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Abstract

Background: Pneumococci are spread by persons with nasopharyngeal colonization, a necessary precursor to
invasive disease. Pneumococcal conjugate vaccines can prevent colonization with vaccine serotype strains. In 2011,
Kenya became one of the first African countries to introduce the 10-valent pneumococcal conjugate vaccine
(PCV10) into its national immunization program. Serial cross-sectional colonization surveys were conducted to
assess baseline pneumococcal colonization, antibiotic resistance patterns, and factors associated with resistance.

Methods: Annual surveys were conducted in one urban and one rural site during 2009 and 2010 among children
aged <5 years. To reflect differences in vaccine target population, recruitment was age-stratified in Kibera, whereas
a simple random sample of children was drawn in Lwak. Nasopharyngeal swabs were collected from eligible
children. Pneumococci were isolated and serotyped. Antibiotic susceptibility testing was performed using the 2009
isolates. Antibiotic nonsusceptibility was defined as intermediate susceptibility or resistance to 21 antibiotics (i.e.,
penicillin, chloramphenicol, levofloxacin, erythromycin, tetracycline, cotrimoxazole, and clindamycin); multidrug
resistance (MDR) was defined as nonsusceptibility to =3 antibiotics. Weighted analysis was conducted when
appropriate. Modified Poisson regression was used to calculate factors associated with antibiotic nonsusceptibility.
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Results: Of 1,087 enrolled (Kibera: 740, Lwak: 347), 90.0% of these were colonized with pneumococci, and 37.3%
were colonized with PCV10 serotypes. There were no differences by survey site or year. Of 657 (of 730; 90%)
isolates tested for antibiotic susceptibility, nonsusceptibility to cotrimoxazole and penicillin was found in 98.6
and 81.9% of isolates, respectively. MDR was found in 15.9% of isolates and most often involved nonsusceptibility
to cotrimoxazole and penicillin; 40.4% of MDR isolates were PCV10 serotypes. In the multivariable model, PCV10
serotypes were independently associated with penicillin nonsusceptibility (Prevalence Ratio: 1.2, 95% Cl 1.1-1.3), but
not with MDR.

Conclusions: Before PCV10 introduction, nearly all Kenyan children aged <5 years were colonized with pneumococdi,
and PCV10 serotype colonization was common. PCV10 serotypes were associated with penicillin nonsusceptibility.

Given that colonization with PCV10 serotypes is associated with greater risk for invasive disease than colonization with
other serotypes, successful PCV10 introduction in Kenya is likely to have a substantial impact in reducing vaccine-type
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pneumococcal disease and drug-resistant pneumococcal infection.
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Background

Streptococcus pneumoniae (pneumococcus) is a leading
cause of morbidity and mortality worldwide [1-3]. The
World Health Organization estimates that pneumococ-
cal infection is a cause of 476,000 deaths of HIV negative
children aged <5 years every year globally [4]. Low in-
come countries have both the highest rate of pneumo-
coccal mortality and the largest number of total deaths
from pneumococcal disease among children [4, 5].

Pneumococci colonize the upper respiratory tract, a
necessary precursor to pneumococcal pneumonia and
invasive pneumococcal disease (IPD) [6]. Pneumococcal
colonization first occurs early in life, and colonization
rates peak among children of preschool age [7, 8].
Transmission of colonization is common from person to
person through respiratory secretions, particularly
within families and other groups in which people are in
close contact with each other [9-12]. Groups at highest
risk for IPD include young children, the elderly, and im-
munocompromised individuals, such as those infected
with HIV [13].

