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Abstract

Background: Individual-based models (IBMs) are useful to simulate events subject to stochasticity and/or
heterogeneity, and have become well established to model the potential (re)emergence of pathogens (e.g.,
pandemic influenza, bioterrorism). Individual heterogeneity at the host and pathogen level is increasingly
documented to influence transmission of endemic diseases and it is well understood that the final stages of
elimination strategies for vaccine-preventable childhood diseases (e.g., polio, measles) are subject to stochasticity.
Even so it appears IBMs for both these phenomena are not well established. We review a decade of IBM publications
aiming to obtain insights in their advantages, pitfalls and rationale for use and to make recommendations facilitating
knowledge transfer within and across disciplines.

Methods: We systematically identified publications in Web of Science and PubMed from 2006-2015 based on
title/abstract/keywords screening (and full-text if necessary) to retrieve topics, modeling purposes and general
specifications. We extracted detailed modeling features from papers on established vaccine-preventable childhood
diseases based on full-text screening.

Results: We identified 698 papers, which applied an IBM for infectious disease transmission, and listed these in a
reference database, describing their general characteristics. The diversity of disease-topics and overall publication
frequency have increased over time (38 to 115 annual publications from 2006 to 2015). The inclusion of intervention
strategies (8 to 52) and economic consequences (1 to 20) are increasing, to the detriment of purely theoretical
explorations. Unfortunately, terminology used to describe IBMs is inconsistent and ambiguous. We retrieved 24
studies on a vaccine-preventable childhood disease (covering 7 different diseases), with publication frequency
increasing from the first such study published in 2008. IBMs have been useful to explore heterogeneous between-
and within-host interactions, but combined applications are still sparse. The amount of missing information on model
characteristics and study design is remarkable.

Conclusions: IBMs are suited to combine heterogeneous within- and between-host interactions, which offers many
opportunities, especially to analyze targeted interventions for endemic infections. We advocate the exchange of
(open-source) platforms and stress the need for consistent “branding”. Using (existing) conventions and reporting
protocols would stimulate cross-fertilization between research groups and fields, and ultimately policy making in
decades to come.
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Background
Infectious diseases have substantial impact on public
health, health care, macroeconomics and society. The
availability of options to control and prevent the emer-
gence, expansion or resurgence of pathogens warrants
continuous evaluation using different methods. Mathe-
matical models provide a powerful set of tools in this
process, as timely, budgetary or ethically feasible alterna-
tives are often lacking (e.g., school closure interventions
or vaccine trials to study herd immunity effects) [1].
Even in countries or regions with high overall levels of
vaccination coverage and herd immunity, sporadic out-
breaks may still occur. For instance, in Europe, the flow
of refugees through countries with ongoing large measles
outbreaks (e.g., Bosnia-Herzegovina, Serbia) increased
the risk of stochastic introduction events elsewhere [2].
Model-based evaluations can be useful to understand the
behavioral mechanisms influencing the frequency, peak
and duration of these outbreaks, with the aim to design
(better) strategies to prevent them or minimize their
impact [3].
Transmission dynamics of infectious diseases are usu-

ally modeled at the population-level with a compartmen-
tal model, and less frequently till now at the individual
level with an individual-based model (IBM). A compart-
mental model tracks changes in compartments without
specifying which individuals are involved [4]. Compart-
mentalization typically reflects health states relevant for
transmission (e.g., susceptible, infectious and recovered),
though more partitioning is possible according to age
and/or other relevant host characteristics. Heterogeneous
and temporal behavior is modeled through incorpora-
tion of relevant time-dependent social mixing, commu-
nity structures and seasonality, relevant for infectious
disease dynamics [5–7]. Process dynamics are captured in
transition rates, representing the rate by which an aver-
age individual transitions between compartments. IBMs
work bottom-up, with population-level behavior emerg-
ing from the interactions between autonomous individu-
als and their environment [8]. They allow the history of
every individual to be tracked and network structures to
be explicitly represented [4]. Each individual has a unique
set of attributes or state variables that can change through
time including spatial location, physiological traits and/or
social behavior [9, 10]. As such, IBMs allow a high
degree of heterogeneity for the creation, disappearance
and movement of a finite collection of discrete interacting
individuals [8, 11].
Deterministic models have been very useful to simulate

the dynamics of endemic infections, but they are less
suited to simulate events that are subject to chance [4].
For instance, the (non-)propagation of an infection in the
initial stages of an emerging disease or in the final stages
of elimination is dominated by individual heterogeneity

and random events. The interplay between infectious
disease dynamics and individual human behavior can
be key to improve control efforts [12, 13]. Both com-
partmental and individual-based modeling approaches
can simulate stochastic events. A compartmental model
design, based on the epidemiological status of the pop-
ulation and known disease aspects, can be used in
combination with stochastic and time-varying disease
transmission rates [14]. As such, stochastic terms pro-
vide model flexibility to accommodate changes in the
transmission rate that might occur due to unobserved
processes. Remarkable progress has also been made
with meta-population models to incorporate heteroge-
neous and temporal aspects by considering stochas-
tic inter-population mobility [15]. For example, the
Global Epidemic and Mobility (GLEaM) model, has
been used to assess international travel restrictions dur-
ing the 2009 influenza pandemic and the 2014-2016
Ebola outbreak [16–19]. Stochastic IBMs allow even more
variation due to chance, which is especially of interest
to study systems with small susceptible populations due
to the context (e.g., a hospital or small island) or due
to high population immunity (e.g., by routine childhood
immunization programs).
Vaccination is one of the most effective tools to pre-

