of the risk factor, and Facility. Similarly,
to derive the optimal tuning parameter λ, cross-validation
with 485-folds and α = 0.5 was performed. The optimal
tuning parameter at which the minimal mean-squared
error (MSE) was achieved was employed to estimate model
coefficients. The elastic net models were fit by using the
glmnet package in R version 3.1.2 or higher [32].

Results
Associations at the 80% similarity threshold
Our Bayesian network revealed common patterns of con-
ditional dependencies between acquisition and carriage
events of MRSA clonal groups and their candidate risk
factors (Fig. 1). The conditional probabilities of carriage of
USA100, C01, estimated from the network are presented
in Fig. 2 (the conditions associated with a zero probability
are not shown). None of the conditional probabilities of
occurrence of other events (T01, T03, C03, C12) exceeded
0.05 (data not shown). Thus, a resident with severe co-
morbidity and cognitive status who had an invasive device
and chronic wound was certain to carry USA100 in our
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sample. Absence of severe cognitive impairment as well as
presence of a wound, device and severe comorbidity influ-
enced the probability of USA100 carriage although there
was a variation based on the combination of those risk
factors. For example, a resident with non-severe comor-
bidity and cognitive status who had a chronic wound but
not a device was estimated to be a carrier of USA100 with
probability of 0.42 in our sample.
This Bayesian network (Fig. 1) was also used to iden-

tify Markov blankets of the strain-specific acquisition
and carriage events at the 80% strain similarity thresh-
old. The Markov blankets for T01 and T03 consisted of
a single factor, C01 and Comorb, respectively. The Mar-
kov blanket for C01 comprised T01, Comorb, Cogn, Dev
and Wnd, while AB, Comorb, Cogn, Dev, Func, and Hosp
formed the Markov blanket for C03. Lastly, the Markov
blanket for C12 included Comorb and Cogn.
Estimates for the significant predictors of acquisition and

carriage events for MRSA clonal groups identified by
MLER and ENET models from the respective Markov blan-
kets are presented in Table 1. In this table, MLER estimates
identify predictors that were statistically significant at the
95% confidence level. While logistic regression suggested
statistically significant associations between the strain-
specific acquisition and carriage events and their candidate
risk factors, most of the 95% confidence intervals were ex-
tremely wide. One finding stood out: carriage of USA100
was more likely to occur in residents with a chronic wound
than in those without it (OR = 2.77, 95% CI = 1.37–5.87).
In elastic net models, presence of chronic wound or inva-

sive device and severe comorbidity were positively associ-
ated with carriage of USA100, while severe cognitive status
appeared to be a protective factor. Notably, presence of

wound showed a stronger association with carriage of
USA100 compared to other factors. Among the factors
positively associated with carriage of USA300, functional
status appeared to be more pronounced. Carriage of
USA300 was negatively associated with hospitalizations in
the past 3 months. Acquisition of neither strain was associ-
ated with carriage of another strain.

Associations at the 95% similarity threshold
A preliminary dependence structure between strain-specific
acquisition and carriage events and their candidate risk
factors revealed by the minimal BIC forest is shown in
Additional file 3: Figure S1. The graph suggests that the can-
didate risk factors play an important role in the spread and
persistence of most MRSA strains discriminated at the 95%
similarity threshold. A Bayesian network that shows
conditional dependencies between strain-specific acquisition
and carriage events of MRSA at the 95% similarity threshold
and their potential risk factors is presented in Fig. 3. The
Bayesian network and minimal BIC forest revealed
similarities in the network structures. Moreover, the Bayesian
networks for both 80% and 95% similarly thresholds appear
qualitatively similar (Fig. 1 and Fig. 3, respectively).
An example of the Bayesian network that involved a single

candidate risk factor (AB) and strains discriminated at the
95% similarity threshold is presented in Additional file 4:
Figure S2. Elastic net analysis that was used to identify asso-
ciations between strain-specific acquisition and carriage
events and a single candidate risk factor resulted in the selec-
tion of covariates and their coefficients shown in Table 2.
The total of 5 covariates was not selected by the ENET
models from the Markov blankets of the candidate risk fac-
tors (C0104 and T0113 in relation to AB, C0114 in relation

Fig. 2 Conditional probabilities of carriage of USA100 derived from the Bayesian network depicted in Fig. 1. Conditions that correspond to a
probability of 0 are not displayed. The secondary axis shows the total number of observations with respective combinations of risk factors. Pr,
estimates of conditional probabilities; # Obs., the total number of observations with respective combinations of risk factors; Comorb, comorbidity
(0 = Non-severe, 1 = Severe); Cogn, cognitive status (0 = Non-severe, 1 = Severe); Dev, presence of invasive device (0 = Non-exposed, 1 = Exposed);
Wnd, presence of wound (0 = Non-exposed, 1 = Exposed)