The effectiveness of pneumococcal conjugate vaccines
(PCVs) in reducing the incidence of IPD has been well
documented [14-20]. Of more than 90 pneumococcal
serotypes, a limited number of serotypes cause most IPD
in children [21, 22]; PCVs include the serotypes most
commonly causing invasive disease. PCVs not only re-
duce nasopharyngeal carriage of vaccine-type pneumo-
cocci among the vaccinated, but these vaccines also
produce a herd effect by interrupting subsequent trans-
mission to unvaccinated individuals [23-25]. However,
the cost of PCVs is a barrier to their introduction in
some countries [26]. In January 2011, Kenya introduced
the 10-valent pneumococcal conjugate vaccine (PCV10)
into its childhood national immunization program [27, 28],
with financial support provided by the Gavi Alliance. Since

Kenya was one of the first African countries to introduce a
PCV, whether the substantial reductions in IPD and herd
effects seen in the U.S. and European countries would also
be seen in Kenya was unknown, given differences in
pneumococcal colonization prevalence, factors that favor
pneumococcal transmission (e.g. crowding, poverty), sero-
type distribution [1, 29-31], higher prevalence of under-
lying medical conditions (e.g., HIV, malnutrition etc.) [32],
and the larger proportion of young children in Kenya’s
demographic profile [1].

Before PCV10 introduction, we conducted two serial
cross-sectional surveys of pneumococcal colonization
among children aged <5 years in two sites in Kenya, one
urban and one rural. The objectives of these surveys
were to establish the baseline proportion of children
aged <5 years who were colonized with pneumococci,
particularly pneumococci whose serotypes were included
in PCV10, to describe any differences in the colonization
prevalence by survey site and year, to describe antibiotic
susceptibility patterns of colonizing pneumococci prior
to PCV10 introduction, and to assess factors associated
with antibiotic nonsusceptibility.

Methods

Study setting and survey population

The Kenya International Emerging Infections Program
(IEIP) has been conducting Population-Based Infectious
Disease Surveillance (PBIDS) since late 2005 in two geo-
graphically distinct regions: Kibera and Lwak [33]. The
surveillance system was established through a collabor-
ation between the Kenya Medical Research Institute
(KEMRI) and the U.S. Centers for Disease Control and
Prevention (CDC) [33, 34]. Kibera is a densely-populated
urban settlement within Kenya’s capital, Nairobi. Approxi-
mately 26,000 people live in this site, and about 3,500 are
children aged <5 years [33]. Most employed residents are
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casual laborers, servants, or small-business merchants
within the city [35]. Malaria is not endemic due to the ele-
vation, and HIV prevalence among adults is estimated to
be 15% [33]. Lwak is located in rural western Kenya, and
its population (population size about 29,000, 4,200 of
whom are children aged <5 years [33]), is widely dispersed
and predominantly consists of subsistence farmers
and fishermen [35]. Malaria is endemic in the area,
and the HIV prevalence among adults is estimated to
be 18.5% [33].

Cross-sectional survey

During October and November of 2009 and 2010, we
performed two cross-sectional surveys among children
aged <5 years in Kibera and Lwak. The first cross-
sectional survey was completed in 2009 to gather base-
line information before the planned vaccine introduction
in 2010. Because the vaccine introduction was delayed
to 2011, a smaller colonization survey was completed in
2010 to identify any potential natural shift of vaccine-
type colonization between the 2 years. Study participants
were selected and enrolled from the PBIDS population.
When PCV10 was introduced in 2011, children aged
<1 year were the target population for both Kibera and
Lwak for routine vaccination. In Lwak, a ‘catch-up’ cam-
paign was implemented that targeted 1-4 year-old chil-
dren, therefore, all children aged <5 years were vaccine
targets. Because of the differences in the vaccine target
population, sampling strategies were different by site: re-
cruitment was age-stratified in Kibera, and computerized
IEIP records were used to draw a random sample of chil-
dren aged <1 year and children ages 1-4 years. In Lwak, a
simple random sample of all children aged <5 years was
drawn using Lwak IEIP computerized records.

We excluded children who had not resided in the
community for at least 4 months prior to the survey,
had naso-facial deformities which precluded collection
of a nasopharyngeal (NP) swab, or were determined to
have a current illness requiring hospital admission.

In both sites, community health workers visited the
homes of all selected children and invited the children
to participate in the study. Caregivers were given an ap-
pointment card for enrollment of the selected child at a
designated fieldwork site (Tabitha Clinic for Kibera and
Lwak Mission Hospital for Lwak). Children were not
replaced if they did not appear on the scheduled day.
No incentives were provided to the participants; how-
ever, reimbursement for transportation costs to the
clinic (Lwak) or an equivalent amount in food or a
food voucher (Kibera) were given to all invited partic-
ipants regardless of whether they chose to participate
or not. Written informed consent was obtained either
from the parent or the guardian of all participating chil-
dren prior to enrollment. Upon enrollment, caregivers
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were asked questions on household characteristics (e.g.
household size and number of children age <5 at home),
smoke exposure (e.g., tobacco, lighting, and heating), cook-
ing practices, and antibiotic usage and respiratory illness
within 30 days of the survey (Additional files 1 and 2).

