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Abstract

Background: In the past few years, eleven new human viruses have joined the two previously known members
JCPyV and BKPyV of the Polyomaviridae family, by virtue of molecular methods. Serology data suggest that
infections with human polyomaviruses (HPyVs) occur since childhood and the viruses are widespread in the general
population. However, the viral persistence sites and transmission routes are by and large unknown. Our previous
studies demonstrated that the four new HPyVs – KIPyV, WUPyV, MCPyV and TSPyV – were present in the tonsils,
and suggested lymphoid tissue as a persistent site of these emerging human viruses.
We developed a Luminex-based multiplex assay for simultaneous detection of all 13 HPyVs known, and explored
their occurrence in tonsillar tissues of children and adults mostly with tonsillitis or tonsillar hypertrophy.

Methods: We set up and validated a new Luminex-based multiplex assay by using primer pairs and probes targeting
the respective HPyV viral protein 1 (VP1) genes. With this assay we tested 78 tonsillar tissues for DNAs of 13 HPyVs.

Results: The multiplex assay allowed for simultaneous detection of 13 HPyVs with high analytical sensitivity and
specificity, with detection limits of 100–102 copies per microliter, and identified correctly all 13 target sequences with
no cross reactions. HPyV DNA altogether was found in 14 (17.9%) of 78 tonsils. The most prevalent HPyVs were HPyV6
(7.7%), TSPyV (3.8%) and WUPyV (3.8%). Mixed infection of two HPyVs occurred in one sample.

Conclusions: The Luminex-based HPyV multiplex assay appears highly suitable for clinical diagnostic purposes and
large-scale epidemiological studies. Additional evidence was acquired that the lymphoid system plays a role in HPyV
infection and persistence. Thereby, shedding from this site during reactivation might take part in transmission of the
newly found HPyVs.
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Background
Thirteen human polyomaviruses (HPyVs) have been
identified to date. Up to 2007, only two HPyVs had been
introduced by cell culture: BK polyomavirus (BKPyV) and
JC polyomavirus (JCPyV), coincidentally in 1971 [1, 2].
Since then, eleven HPyVs have been discovered by
modern molecular techniques [3–14]. All HPyVs have
high seroprevalences in human populations ranging from
40 to 90% in adults [15–26]. Typically, the primary
infections occur asymptomatically during childhood
and are followed by lifelong DNA persistence. In

immunocompromised hosts some of these viruses give
rise to severe disorders such as nephropathy, progres-
sive multifocal leukoencephalopathy, Merkel cell
carcinoma or trichodysplasia spinulosa [5, 7, 27, 28].
The other HPyVs, i.e. KIPyV, WUPyV, HPyV6, HPyV7,
HPyV9, HPyV10 (MWPyV), Saint Louis polyomavirus
(STLPyV), HPyV12 and New Jersey polyomavirus
(NJPyV)-2013, have up to date not been definitively
associated with specific diseases.
On the other hand, evidence suggests that tonsils are

permissive for JCPyV and BKPyV, indicating that this
tissue might play a role in the viral persistence [29–34].
KIPyV and WUPyV, the first two novel polyomaviruses
discovered in the respiratory secretions of children with
acute respiratory symptoms, [3, 4] might also remain in
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lymphoid tissue as suggested by detection of the corre-
sponding sequences in tonsils [29, 35, 36]. We have
reported the occurrence of DNA of MCPyV and TSPyV
in tonsillar tissue, suggesting persistence in lymphoid tis-
sue or mucosa [36, 37]. MCPyV is a common skin
commensal and causes about 80% of cases of Merkel cell
carcinoma (MCC) [5, 38–40]. TSPyV induces the rare
skin disease trichodysplasia spinulosa (TS) in immuno-
compromised patients [7]. HPyV6 and HPyV7 identi-
fied in skin and eyebrow hairs, have in one study
been isolated from malignant and non-malignant tonsils
[6, 38, 40–42]. HPyV9 was identified in 2010 in the
serum of a kidney transplant patient under immuno-
suppressive treatment [8]. Its DNA was found in
serum, PBMCs and skin [38, 43, 44]. HPyV10 was
originally detected in stool, while the isolate MWPyV
was first encountered in the skin of a patient with
the “warts, hypogammaglobulinaemia, infections and
myelokathexis” (WHIM) syndrome. MXPyV, another
HPyV10 isolate, was found in stool and in respiratory
samples, [9, 10, 45] while STLPyV DNA was ampli-
fied in stool and urine [13]. A STLPyV variant shar-
ing 92% genome identity with the originally described
MA138 and WD972 strains, was amplified from skin
warts of a patient suffering from WHIM syndrome
[46]. HPyV12 was found in organs of the digestive
tract, particularly in the liver but also in colon,
rectum and stool [47]. NJPyV DNA sequences and
virions were originally detected in a muscle biopsy of
a pancreatic transplant recipient with viral sequences also
found in endothelial cells in muscle and skin [48].
To demonstrate clinical correlates and disease asso-