vent infectious diseases and their consequences [20]. High
immunization coverage is extremely important at the
community level to protect patients who cannot be vac-
cinated due to medical reasons or age (e.g., the very
young or very old). Indeed, also older age groups benefit
from childhood immunization, for example the admin-
istration of conjugate pneumococcal vaccine to young
children has had a substantial impact on adult pneumo-
coccal disease [21]. However, low incidence of vaccine-
preventable diseases in many high- and middle-income
countries, often leads to the public perception of reduced
severity and susceptibility [20]. Combined with rising
concerns about real or perceived adverse events, the
apparent absence of disease leads people to delay or
refuse vaccinationsmore often [22]. Outbreaks of vaccine-
preventable disease in countries with historically suc-
cessful vaccination programs can take off in immigrant
or unvaccinated pockets of susceptibles and potentially
affect vulnerable groups such as infants and the immuno-
compromised [23]. Modeling the stochastic nature of
transmission events in highly immunized populations
with (clustered) heterogeneity in susceptibility can bene-
fit from an IBM approach. To investigate the frequency
and methods of such IBM applications, we focus on
vaccine-preventable childhood diseases in a subsection of
this review.
Different terminology has been used for individual-

level models including agent-based model (ABM), cellular
automata (CA), micro-simulation as well as more generic
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terms such as computer simulations and complex adaptive
systems. A distinction in nomenclature can be designated
by whether the simulation is based on nodes of a grid
(as in a CA), or based on agents that are self-contained
programs that collect information from their surround-
ings and have the autonomy and capacity to learn and
adapt (ABM) [24]. These terms have been used inter-
changeably in the literature [25, 26]. Henceforth, we will
use the overall term “IBM” to refer to the individual-level
approach.
Describing the methodology of an IBM is more dif-

ficult compared to compartmental models, which often
can be formulated in the general language of mathematics
[27]. Published IBM methodology is often incomplete or
ambiguous and therefore less accessible or reproducible
[28]. In 2006, a board of 28 modelers developed and
tested a generic format to document IBM research con-
sisting of three blocks: Overview, Design concepts, and
Details (ODD) [28]. The primary objective was to make
model descriptions more understandable and complete.
The “Overview” should provide readers the modeling
focus, resolution and complexity based on the decla-
ration of the model entities and the scheduling of the
processes. The “Design Concept” describes the general
approach to establish a link with emergence, the type of
interactions and if/how stochasticity is considered. The
“Details” section should contain all information required
to completely reimplement themodel and run the baseline
simulations. In 2010, the ODD protocol has been revised
and was used in at least 50 publications though still many
papers lacked a standard approach to describe the IBM
[29].
In this systematic review, we summarize and discuss

IBM applications and terminology across different epi-
demiological disciplines, published between 2006 and
2015. We elaborate in general on the different model-
ing topics and purposes over time and identify research
and data gaps. As indicated above we also focus on
IBM research for childhood diseases with a long history
of vaccination, i.e. on risk assessment and elimination
strategies in heterogeneous settings with high population-
immunity. We extract and discuss model characteristics
such as the implementation of social mixing, demographic
evolution over time, as well as the modeling platforms
for IBMs. For these applications, we aimed to identify
the rationale for an IBM and provide model characteris-
tics and recommendations to enhance knowledge transfer
across disciplines.

Methods
Our search, extracting and reporting strategy is based on
the evidence-based protocol PRISMA (Preferred Report-
ing Items for Systematic Reviews andMeta-Analyses) [30]
and the Cochrane guidelines [31]. We use IBM as the

overarching term for models at the individual-level, also
noted as ABM, CA, micro-simulation, etc. We conducted
a systematic review of studies using an IBM for infectious
disease transmission, using this definitions based on the
literature:

Infectious diseases: “Caused by pathogenicmicroorgan-
isms, such as bacteria, viruses, parasites or fungi; the
diseases can be spread, directly or indirectly, from
one person to another. Zoonotic diseases are infec-
tious diseases of animals that can cause disease when
transmitted to humans” [32].

Individual-based model: “Computer simulation for the
creation, disappearance and movement of a finite
collection of interacting individuals or agents with
unique attributes regarding spatial location, physio-
logical traits and/or social behavior” [8–11, 25, 33].