Laboratory methods

NP specimens were collected from the participant’s
posterior nasopharynx by trained study nurses using cal-
cium alginate swabs, as previously described [36]. NP
swabs were immediately placed in 1.0 ml skim milk-
tryptone-glucose-glycerol transport medium and placed
in a cool box as per the World Health Organization’s
consensus methods [37]. Within 6 h, specimens were
vortexed to disperse the organisms from the swab and
stored at -70 °C at each study site in preparation for
transport to the KEMRI laboratory.

Pneumococcal isolation was conducted at the KEMRI
laboratory in Kisumu, Kenya. Supplemented Todd-
Hewitt broth (STHB) containing 0.5% yeast extract com-
bined with 1.0 mL of rabbit serum was used for the
broth enrichment step to enhance pneumococcal growth
[38]. Optochin susceptibility and bile solubility testing
were conducted on any alpha-hemolytic colony poten-
tially identifiable as S. pneumoniae [39]. In cases where
more than one potential pneumococcal colony type was
identified per plate, representatives of each colony
morphology were selected for further testing.

For pneumococcal isolates collected from the 2009
survey, pneumococcal isolates were batched and trans-
ported on dry ice to the CDC laboratory in Atlanta,
Georgia for serotyping. Serotyping was conducted using
latex agglutination and the Quellung reaction. For iso-
lates collected in 2010, multiplex PCR-based serotype
was conducted at KEMRI laboratory in Kisumu followed
by quality control testing by Quellung reaction per-
formed at CDC-Atlanta laboratory for all vaccine-type
isolates, all PCR non-resolved serogroups (e.g., 6A/
6B/6C/6D, 7C/7B), all PCR non-typeables, and 10% of
all PCR resolved serotypes. Antibiotic susceptibility
testing was completed during the 2009 survey only.
Antibiotic susceptibility testing for commonly used
antibiotics (i.e., penicillin, chloramphenicol, levofloxa-
cin, erythromycin, ceftriaxone, tetracycline, cotrimoxa-
zole, and clindamycin) was performed at KEMRI or CDC-
Atlanta laboratories by broth microdilution (Trek Diag-
nostics, Cleveland OH) according to the manufacturer’s
instructions.

Definitions

Pneumococcal serotypes were classified according to
whether the serotypes were contained in either PCV10
(serotypes 1, 4, 5, 6B, 7 F, 9V, 14, 18C, 19 F, 23 F) or
the 13-valent PCV (PCV13; serotypes in PCV10 plus
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serotypes 3, 6A, and 19A). When multiple pneumococcal
serotypes were identified from a specimen, participants
were classified as colonized by a vaccine serotype if at least
one serotype was contained in the specific vaccine.

Antibiotic susceptibility was determined using 2012
Clinical and Laboratory Standards Institute (CLSI) cri-
teria for minimum inhibitory concentrations (MIC) [40].
Criteria for oral penicillin were used for penicillin
(susceptible: <0.06 pg/ml, intermediate: 0.12—-1 pg/ml,
resistant: >2 pg/ml). Intermediate and resistant iso-
lates were designated as nonsusceptible. An isolate
was considered multidrug resistant, or MDR, if it was
nonsusceptible to three or more of the following anti-
biotics: penicillin or ceftriaxone, chloramphenicol,
levofloxacin, erythromycin, tetracycline, cotrimoxazole,
and clindamycin.