Batina et al. BMC Infectious Diseases  (2017) 17:752 Page 6 of 11



Table 1 Coefficients derived from MELR and ENET models for strains discriminated at the 80% similarity threshold

Covariates Elastic net (ENET) Mixed effects logistic regression (MELR)

Estimate Estimate (SE)a Bootstrapped 95% CIa OR (95% CI)a (odds for Intercept) p-value

T01 (outcome)

(Intercept) −3.42 −3.45 (0.29) (−4.46, −2.89) 0.03 (0.01, 0.06) NA

C01 −5.83 NA NA NA NA

Facility 0.09 0.58 (0.00, 1.37) NA NA

C01 (outcome)

(Intercept) −2.53 −2.10 (0.30) (−3.04, −1.41) 0.12 (0.05, 0.24) NA

T01 −5.04 −20.30 (28.36) (−82.16, −13.96) 0.00 (0.00, 0.00) <0.001

Cogn −0.88 −0.71 (0.30) (−2.95, 0.72) 0.49 (0.05, 2.05) 0.010

Comorb 0.37 0.31 (0.16) (−0.11, 1.04) 1.36 (0.89, 2.84) NAb

Dev 0.26 NA NA NA NA

Wnd 1.11 1.02 (0.21) (0.31, 1.77) 2.77 (1.37, 5.87) <0.001

Facility 0.15 0.66 (0.16, 0.92) NA NA

T03 (outcome)

(Intercept) −4.83 −5.64 (0.76) (−98.09, −4.25) 0.00 (0.00, 0.01) NA

Comorb 0.46 1.11 (0.59) (−0.99, 91.84) 3.03 (0.37, >1000) 0.047

Facility NA 1.01 (0.00, 5.55) NA NA

C03 (outcome)

(Intercept) −10.47 −5.14 (0.73) (−29.75, −4.01) 0.01 (0.00, 0.02) NA

AB 0.36 NA NA NA NA

Cogn 1.15 1.34 (0.35) (−24.83, 2.54) 3.81 (0.00, 12.70) <0.001

Comorb 0.63 0.80 (0.34) (−0.50, 23.66) 2.23 (0.61, >1000) 0.018

Dev 1.10 1.40 (0.36) (−20.04, 2.34) 4.06 (0.00, 10.40) <0.001

Func 5.92 NA NA NA NA

Hosp −0.43 NA NA NA NA

Facility 0.14 1.48 (0.32, 3.23) NA NA

C12 (outcome)c

(Intercept)c −7.40 −7.15 (1.35)/
−34.55 (95.6)

(−783.01, −5.29)/
(−715.76, −26.84)

0.00 (0.00, 0.01)/
0.00 (0.00, 0.00)

NA

Cogn 2.33 2.41 (0.88) (−447.79, 772.85) 11.16 (0.00, >1000) 0.005

Comorb 1.95 28.59 (95.60) (21.23, 704.66) >1000 (>1000, >1000) 0.003

Facilityc −0.06 1.30/1.75 (0.00, 6.81) /
(0.00, 7.39)

NA NA

Covariates of each outcome variable (strain-specific acquisition or carriage events) represent Markov blankets of these variables. Covariates that were included in
the Markov blankets of the outcome but not selected by the ENET or not statistically significant at the 95% confidence level in the MLER models are denoted by
NA. The values in the OR and p-value columns that correspond to random effects terms of MELR models and the p-values for intercept terms are also denoted by
NA’s. The p-values were obtained from the likelihood ratio test comparing two nested models, with and without the respective term
Logistic regression coefficients of the fixed effects terms (potential risk factor terms and acquisition and carriage of MRSA) are provided for level 1 (reference level
is 0). Facility was used as a covariate in ENET models, and its coefficient is provided in the corresponding column. Standard deviations of random intercepts are
provided in the columns that correspond to MELR
aMELR estimates and standard errors were derived from fitting the models to the data. Bootstrapped 95% CI’s are percentile CI’s obtained from multilevel
bootstrapping with 5000 replications. OR’s are exponentiated model estimates, and respective 95% CI’s are exponentiated bootstrapped 95% CI’s
bUnable to estimate the p-value from the likelihood ratio test comparing two nested models because the model without the term does not converge
cThe model with both Cogn and Comorb included did not converge. Two simpler models, each including one of the terms, were fitted. The first entry in the
(Intercept) and Facility columns represent the values from the model with Cogn, and the second entry, separated by “/”, represent the values from the model
with Comorb
T01, acquisition of non-USA300; C01, carriage of non-USA300; T03, acquisition of USA300; C03, carriage of USA300; C12, carriage of USA1200;
AB, antibiotic use in the past 3 months (0 = Non-exposed, 1 = Exposed); Hosp, hospitalizations in the past 3 months (0 = Non-exposed, 1 = Exposed); Dev, presence
of invasive device (0 = Non-exposed, 1 = Exposed); Wnd, presence of wound (0 = Non-exposed, 1 = Exposed); Comorb, comorbidity (0 = Non-severe, 1 = Severe);
Func, functional status (0 = Non-severe, 1 = Severe); Cogn, cognitive status (0 = Non-severe, 1 = Severe);
OR Odds ratio, CI Confidence interval, SE Standard error
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to Hosp, T0157 in relation to Dev, and T0100 in relation to
Wnd). Hosp was associated with acquisition and carriage
events of strains from USA100 clonal group only, while
other risk factors were associated with the events for strains
from both USA100 and USA300 clonal groups. Carriage of
the strain from USA1200 clonal group, C1201, was
negatively associated with AB and positively associated with
Comorb, Func, and Cogn.