Search
We searched PubMed and Web of Science Core Collec-
tion using Endnote (X7.2.1) for English language articles
published from January 2006 up to December 2015. Based
on the listed definitions and exploratory searches, the fol-
lowing search query was used on January 3, 2016: “(model*
OR simulat*) AND (agent-based OR individual-based
OR individual-level OR multi-agent OR actor-based OR
micro-simulation OR microsimulation OR cel* automata
OR (stochastic AND individual*)) AND (disease OR infect*
OR transmi* OR epidem*)”. Pubmed and Web of Science
both ignore hyphens in the search query, so e.g., “individ-
ual based” and “agent based” were also retrieved. In line
with Cochrane guidelines, eligibility criteria were agreed
upon by four researchers (LW, JB, NH and PB, experienced
in infectious disease and/or individual-based modeling)
prior to screening. We included original research papers
using an IBM with a focus on infectious disease transmis-
sion in humans. I.e., reviews and studies related to ani-
mal research, ecology, molecular biology and immunology
were excluded. The screening on title/abstract/keywords
and full-text if necessary was conducted by a single
reviewer (LW), in consultation with co-authors in case of
doubt.

Model classification
For each study that met the eligibility criteria, LW and
FV retrieved independently the topic (disease), the mod-
eling purpose (methods, dynamics or interventions) and
model specifications such as setting, economic anal-
ysis, reference data, open-source initiatives and sus-
tainability based on model names. We classified the
modeling purpose according to the following defini-
tions: (1) methods: describing new approaches for IBM
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research by introducing modeling concepts, performance
enhancements or emulation techniques; (2) dynamics:
using a methodology to understand transmission dynam-
ics and elaborate on the effect of model assumptions and
parameter values on the results; (3) interventions: to eval-
uate interventionmeasures to inform policymakers, using
a methodology and based on knowledge on the transmis-
sion dynamics. Studies for which LW and FV disagreed
with respect to classification were discussed up to when
agreement was reached.

Full-text screening
To extract model characteristics and applications, a full-
text screening was done in duplicate by LW and FV
for papers on vaccine-preventable childhood diseases,
defined as the diseases included in the immunization
recommendations between birth and 15 months by the
Centers for Disease Control and Prevention [34]. As such,
we included diphtheria, Haemophilus influenzae type b,
hepatitis A, hepatitis B, influenza, measles, meningococ-
cus, mumps, pertussis, pneumococcus, polio, rotavirus,
rubella, tetanus and varicella. Papers on influenza were
excluded from the full-text analysis to focus on limited
stochastic outbreaks in heterogeneous populations with
high levels of herd immunity. For more info on fore-
casting influenza outbreaks, we refer to the systematic
review by Nsoesie et al. [35]. For each full-text article,
we listed the topic, the setting, model specifications (e.g.,
state variables, time horizon, step size), design of exper-
iments (e.g., realizations, platform), the added value of
an IBM compared to deterministic alternatives and the
terminology.

Results
Using the online databases PubMed and Web of Science,
we identified 5520 unique articles published between
2006-2015 matching the search criteria listed in the
“Methods” section. Our query included many general
descriptions for IBMs and infectious disease transmis-
sion to decrease the number of false negative hits. Based
on title, abstract and keyword screening with predefined
eligibility criteria (see “Methods”), we excluded 4761 arti-
cles. More specifically, we excluded over 800 articles
on a different topic (stock markets, oncology, engineer-
ing, non-human, etc.) and many more with a stochastic
model but not at the individual-level. Other infectious
disease IBMs did not include transmission events. We
analyzed full-texts for 100 abstracts containing an unclear
or incomplete model description and excluded 62 of them.
Finally, we obtained 698 studies using an IBM to simu-
late infectious disease transmission. The adapted PRISMA
diagram of the screening process with inclusion and exclu-
sion criteria can be found in Additional file 1. In this main
text, we describe and discuss general findings and provide

the complete set of references with study characteristics
as Additional file 2.

Modeling purpose
Among the 698 included studies, we observed an absolute
increase in the annual number of IBM publications (38 to
115 from 2006 to 2016) and the diversity of disease-topics
(Fig. 1). Most papers in our selection are on unspecified
close-contact diseases (27%), closely followed by influenza
(23%). Many studies in the latter group were published
shortly after the 2009 H1N1 pandemic [36–38]. A similar
event-related trend is observed for Ebola in 2015 [39, 40]
and for bioterrorism subjects, with 13 studies between
2006 and 2013, expressing the rising concerns over small-
pox [41], anthrax [42] and pneumonic plague [43]. Table 1
presents an overview of the different topics, modeling
purposes and study characteristics. We observed that
models for general close-contact diseases are mostly used
to describe methodology and transmission dynamics. In
contrast, many studies on influenza are conducted to
control seasonal or pandemic outbreaks with vaccination
programs or social distancing such as isolation and school
closures [44, 45]. In recent years, we observe a shift for the
use of IBMs frommethodological (43% to 19%) to applica-
tion and intervention-related purposes (21% to 44%). This
is entangled in the rising number of articles on the trans-
mission and control of human immunodeficiency virus
(HIV), human papillomavirus (HPV), malaria, tuberculo-
sis and methicillin-resistant S. aureus. Studies on sexu-
ally transmitted infections increasingly tend to evaluate
screening strategies in the general population, compared
to previous studies focusing on prevention measures for
men who have sex with men or injecting drug users.
We observed an accelerating trend in economic analyses
using an IBM from 1 study in 2006 up to 20 in 2015.
Malaria is the dominant topic for vector-borne disease
models, covering drugs and vector control but also, more
recently, potential malaria vaccination options [46–48].
Dengue has also been modeled using IBMs, though usu-
ally with the primary aim to understand the transmission
dynamics, pathogenicity and epidemiology rather than to
inform policy makers [49]. Many other diseases have also
occasionally been modeled using IBMs including the res-
piratory syncytial virus [50] and cholera [51]. IBM studies
on vaccine-preventable childhood diseases appeared in
2008 for measles and pneumococcus, accumulating to
24 studies by the end of 2015 covering meningococcus,
varicella, polio, pertussis and hepatitis A (see “Full-text
analysis” subsection for more details).
Methodological papers, not applied to a specified close-