ciations for HPyVs, as with most other viruses, the
diagnostic cornerstones are nucleic acid detection and
serodiagnosis. To this end, we have developed and
validated several PCR protocols [37, 49–51]. The
Luminex technology offers a novel platform for sensi-
tive and specific, high-throughput multiplex DNA
detection. An assay has earlier been set up for the
detection of 10 HPyVs [52, 53]. We here describe the
further development of this multiplex nucleic acid
assay for the detection of all 13 HPyVs currently
known, in a clinically applicable format. By combining
multiplex PCR amplification with bead based
hybridization and flow cytometric analysis, the result-
ing Luminex-based multiplex assay can simultaneously
identify all the 13 HPyVs in a single reaction.
Herein, the multiplex assay is evaluated for specificity,

sensitivity and reproducibility. Furthermore, we aimed
to determine to what extent the lymphoid system plays
a role in HPyV infection and persistence by exploring
the frequencies of occurrence of these viral genomes
in tonsillar biopsies from children and adults with
tonsillar disease.

Methods
Clinical specimens
The clinical material comprised tonsillar tissue from 78
subjects: 31 children and 47 adults (Fig. 1). The pediatric
donors ranged in age from 2 to 15 years (average, 6.6),
and the adults from 16 to 69 (average, 30.3). Of the
specimens, 31 were from males and 47 from females
(Fig. 1). The tonsillectomies and tonsillotomies were
performed in most cases due to chronic tonsillitis or
tonsillar hypertrophy (Fig. 1). All tissues were collected
and used in accordance with the ethical rules of the
Ethics Committee of the Hospital District of Helsinki
and Uusimaa. All tonsil tissues were freshly obtained dir-
ectly after surgical resection at the operation theatre.
The tonsils were cut with disposable scalpels and cell
suspensions were prepared by mechanical homogenisa-
tion with a syringe plunge, followed by a wash with PBS
and filtration through a 70 μm mesh (Corning Life
Sciences). The cells were resuspended into final volume
of 100 μL PBS.

Nucleic acid extraction
Whole DNA was extracted from cell suspension by the
KingFisher Duo DNA Extraction Kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions.
Standard precautions to avoid contamination were
taken. The extracted DNA was stored at −20 °C.

Primer pairs and probes
Primer pairs and probes for 13 HPyVs (BKPyV, JCPyV,
KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9,
HPyV10 (MWPyV), STLPyV, HPyV12 and NJPyV), were
based on GenBank sequences (Table 1). The primers and
probes for the first 10 except MCPyV were the same as
published by Gustafsson et al. [53] while the primers and
probes for STLPyV, HPyV12 and NJPyV were designed
for the present study. Primers for MCPyV were reselected
due to dimerization of the published primers with primers
for STLPyV. The primers were designed in current study
by using the Amplify 3X software, version 3.1.4 (Bill
Engels, University of Wisconsin) and assessed using an
online NCBI Blast analysis. The 5′ ends of the reverse
primers of the viral protein 1 (VP1) region were labeled
with biotin (5′ biotinylation). The probes were 5′ amine-
C12-modified (5′ Aminolink C12).