Discussion
Our study used the combination of Bayesian network ana-
lysis, logistic regression and elastic net modeling ap-
proaches to determine and quantify the associations
between the acquisition and carriage of MRSA strains and
their potential risk factors in community nursing homes
in Wisconsin. The Bayesian networks that considered
strains at the 80% and 95% similarity thresholds revealed a
qualitatively similar structure of conditional dependencies
between strain-specific acquisition and carriage events
and potentially modifiable resident characteristics. To our
knowledge, it is the first study that used predictive models
to investigate the relation between acquisition and
carriage of strain-specific MRSA and their determinants
in community nursing homes.

Our results indicated that residents with a chronic wound
were more likely to carry USA100 MRSA compared with
residents free of wounds. This finding may suggest the
presence of a chronic wound as a significant predictor of
carriage of USA100 MRSA. The presence of wound was
found to be a risk factor for MRSA carriage in other studies
[41]. It may also be probable, however, that carriage of
USA100 increases the risk for developing a chronic wound.
More research is needed to study the direction of the
association between carriage of USA100 MRSA and the
presence of chronic wounds. Functional status appeared to
be an important determinant for carriage of USA300 and
USA100 strains in our study. This is in agreement with
other studies conducted in nursing homes that identified
functional status as a risk factor for MRSA colonization as
well [22, 42]. The conditional dependencies revealed by the
Bayesian networks highlight the associations between po-
tentially modifiable resident characteristics and strain-
specific acquisition and carriage of MRSA. Thus, the know-
ledge about resident cognitive status, comorbidity, presence
of wound and device informs the likelihood of carriage of
USA100 in our network. One of the important utilities of
this approach can be informing targeted screening for
MRSA in nursing homes (i.e., screening residents who are

Fig. 3 Averaged Bayesian network of potential risk factors and strain-specific acquisition and carriage events. The network was built by averaging 1000
networks learned from bootstrap resampling of the data. The averaged network included only significant arcs. T and C followed by a 4-digit sequence
indicate acquisition and carriage events for the associated strains discriminated at the 95% similarity threshold, respectively. AB, antibiotic use in the
previous 3 months (0 = Non-exposed, 1 = Exposed); Hosp, hospitalizations in the previous 3 months (0 = Non-exposed, 1 = Exposed); Dev, invasive
device (0 = Non-exposed, 1 = Exposed); Wnd, wound (0 = Non-exposed, 1 = Exposed); Comorb, comorbidities (0 = Non-severe, 1 = Severe); Func,
functional status (0 = Non-severe, 1 = Severe); Cogn, cognitive status (0 = Non-severe, 1 = Severe)
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at a higher risk for carrying MRSA). Many hospitals are
now pursuing targeted screening [43] in place of universal
screening to reduce the costs. More research is needed to
establish risk factors for MRSA colonization in nursing
homes.
The limitations of our study stem largely from the scar-

city of data and from modeling assumptions. The small
number of observations available for strain-specific acquisi-
tion and carriage events, especially at the higher discrimin-
atory threshold of 95%, coupled with scarcity of events for
most risk factors, made some of the association estimates

highly uncertain. To improve the predictive power of the
models, the data from the six facilities were combined for
the analysis. Our results therefore represent the hypothet-
ical “average” nursing home. Combining the data did not
allow us to describe the dynamics of MRSA within each
facility. We did not account for variation between the
residents within each facility due to the limited amount of
observations at a resident level. Moreover, the proportion
of the participants (53% of the approached residents) in the
study nursing homes and subsequent attrition over time
may limit the generalizability of the conclusions.