contact infection, mostly describe the conceptual usage
of an IBM to simulate heterogeneous disease dynamics
and targeted intervention strategies. Other studies were
published on validation procedures [52, 53], performance
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Fig. 1 IBM studies published over time by topic (top) and purpose
(bottom)

issues [54, 55] and emulation to improve rapid policy
making in various settings [55–58]. Models and model
output have been calibrated and validated with observed
incidence and (sero)prevalence data [49, 59, 60] but also
with data generated by other models, such as determin-
istic ordinary differential equation models [61] or meta-
populations models [62].
As supplementary analysis, we explored the relative

number of studies over time that have or have not used an
IBM to model infectious disease transmission (described
in Additional file 3). We performed additional literature
queries considering the number of records in Web of Sci-
ence as a proxy for the effective number of modeling

studies and a constant fraction of false positives and neg-
atives over time. As such, we observed that the yearly
number of published IBM related studies tends to increase
more rapidly since 2006 compared to the annual pub-
lications on modeling infectious disease transmission in
general.

Terminology
We observed a variety of descriptions for models sim-
ulating transmission events between humans at the
individual-level. Table 2 illustrates the presence of query
terms in all unique hits and for the selected subset of IBMs
for infectious disease transmission. The positive predic-
tive value represents the proportion of positive results
that are truly positive (i.e. the proportion of query records
included after screening). We also estimated the sensitiv-
ity, namely the probability of detection, as the proportion
of positives that are correctly identified as such. Of the 698
included studies, 12 did not contain “model” in their title,
abstract or keywords. To describe the individual-level
characteristics, ABM and IBMwere mainly used, followed
by CA or micro-simulation (though with different spelling
variations). Other terminology that covered our defini-
tions included “individual-level model” [63], “individually
based SIR model” [64], “small world network” [65], “large-
scale stochastic simulation” [66], “equation free approach”
[67] or other variants of “stochastic models” [36, 68]. Gen-
eral keywords gave many false positive hits though still
resulted in 124 papers that did not use the most common
terminology in their abstract, title or keywords. None of
our disease related query terms were used by the com-
plete set of IBM papers on infectious disease transmission
and a low positive predicted value was observed. Firstly,
the term “disease” is also valid for chronic and lifestyle
diseases. Secondly, we needed to include general terms
such as “transmi*” or “epidem*” to capture papers only
describing their specific disease topic like influenza [69] or
dengue [70]. Unfortunately, “transmi*” caused many false
positive hits for research on power markets, sensors and
information networks.

Modeling group diversity and branding
Based on their acronym, some models were identified as
having been applied multiple times, for example STD-
SIM [71], EPISIMS [72], EMOD [73], ONCHOSIM [74],
HPV-ADVISE [75], FRED [76] and the Openmalaria plat-
form [77]. This non-exhaustive list covers models for
airborne, sexually transmitted, parasitic and vector-borne
diseases. With such consistent acronyms, one can link
studies for different diseases, such as STDSIM developed
for HIV [71] but used for HPV [78] and herpes sim-
plex [79] or FRED implemented for influenza [76] and
recently used for measles [80], or EMOD used for HIV
[81] and malaria [82]. In addition, we identified studies
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Table 1 Characteristics of IBMs studies for infectious disease transmission published from 2006 to 2015

Topic Count Purpose Strategy Economic

Pathogen Type Methods Dynamics Interventions Vaccine NPI Drugs Screening Analysis