Plasmid clones
For use as positive controls and to determine assay sen-
sitivities by limiting dilution analysis, plasmids contain-
ing each HPyV genome were used. Plasmid DNA was
purified using the High Pure Plasmid Isolation Kit
(Roche Diagnostics). The concentration of the purified
plasmid DNA was determined with the NanoDrop 2000
(Invitrogen, Carlsbad, CA, USA) and the corresponding
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genome copies were calculated based on the concentra-
tion and molecular weight of the plasmid. A 10-fold
dilution series of 108 to 100 copies/μL of HPyV DNA
was prepared for each of the 13 HPyVs in PCR-grade
H2O, aliquoted, and stored at −20 °C.

Multiplex PCR for HPyV detection using the Luminex
platform
All the HPyV assays were at first performed in singleplex
format and then multiplexed. After confirming that each
individual primer pair amplified specifically its plasmid
sequence, the primer pairs were combined. The multi-
plex nucleic acid amplification was conducted as below.
In brief, 5 μL DNA templates were mixed in a 20 μL
multiplex reaction consisting of 12.5 μL of 2× multiplex
PCR mastermix (Qiagen), 0.2 μM of each forward
primer and 1 μM of each biotinylated reverse primer.
The amplification conditions were 95 °C for 15 min,
40 cycles at 94 °C for 20 s, 50 °C for 90 s, 71 °C for
1 min and 20 s, and a final extension at 71 °C for
10 min.

HPyV singleplex nested PCR
Each positive specimen was amplified and confirmed
with the corresponding HPyV singleplex nested PCR
(JCPyV, WUPyV, MCPyV, HPyV, and TSPyV). PCR-
grade H2O was included in each experiment. In brief,
3 μL of amplified DNA template was mixed in a 22 μL
multiplex reaction consisting of 12.5 μL of 2× multiplex
PCR mastermix (Qiagen), 0.2 μM of the corresponding
forward primer and 0.2 μM of the corresponding bio-
tinylated reverse primer. The amplification conditions
were the same as with the multiplex PCR.

Luminex-based suspension array procedure
(oligonucleotide coupling, hybridization, and
measurement)
Oligonucleotide coupling; thirteen capture probes were
included in the multiplex assay (Table 1). Each probe
sequence represented the reverse complement to the
target region of the biotinylated PCR product. Different
sets of carboxylated fluorescent microbeads were
obtained from Luminex Corp. (‘s-Hertogenbosch, The
Netherlands), and oligonucleotide probes for target

Fig. 1 Tonsillar samples from children and adults; clinical indications

Sadeghi et al. BMC Infectious Diseases  (2017) 17:409 Page 3 of 8



viruses were assigned to individual bead sets. The oligo-
nucleotide coupling was done according to the manufac-
turer’s instructions (xMAP cookbook, Luminex). The
probe-coupled beads were counted using a hemocytometer
and were stored in the dark at +4 °C. Hybridization; probe-
beads and PCR products were hybridized as published [53]
except that the streptavidin-phycoerythrin (SAPE, Invitro-
gen) incubation temperature was 48 °C. After three washes
the amplicons were labeled with 4 μg/mL SAPE conjugate
in 2 M tetramethylammonium chloride (Sigma), 75 mM
Tris, 6 mM EDTA and 1.5 g7 L sarkosyl (Sigma), pH 8.0;
for 20 min in the dark. Measurement; after three washes,
the beads and the SAPE signal were analyzed in a Bio-Plex
200 (Bio-Rad).

Data analysis and cutoff definition
The results were measured and calculated by the soft-
ware Xponent 2.1. The data were expressed as Median
Fluorescence Intensity (MFI) of 100 microspheres of
each bead type. The cut-off value for a positive result
was defined as net MFI two times background mean
plus 15 MFI.