Table 2 Coefficients of ENET models for strains discriminated at the 95% strain similarity threshold

Covariates (strain-
specific events)

Estimated coefficients associated with the outcome variables (candidate risk factors)

AB Hosp Dev Wnd Comorb Func Cogn

(Intercept) −0.56 −1.69 −2.25 −2.30 −0.39 0.75 −1.39

C0100 0.68 0.38 0.69 – 0.50 0.69 –

T0100 – −1.65 – NA – – 1.10

C0101 1.17 – – – – – –

C0104 NA – – – −1.75 – –

C0106 – – – – −0.68 1.12 –

T0106 0.99 1.45 – 3.34 – – –

C0113 – – 0.06 1.43 – 3.47 −4.40

T0113 NA – – 1.25 – – –

C0114 0.96 NA – – – – –

C0118 – – 0.61 – 1.65 – –

C0119 – – 1.94 – 2.71 3.08 –

T0119 – – – – 2.55 – –

C0120 – −1.56 – – – – –

T0124 – – – 0.17 – – –

C0139 – – – – 1.09 – –

C0146 – – – 1.49 – −1.13 –

C0149 – – 2.05 – 1.48 – –

C0154 −0.54 – – – 2.91 −2.29 –

T0157 – – NA – – – –

C0300 0.55 – 1.19 0.52 0.78 3.70 0.97

T0300 0.54 – – – – – –

C0301 – – 1.20 1.95 – 3.15 1.53

T0301 – – – – – 2.99 –

C1201 −1.28 – – – 2.85 2.99 6.96

Facilitya 0.09 NA NA NA 0.13 0.03 −0.15

In these models, candidate risk factors served as dependent variables, while strain-specific acquisition and carriage events and Facility were included as
independent variables. The rows represent the acquisition and carriage events which were a part of the Markov blanket of at least one potential risk factor.
The columns display the estimates of the covariates selected by the models from the Markov blankets of the respective potential risk factors. NA’s denote the
strain-specific events included in the Markov blanket of a risk factor but not selected by the model, while dashes signify the events that were not in the Markov
blankets of the respective risk factors (e.g., C0104 was in the Markov blanket of AB, but was not selected by the model; T0100 was not in the Markov blanket
of AB)
aFacility was included into the models as explanatory variable in addition to Markov blankets of the outcomes
T and C followed by a 4-digit sequence indicate acquisition and carriage events for the associated strain, respectively
AB, antibiotic use in the past 3 months (0 = Non-exposed, 1 = Exposed); Hosp, hospitalizations in the past 3 months (0 = Non-exposed, 1 = Exposed); Dev, presence
of invasive device (0 = Non-exposed, 1 = Exposed); Wnd, presence of wound (0 = Non-exposed, 1 = Exposed); Comorb, comorbidity (0 = Non-severe, 1 = Severe);
Func, functional status (0 = Non-severe, 1 = Severe); Cogn, cognitive status (0 = Non-severe, 1 = Severe)
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Furthermore, the risk factor variables were dichotomized
for the purpose of this study. Variable dichotomization was
likely to reduce the discriminatory power of the models
aimed at detecting the associations between the candidate
risk factors and strain-specific events. For example, resi-
dents who had a single dose of antibiotics and those with
routine antibiotic exposure over the previous 3 months
were classified as exposed to antibiotics. Similarly, residents
were classified as having severe or non-severe comorbidity,
functional status and cognitive status based on the chosen
cutoffs for the associated scores. That is, residents with a
similar level of exposure to the risk factor of interest could
be classified into different levels of this factor. However, we
used the best available data to quantify the associations
between MRSA strains and candidate risk factors with
regards to their acquisition and persistence. More studies
are needed to investigate such associations further. While
we learned the network structure from the data, incorporat-
ing expert knowledge in the network may shed additional
light into the determinants of acquisition and carriage of
MRSA strains.

Conclusions
We employed Bayesian networks, logistic regression and
elastic net modeling approaches to study the associations
between acquisition and persistence of MRSA strains and
potentially modifiable resident characteristics in community
nursing homes. The discovered associations may be used to
generate hypotheses regarding risk factors for acquisition
and persistence of MRSA strains in this setting for further
research. Bigger data sets are needed to test these hypotheses
in order to identify risk factors that contribute to acquisition
and persistence of strain-specific MRSA in nursing homes.
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