Unspecified Close-contact General 186 95 77 14 5 9 1 - 4

Unspecified STI General 9 3 5 1 1 1 - 1 -

Unspecified Vector-borne General 7 7 - - - - - - -

Bioterrorism General 6 3 1 2 - 2 1 - 1

Influenza Viral 161 51 37 73 37 47 24 3 14

HIV Viral 91 25 25 41 3 12 25 15 23

HPV Viral 27 2 2 23 23 - - 7 15

Hepatitis C Viral 12 2 3 7 1 - 6 2 3

Ebola Viral 8 - 5 3 1 3 2 - -

SARS Viral 8 4 3 1 1 - - 1 -

Smallpox Viral 7 - - 7 7 3 - 3 -

Measles Viral 5 1 1 3 3 - - 1 -

Polio Viral 4 1 2 1 1 - - - -

HIV+Hepatitis C Viral 3 1 1 1 - 1 - - -

HIV+HSV Viral 3 - 1 2 1 - 1 - 1

Varicella Zoster Viral 3 1 2 - - - - - -

Respiratory syncytial virus Viral 2 - - 2 2 - - - 1

Acute hemorrhagic
conjunctivitis

Viral 2 2 - - - - - - -

Hepatitis A Viral 1 - - 1 1 3 - - -

Norovirus Viral 1 - 1 - - - - - -

Malaria Vector-borne 35 7 5 23 7 1- 11 3 5

Dengue Vector-borne 13 4 5 4 2 3 - - -

Chikungunya Vector-borne 1 - - 1 - 1 - - -

Schistosoma Parasitic 3 2 1 - - - - - -

Wuchereria Parasitic 3 2 - 1 - 1 1 - -

Helminths Parasitic 2 - 1 1 - - 1 - -

Onchocerca Parasitic 2 - - 2 - - 2 - 1

Chagas disease Parasitic 1 1 - - - - - - -

Toxocara Parasitic 1 - 1 - - - - - -

Cryptosporidium Parasitic 1 1 - - - - - - -

Tuberculosis Bacterial 26 8 6 12 - - 9 9 4

MRSA Bacterial 14 3 2 9 - 13 2 4 1

Chlamydia Bacterial 7 3 - 4 1 - - 3 1

Nosocomial infections Bacterial 7 3 2 2 1 4 - - -

Syphilis Bacterial 6 - - 6 - 2 1 4 1

Pneumococcus Bacterial 5 1 1 3 2 1 - - -

Cholera Bacterial 4 - 4 - - - - - -

Lepra Bacterial 4 - 2 2 1 - 2 1 -

Gonorrhoea Bacterial 3 - 1 2 1 - - 1 -

Clostridium difficile bacterial 3 - - 3 - 7 2 2 -

Pertussis bacterial 3 - 1 2 2 - - - 1

Meningococcus bacterial 3 1 1 1 1 - - - -

Acinetobacter baumannii bacterial 1 - - 1 - 2 - - -

Enterococcus bacterial 1 - 1 - - - - - -

Typhoid bacterial 1 - 1 - - - - - -

Mycobacterium ulcerans bacterial 1 - 1 - - - - - 1

Foot and mouth disease zoonose 1 1 - - - - - - -

Total 698 235 202 261 105 125 91 60 77

Each study was assigned one purpose, which is cumulative from methods, dynamics to intervention (e.g., studies about interventions can also describe dynamics and
methods). The category “NPI” includes all non-pharmaceutical intervention strategies such as social distancing, school closure and improving standards of living and
(hand-)hygiene. HIV: human immunodeficiency virus, HPV: human papillomavirus, HSV: herpes simplex virus, MRSA: methicillin-resistant S. aureus, STI: sexually transmitted
infection
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Table 2 Terminology in abstract, title and keywords from all unique query hits and in the included IBM modeling studies for infectious
disease transmission. One article can contain several terms

All hits Included articles Positive predicted value Sensitivity

Model* 5271 686 0.130 0.983

Simulat* 2318 504 0.217 0.722

Agent-based 969 251 0.259 0.360

Individual-based 616 241 0.391 0.345

Micro-simulation 396 54 0.136 0.077

Cel* automata 249 62 0.249 0.089

Other individual-level related terms (see Methods) 3367 124 0.037 0.178

Disease 2791 445 0.159 0.638

Infect* 1939 553 0.285 0.792

Transmi* 1847 441 0.239 0.632

Epidem* 3029 521 0.172 0.746

Disease OR infect* 3564 629 0.176 0.901

Infect* AND disease AND transmi* 628 252 0.401 0.361

TOTAL 5520 698 0.126 1.000

The asterisk (*) is used in the search as a wildcard and represents any group of characters, including no character

that were published by the same authors but links with
previous research were not mentioned, at least not in
the abstract. Based on authorship, research institute and
project names, we could also link other studies to the
Openmalaria platform [77] and FRED [76]. Providing IBM
code open-source to the research community is not com-
mon practice but exists, for example with FluTE [36] and
FRED [76].

Full-text analysis
We analyzed 24 full-text articles on vaccine-preventable
childhood diseases, excluding influenza to focus on lim-
ited stochastic outbreaks in heterogeneous populations
and given the recent systematic review for influenza by
Nsoesie et al. [35]. The articles covered transmission
dynamics for hepatitis A, measles, meningococcus, per-
tussis, pneumococcus, polio and varicella. Our search did
not yield studies for diptheria, Haemophilus influenzae
type b, hepatitis B, mumps, rotavirus, rubella or tetanus.
In the remainder of this section, we summarize the main
findings from the full-text analysis, the per-study details
of which can also be found in Table 3.

Purpose
We retrieved 2 papers that explored methodology to
incorporate heterogeneous interactions in a (geo)spatial
context [24, 83]. Eight papers elaborated on transmis-
sion dynamics, focusing on the influence of social mixing
patterns or within-host dynamics [23, 84–90]. Addition-
ally, 14 studies modeled intervention strategies to mitigate
infectious disease outbreaks. Themajority (12/14) of these

studies modeled vaccination campaigns targeting general
[80, 91] or insufficiently immunized subgroups [92, 93],
expanding booster campaigns [94, 95], the occurrence of
rare adverse events such as vaccine-induced polio [96]
and serotype carriage and replacement [97–101]. Two
other studies on intervention strategies evaluated social
distancing options and adaptive social contact behavior
[102, 103].