Specificity of HPyV multiplex assay
To evaluate the specificity of the multiplex assay,
plasmids of each HPyV alone (at 105 copies/μL) and
combined were used as template to hybridize with a
mixture of 13 type-specific probe-bead sets. Specificity
of the multiplex platform was also investigated with
virus-free SF9 and HEK 293 cells.

Detection limits of HPyV multiplex assay
To determine the sensitivity of the single and multiplex
assays, we tested each virus with 10-fold serial dilutions
of the DNA standards. The detection limit was defined
as the dilution containing the fewest copies of viral gen-
ome (in duplicate testing) that still gave a positive result.

Reproducibility of HPyV multiplex assay
To test the multiplex assay reproducibility, a mixture of
all 13 HPyV plasmids (at 103 copies/μL/each HPyV) was
analyzed with a mixture of 13 type-specific probe-bead
sets. Intra-assay variation was calculated with triplicates
in the same run, and inter-assay variation in 3 distinct
runs.

Table 1 Sequences of primers and probes, amplicon sizes, amplicon positions (in VP1 region) in target genome and reference strain
used in the 13-plex Luminex assay [59]

Virus Forward/Reverse (5′ biotinylated) Primers sequence (5′-3′)
Probe (5′ amine-C12) sequence (5′-3′)

Amplicon
length (bp)

Amplicon position (bp)
in target genome

Reference strain
(GenBank accession no.)

JCPyV AATGAGGATCTAACCTGTGGAA/CTGCACCATTGTCATGAGTTGCTTG
ATGAATGTGCACTCTAATGG

127 1742–1868 J02226

BKPyV ACAGAGGTTATTGGAATAACTAG/ACTCCCTGCATTTCCAAGGG
CTTAACCTTCATGCAGGGTC

143 1952–2094 DQ305492

KIPyV TTGGATGAAAATGGCATTGG/TAACCCTTCTTTGTCTAAAATGTAGCC
CTTGGAACAGCTAATAGTAGAATC

142 2263–2404 EF127906

WUPyV TTGGATGAAAATGGCATTGG/TAACCCTTCTTTGTCTAAAATGTAGCC
GAGTACATACAGGGCTTTCCAG

142 2411–2552 EF444554

MCPyV TTCCATCTTTATCTAATTTTGCTT/AGGCCTAGTTTTAGATTACCAGAC
GTAATAGGCCCACCATTTGT

144 3757–3900 EU375803

HPyV6 TTGCTTCTGGATCCAATACTGC/GGCCTCAGGAATTTCAGGCAA
TGGATGCTGGTTCATCTCTG

131 1426–1556 HM011558

HPyV7 AAGCAGCTACAACTGGGAACTT/GGCCTCAGGAATTTCAGGCAA
GCCTACCTTATCCTATGAGTG

125 1450–1574 HM011566

TSPyV AGAATGTATGATGACAAAGGTAT/TCTGTAGTTTCCAGTTAGAAAC
TGAGGGAATGAATTTCCATATGTT

111 1722–1832 GU989205

HPyV9 ATCTATGGCTCATCCTCAGG/GTAGAGCTAGCAACTAGGCCT
AGTGCAGGGTACCACTCTC

107 1862–1968 KC831440

HPyV10 GTCCAGTTCCTACTAAAGTTCCT/TACATCATTGCCCATCCTTGGTT
GCCGGACACCACAATGACA

106 1501–1628 JQ898292

STPyV TGAATATGATCCGTGCCAAA/ACTGCATCAGGGCCTACTTG
CCTCCTCCAACATGTGTTCC

129 1318–1446 JX463184

HPyV12 GTAATGGCACCCAAGAGGAA/GGGGATTTAGAAAGGCCTCA
CCCAGCAGTGTCCCTAAATT

157 1402–1558 JX308829

NJPyV TGTGTGCCAAAGAAGTGTCCT/TCTGTCACCTGTTGGAGCATT
CTGATGCTACTACTGAAATTGAA

159 1113–1271 KF954417

Sequences for primers and probes for all except MCPyV, STPyV, HPyV12 and NJPyV as in Gustafsson et al [53].
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Results
We designed a multiplex assay for the detection and
identification of 13 HPyVs, by extension of a previously
designed multiplex assay for 10 HPyVs [53]. The assay
conditions in this study were optimized for the following
parameters: amounts of HPyV-specific probes, each
coupled to a distinct Luminex bead, amounts of
forward primer and biotinylated reverse primer;
hybridization conditions; SAPE concentration; incuba-
tion time for SAPE staining; and numbers of washing
cycles (data not shown).