Setting
We found papers modeling a theoretical grid [83, 85, 96]
or a generic “low income setting” [89]. The study
population of the other papers did not exceed a
single country, and ranged from a North American
[23, 24, 80, 86, 90, 92, 94, 101] to a European
[84, 87, 88, 95, 97–100, 102, 103] or African [91, 93]
country.

State variables
The lowest-level entity in each model was a “person” and
the minimum characteristic was the health state. Depend-
ing on the research questions, also heterogeneity for age,
gender, spatial location, social mixing behavior [103],
compliance to reactive strategies [92], serotype carriage
[99] and cellular mediated immunity [87] were incorpo-
rated. Social mixing behavior and transmission events
were modeled in one unified population [87, 97] and/or
within specific social contact clusters such as house-
holds, schools, workplaces and communities [84, 103],
sometimes in combination with occasional long distance
trips [92].
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Population
The population sizes ranged from 38 infants in a hospital
setting [94] up to 48 million inhabitants of England and
Wales [98]. The dynamics regarding age and social mixing
in the population were modeled static (i.e. constant) [85]
or dynamic (with ageing, mortality, newborns, weddings)
[92, 100]. Ajelli and Merler [103] were exceptional in that
they provided an explicit approach to model household
dynamics over time to enable IBM simulations on long
time-scales.

Time horizon
We observed a spectrum of time horizons from 60 days
[24] up to 320 years [87]. The step size was mostly one
day (e.g., [83, 88, 91]) but ranged from 30 minutes [23] up
to one month [86]. Two event-driven models had no fixed
time steps [93, 95].

Realizations
For stochastic IBMs, one initial condition can lead to dif-
ferent outcomes somultiple realizations are highly recom-
mended. The number of realizations for each parameter
set to quantify the uncertainty on the results varied in
our search from 3x [87], 10x [98] and 100x [90] up to
1000x [89]. For five papers, we were not able to retrieve
the number of realizations [86, 93, 97, 99, 103].

Platform
We distinguished a category of papers using mathematical
software such as MATLAB® [102] and Mathematica® [85].
Others used more explicit modeling platforms for IBMs
such as NetLogo [23, 90], RepastS [24] and AnyLogic® [94].
One model was implemented in Arena, which is specific
software for discrete-event simulations [104]. Four studies
reported a model implemented in C++ [80, 93, 97, 100].

Reason IBM
We discerned 3 main reasons for choosing an IBM for
these childhood diseases. Firstly, to model heterogeneous
between-host interactions regarding social mixing behav-
ior, age, demography, clustering, compliance to mitiga-
tion strategies and spatial distribution (e.g., [85, 88, 91]).
Secondly, to model heterogeneous within-host processes
in combination with between-host interactions (e.g.,
[87, 98, 99]). For instance, Choi et al. [98] analyzed
serotype replacement and developed an IBM to track the
multitude of possible vaccine states and dose combina-
tions, which was too complex to capture in a compart-
mental model framework. Thirdly, to obtain stochastic
individual-level information on the disease burden to
inform economic analysis or other post-processing [95].

Terminology
Of the 24 articles, 12 used only “IBM” to denote their
individual-level transmission model. Six papers used

“ABM” and 3 “CA”. Nurhonen et al. [100] used the terms
“IBM”, “ABM” and micro-simulation interchangeably. Sil-
hol and Boelle [88] and Rahmandad et al. [89] used “IBM”
and “ABM”.

Model performance
Only Rahmandad et al. [89] defined model require-
ments and performance. They reported runtimes and
stated that specialized computer clusters were required
to simulate very large populations. To set up the scale-
free network, 30 minutes were required on an Intel Core®
2 CPU 6400@2.13 GHz desktop. The runtimes to model
transmission dynamics scaled with population size. A few
papers mentioned that their results were obtained on a
cluster [87, 89, 100], without providing details.

Other
The amount of missing information on the platform or
other technical details is noteworthy, especially when the
model is not described elsewhere or open-source. Two
papers provide a model name, FRED [80] and EMOD [93],
and one states that the source code is available on request
[97]. In some papers [83, 95, 100], model characteristics
such as population size, time horizon, step size or number
of realizations had to be retrieved from the “Results” or
“Discussion” sections or from figure captions.