Specificity of HPyV multiplex assay
PCR-grade H2O was included in each experiment to
determine background. Specificity of the assay was
assessed with plasmids containing the respective HPyV
VP1 inserts. Plasmids of each of the 13 HPyVs alone and
combined (105 copies/μl/each HPyV) were used as
template for singleplex/multiplex amplification and
hybridization. The multiplex assay did identify correctly
all the 13 target sequences, with no cross reactions
(Table 2). Furthermore, we tested the specificity of the
multiplex assay with virus-free SF9 and HEK 293 cells,
with no positive signals obtained (data not shown).

Limit of detection of HPyV multiplex assay
To determine the sensitivities of the single- and multi-
plex assays, each HPyV plasmid was diluted serially from
108 to 100 in PCR-grade H2O. The limit of detection
was the dilution containing the fewest copies in dupli-
cate of viral genome that still gave a positive result. The

analytical sensitivities in singleplex and multiplex format
ranged from 100 to 102 copies per microliter with all 13
HPyVs (Table 3).

Intra-assay and inter-assay reproducibility of HPyV
multiplex assay
The reproducibility of HPyV multiplex assay was
determined with a mixture of all 13 HPyV plasmids (103

copies/μL/each HPyV) and a mixture of 13 type-specific
probe-bead sets. The coefficient of variation obtained
from triplicates in a single run ranged from 2.9% to 9.2%
and from three independent runs ranged from 5.7% to
18.8%.

Application of HPyV multiplex assay on tissues
The multiplex assay was applied to tonsillar samples
obtained from children and adults. Among the 78 tissue
donors the assay tested positive as follows: BKPyV
(n = 0), JCPyV (n = 1), KIPyV (n = 0), WUPyV (n = 3),
MCPyV (n = 1), HPyV6 (n = 6), HPyV7 (n = 0), TSPyV
(n = 3), HPyV9 (n = 0), and HPyV10 (n = 0), STLPyV
(n = 0), HPyV12 (n = 0), and NJPyV (n = 0). Co-
infection of WUPyV and TSPyV was observed in one
tissue. Altogether 13 specimens tested positive: JCPyV
DNA was found in a female (22 year old) with tonsillitis
and peritonsillar abscess; MCPyV DNA in a female (46 y)
with tonsillitis; and HPyV6 DNA in 4 males and 2 females
(33 y median age [range, 14 to 69]) with diverse tonsillar
conditions. WUPyV DNA occurred in two children (male,
aged <5 years; one with snoring and the other with hyper-
trophy). TSPyV DNA was detected in a 2-y child (male)

Table 2 Specificities of 13 type-specific probes employed in multiplex HPyV genotyping

Target
sequence

HPyV type-specific probe (MFI)

BKPyV JCPyV KIPyV WUPyV MCPyV HPyV6 HPyV7 TSPyV HPyV9 HPyV10 HPyV11 HPyV12 HPyV13

BKPyV 2105 43 35 36 33 54 42 27 34 34 44 35 19

JCPyV 39 1145 32 32 32 34 34 24 39 28 47 32 20

KIPyV 49 48 2522 45 42 43 43 38 48 44 59 47 17

WUPyV 33 36 29 5704 31 31 65 18 35 26 43 29 19

MCPyV 46 46 37 38 2736 45 41 31 40 37 49 39 21

HPyV6 38 38 34 32 33 3196 35 30 34 31 44 35 23

HPyV7 43 46 38 52 35 42 2574 29 41 41 51 37 18

TSPyV 52 52 45 74 42 46 64 2894 47 42 58 47 19

HPyV9 50 48 44 40 47 47 39 29 1388 39 54 49 18

HPyV10 38 36 33 32 34 36 32 21 33 5116 47 31 24

HPyV11 47 56 42 51 45 66 61 57 59 58 1782 66 17

HPyV12 55 50 42 48 45 50 46 38 46 39 61 681 20

HPyV13 39 42 36 36 37 39 40 27 40 35 48 37 2327

Mix HPyVs 745 1367 1518 2884 1511 1586 1125 733 603 2639 612 326 1631

cutoff 85 81 77 81 77 83 77 75 81 72 107 73 127

Each line represents a single well with each HPyV plasmid (105 copies/μL) or plasmid mix hybridized to a mixture of 13 distinct beads
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with hypertrophy and an 11-y child (male) with no clinical
data available. Co-infection with WUPyV and TSPyV was
seen in a 6-y child (female) with hypertrophy. Each posi-
tive specimen was confirmed with the corresponding PyV
singleplex nested PCR(s). No product was generated from
the negative control.

Discussion
The number of HPyVs known has multiplied explosively
during the past decade. Infections by these viruses
appear ubiquitous since birth. Their DNAs have been
found widely in the human body, including lymphoid
organs, albeit in low copy numbers [54–60]. Whereas
JCPyV, BKPyV, MCPyV and TSPyV are known to be as-
sociated with diseases, the others are orphan as regards
clinical manifestations.
The currently existing PCR assays are of limited value

in multi-HPyV assessment. To this end, sensitive detec-
tion methods covering all the HPyVs are needed. By
extension and optimization of an earlier one [53], we
here describe the development and validation of a
Luminex-based multiplex assay that allows for simultan-
eous detection of 13 HPyVs. The new assay exhibited a
high analytical sensitivity, i.e., ability to detect all HPyVs
with detection limits of 100–102 copies per microliter,
and suitability for high-throughput analysis. We consider
the method advantageous also for analyzing multiple in-
fections. This was demonstrated by the detection of up
to 13 types in mixes of HPyV plasmids, and of 2 HPyVs
in a single tonsillar sample.
In a previous study [61] addressing the detection of

members of Polyomaviride in tonsillar tissues from

Chinese children with chronic tonsillar disease, WUPyV,
MCPyV, TSPyV, KIPyV, MWPyV, and STLPyV were
detected in eleven (11%), four (4.0%), three (3.0%), two
(2.0%), two (2.0%), and two (2.0%) of 99 samples,
respectively. A single HPyV infection was found in 24
(24%) of the samples, and dual HPyV infections
(WUPyV and MCPyV) in 2 (2%) samples. In our previ-
ous study, we investigated 229 matched pairs of tonsillar
tissue biopsies and corresponding serum samples for the
presence of TSPyV and found this emerging HPyV in 8
(3.5%) tonsils, and in none of the sera [37]. Each of the 8
PCR-positive subjects had antiviral IgG of high avidity
but not IgM, disclosing persistence. In the present study,
we detected JCPyV, WUPyV, MCPyV, HPyV6, and
TSPyV DNA altogether in 14 (18%) of 78 tonsils, and
co-infection of two HPyVs (WUPyV and TSPyV) in one
tissue. All of these data provide evidence of tonsils
serving as shedding site in HPyV reactivation and thus
contributing to HPyV transmission.

Note added in submission
After completion of our work, Herberhold et al. (Med
Microbiol Immunol, DOI 10.1007/s00430–016–0486-6)
published tonsillar HPyV DNA prevalence data highly
similar to ours by using real-time quantitative PCRs in
singleplex format.

Conclusion
A Luminex-based multiplex assay was developed for
epidemiological and diagnostic studies to address
whether any of the emerging HPyVs, or infection with
HPyV thereof, is associated with disease development.
Based on the observed frequent occurrence of HPyVs in
human tonsils, we suggest that lymphoid tissue may be a
general persistence site for these viruses. Thereby,
shedding from this site during reactivation might play a
role in HPyV transmission.
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