Discussion
The number of published IBMs for infectious disease
transmission and the diversity of disease topics are
increasing. Our systematic search identified 698 unique
papers between 2006 and 2015. Most included articles
were applied to unspecified close-contact infections or
to influenza, though IBMs for other air-, saliva-, vector-
borne and sexually transmitted infections are emerging.
Methods for vector-borne diseases have been described
for malaria and dengue and could guide future research.
Especially, IBM applications on chikungunya and zika are
expected over the next decade given the growing geo-
graphical expansion of their common vectors [49, 105].
Also screening and (non-)pharmaceutical intervention
strategies have not been fully explored with IBMs for
many diseases. Given the heterogeneous nature of bio-
medical and socioeconomic data and the accelerating
health care expenditures, IBMs become progressively
useful to inform policy makers, particularly in combi-
nation with efficiency and equity analyses [106, 107].
There are relatively few papers with an IBM for stochas-
tic outbreak analysis under high vaccination coverage,
for example for vaccine-preventable childhood diseases.
For measles, it was shown that stochastic fluctua-
tions around the endemic equilibrium in populations
with high vaccination coverage could cause recurrent
epidemics [84]. We expect future research to focus
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more on these topics with IBMs in combination with
increasing global mobility, urbanization, climate change,
disease elimination efforts and vaccine skepticism [2].
Customization of health care is one way to mitigate
these stochastic epidemics with medical interventions
tailored to the individual patient. The rising transition
towards precision medicine needs to be informed with
studies on the individual-level to capture spatio-temporal
heterogeneity.
Modeling frameworks, such as STDSIM [71], EMOD

[73] and EPISIMS [72] exist but are limited in that their
application depends heavily on specific input data. Indeed,
it is difficult to create or maintain generic models that
incorporate many modeling options and still manage the
computational burden. Nonetheless, given the high pro-
gramming burden, transparent reuse of models increases
confidence in their approach and generated results. Mak-
ing IBM code open-source (e.g., FluTE [36] and FRED
[76]) is also useful to validate model outcomes, to inspire
future modeling projects [55] and to expand model explo-
ration [108]. Consistent “branding” of the IBM, with a
proper acronym, is practical to link studies and consol-
idate intellectual ownership of freely accessible source
code.
Regarding the simulation platform, mathematical soft-

ware (e.g., MATLAB®) enables many embedded features
and is user-friendly but currently lacks specific modules
for IBMs. Integrated platforms such as RepastS [109]
and Netlogo [25, 110], are used by others and can be
practical and straightforward but cannot fulfill all require-
ments of the inherent heterogeneity and computational
burden of IBMs. A third option is the low-level program-
ming language C++, which enables high-performance
code but requires high-level programming skills to effi-
ciently manage the model logic and memory usage. Given
the computational and implementation burden [84, 89],
close interaction with computer sciences is required.
Nonetheless, good-practice programming with version
control, regression testing and benchmarking is rarely
described [108, 111].
Although runtimes are inherent to model implemen-

tation and computer hardware, presenting the order of
magnitude of runtimes and memory requirements could
be useful for other researchers. Details on model perfor-
mance and computational burden were usually lacking in
our selection of full-text papers. In our total set of IBM
papers, we found 2 examples on the computational burden
of their IBM in C++ [36, 76]. An influenza simulation with
FLUTE [36] uses approximately 80 megabytes of memory
per million simulated individuals. Simulating an epidemic
in a population of 10 million people can take up to two
hours (on a single processor on an Intel® Core Duo T9400),
but it may take only seconds if the virus is not highly trans-
missible or if there are effective interventions [36]. With

750 - 1000 megabytes of memory required per million
simulated individuals, FRED’s computational burden [76]
is about ten times larger. Simulations for the H1N1 pan-
demic in a population of 1 million people takes less than
two minutes on a typical dual-core laptop computer (in
2013) but the runtime will vary depending on the number
of individuals infected during the epidemic and depending
on which optional features are activated. Unfortunately,
computational performance is a significant aspect of a
simulator’s usefulness. Investment in performance opti-
mization is required to achieve the full potential of current
high-performance workstations [108]. This seems most
feasible using open-source software, as it allows more
researchers to contribute to optimization and to leverage
on the existing - and ever expanding - IBM knowledge
base, thus enabling a cyclic process of innovation and
optimization.
Time horizons and modeling step sizes in the full-text

articles were diverse and are subject to disease charac-
teristics and research objectives. There is no standard
approach on the number of stochastic realizations, which
seems model specific and requires sensitivity analysis.
Models focusing on key factors of between-host dynam-
ics in large populations with homogeneous mixing [87]
will not produce much stochastic variability and require
fewer realizations compared to simulations combining
complex social mixing clusters, adaptive behavior, within-
host dynamics and medical backgrounds [80, 91, 92]. One
of the most frequent criticisms of IBMs is that “they
can be calibrated to say anything” [25]. This is partly a
result of not capturing the difference between the calibra-
tion of IBMs and equation-based models. The latter have
usually fewer parameters, which have to be evaluated by
calibrating the full model to observed data [25]. IBMs,
in contrast, are constructed bottom-up, which allows to
select parameters independently based on census data,
mobility patterns, serotype distribution, social contact
behavior, natural history of a disease, etc. As such, a lim-
ited number of particularly uncertain parameters has to
be calibrated by fitting the model to observed prevalence
and/or incidence of disease states [25]. IBM calibration
has been performed with genetic algorithms [86], maxi-
mum likelihood [88] or Bayesian procedures with Markov
ChainMonte Carlo sampling [53]. A limitation of the IBM
approach is that the basic reproduction number (R0), cor-
responding to the number of secondary cases caused by
a single (typical) infection in a totally susceptible popula-
tion, cannot be attributed directly but has to be derived
from model output. R0 has been estimated in IBM stud-
ies [23, 36, 76, 88, 108, 112] by the average number of
secondary cases from a randomly selected individual in
a fully susceptible model population based on multiple
realizations. Parameterization and calibration needs to be
documented well. Model presentation should preferably
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be accompanied by an assessment of the goodness of fit to
observed data [4]. Another convincing way to show that
your ABM has been calibrated without bias and produces
useful general results is to analyze it thoroughly after
calibration [25]. Ideally, each model should be analyzed
systematically to understand the impact of model assump-
tions and parameters on the results [55]. Parameter values
can be drawn from a pre-computed design (e.g., Latin
Hypercube) or at random from a distribution. Emulation
techniques are promising to capture complex simulators’
behavior in order to improve engaged and perhaps more
rapid policy making [55–58]. Given the lack of standards,
it is crucial to fully describe the methods and experimen-
tal design in the context of the model [4]. Unfortunately,
we were not able to recapture all model characteristics and
study designs from our full-text subset. This stresses the
need for the ODD protocol with shorthand conventions
and a syntax that modelers can understand intuitively
such that the methodology can be converted directly into
an executable simulator [28].
The terminology to describe individual-level mod-

els and infectious diseases was inconsistent and curtail
efficient knowledge transfer. For example, a systematic
review in 2015 on IBMs for non-communicable diseases
[33] searched only with the terms “agent-based” and
“individual-based” to dramatically reduce the number of
false positive hits. To assist future research, it is crucial
to use the same semantics for IBM studies across disci-
plines. The introduction of the Medical Subject Headings
(MeSH) controlled vocabulary [113] is a huge step forward
but is limited to PubMed and does not (yet) contain fixed
terms for simulation models at the individual-level. With
this review, we seek to provide keywords to the IBM com-
munity and a definition for individual-based modeling as
“computer simulation for the creation, disappearance and
movement of a finite collection of interacting individuals
or agents with unique attributes regarding spatial location,
physiological traits and/or social behavior” [8–11, 25, 33].
The overall term IBM refers to the individual-level
approach based on a fundamental philosophy of method-
ological individualism, which advocates a focus on the
uniqueness of individuals and their interactions. Further
subcategories can be used according to whether locations
are static (as in CAs) or individuals act autonomously
(as in ABMs). The standard incorporation of the over-
arching term “individual-based model” in the abstract
or keywords would greatly improve current and future
systematic searches in large electronic databases.
One could argue that our recommendations are con-

strained since they are based on title, abstract and key-
word screening. For example, a frequently cited article
on pandemic influenza by Ferguson et al. [114] was not
retrieved by our search since it has none of the IBM
terms in its title, abstract or keywords. The model is

described as a “large-scale epidemic simulation” in the
abstract although the first sentence of the introduction
reads “We parameterize an individual-based model of
pandemic influenza transmission...”. This example could
be seen as a confirmation of the inconsistencies and
limitations of current article archiving practice. A sim-
ilar remark can be made for our disease related search
terms but we believe we used the most relevant keywords
and can only recommend future research to include also
general disease-related terminology. If our selection was
identifiable by searching on “infectious AND disease AND
transmission”, this would be a substantial improvement, in
contrast to the current 40% of our selection. The restric-
tion to only include papers published between 2006 and
2015 might be considered a minor limitation by the time
the current paper is published. The final fully included
year was chosen mainly for practical reasons, at the time
of completing this labour-intensive review in early 2016.
We are convinced that a review over a decade (an intu-
itively appealing period for review) is highly informative
to understand the evolution of this field and to adequately
guide future research. We had no intention to present
a complete review of all the IBM papers we systemati-
cally identified, but we provide all included references in
a searchable database enabling others to conduct more
specific literature reviews. Clearly, our database can be
updated using the discussed insights on search methodol-
ogy and keywords.

Conclusion
We systematically reviewed a decade of recent litera-
ture on infectious disease transmission IBMs and propose
a common terminology to facilitate knowledge transfer
within and across disciplines. IBMs have already been use-
ful to explore heterogeneous between-host interactions
both with and without unique within-host (dynamic) pro-
cesses. The number of IBMs to study transmission and
control of HIV, HPV, malaria and tuberculosis is increas-
ing. The combination of targeted screening and vacci-
nation strategies with economic evaluations is promising
for the near future. Emerging diseases are the dominant
applications in infectious disease IBMs. Notwithstanding,
similar models are required for endemic diseases, such
as vaccine-preventable childhood diseases, to capture
stochastic and heterogeneous characteristics, which are
especially relevant in the final stages of elimination. We
provide 698 unique references published between 2006-
2015 with study characteristics to inform the research
community across topics and terminology. We recom-
mend cooperation in open-source projects and adher-
ing to the ODD protocol, which enables modelers to
describe their IBM using a common syntax. Common
model-names enhance the research community’s ability
to grasp common features between models, and discover
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opportunities for further model improvements. Trans-
fer of expertise on IBMs is required to capitalize future
research opportunities, which is facilitated through the
increasing availability of individual-level data and the
rising interest for precision medicine. In this respect,
the combination of screening and targeted vaccination
strategies with economic evaluations seems an interesting
future prospect.
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