Data management and analysis
Sample size was based on the ability to measure a
change in colonization of vaccine (PCV10) serotypes
between the baseline colonization survey reported here
and planned later surveys. We estimated that among
children who are targeted to receive PCV10 (i.e., chil-
dren age <1 year in Kibera and age <5 years in Lwak), a
sample size of 113 children age <1 year for Kibera and
182 children age <5 years for Lwak would allow 80%
power to detect a 45% reduction in vaccine-type car-
riage. Among children who are not targeted to receive
vaccine (i.e., children age 1-4 years in Kibera), 447 chil-
dren ages 1-4 years in Kibera would allow 80% power
to detect a 30% reduction in vaccine-type carriage.
Descriptive analyses of participants and serotype distri-
butions were completed, and results were compared by
site. Weighted analyses were used to account for sampling
differences by site when applicable, where the weighting
variable was calculated as the inverse to the participants’
probability of being enrolled in the survey. The probability
of non-response among those who were recruited by the
community health workers was not available and thus not
accounted for, although in general, participation rate was
high. Rao-Scott Chi-Square test was used for categorical
variables with cell counts of >5, and the cell means model
was used for continuous variables. We calculated preva-
lence ratios (PR) with 95% confidence intervals (CI) to as-
sess factors associated with colonization with antibiotic
nonsusceptible pneumococci. Because the outcomes of
interest were non-rare events, Poisson regression models
with modifications as described by Behrens et al. were
used to estimate the PR of various risk factors associated
with these outcomes [41, 42]. Variables included in the
models were selected based on risk factors previously de-
scribed in the literature [43—45]. Analyses were performed
using SAS software (version 9.3; SAS Institute, Cary, NC).
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Ethical considerations
The study was approved by ethics committees at KEMRI
and CDC.

Results

A total of 1,087 children (Kibera 740 [514 in 2009 and
226 in 2010], and Lwak 347 [183 in 2009 and 164 in
2010]) were enrolled during the two surveys in 2009 and
2010. Kibera children were younger, had more people
sleeping in the same room as the child, and lived in the
community for a shorter duration (all P <0.0001; Table 1).
In addition, Kibera children were less likely to attend
school or daycare compared to Lwak children (P
<0.0001).

Self-reported tobacco smoke in the home, history of
recent illnesses, and antibiotic use are summarized in
Table 1. Overall, more than half of children reported the
presence of upper respiratory symptoms (i.e., cough,
runny nose) at the time of the survey with a significantly
higher proportion of children in Kibera with these symp-
toms compared to Lwak (64.2% vs. 33.0% with cough,
68.0% vs. 39.1% with runny nose, both P <0.0001).
Thirty-eight percent reported antibiotic use (i.e., cotri-
moxazole, penicillin/ampicillin/amoxicillin, doxycycline,
chloramphenicol) within the 30 days prior to the day of
the survey, and more children from Lwak reported re-
cent antibiotic use compared to Kibera (i.e., current use
or use within the past 7 days).

Pneumococcal colonization among children

Overall, 90.0% of children were colonized with pneumo-
cocci, and 37.3 and 48.6% were colonized with PCV10
and PCV13 serotypes, respectively (Table 2). Of those
with pneumococcal colonization, 4.5% (95% CI: 3.0—
6.0%) had more than one serotypes identified. We found
no statistically significant differences when comparing
results of the 2009 and 2010 surveys in the proportion
of children who were carrying pneumococcus or the
proportion of isolates that were PCV10 serotypes
(Additional file 3: Table S1). Therefore, results from both
surveys were combined. Children aged <1 year were more
likely to be colonized with pneumococci than children
aged 1-4 years (95.1% vs. 89.3%, P = 0.009; Table 2). There
were no statistically significant differences between Kibera
and Lwak in the proportion of children colonized with
pneumococcus, the proportion of those colonized with
PCV10 or PCV13 serotypes, or pneumococcal colonization
by different age groups (Table 2).

Serotype distribution of pneumococcal isolates

Of the 1,041 pneumococcal isolates, the most frequently
isolated vaccine-type serotypes were 19F (13.5%, 95% CI
11.2-15.8), 23F (8.0%, 95% CI 6.2-9.8), 6A (7.9%, 95%
CI 6.1-9.7; contained only in PCV13), and 6B (7.4%.
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Table 1 Characteristics of surveyed children in Kibera and Lwak, 2009-2010 surveys combined
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Characteristic Total (N=1,087) Kibera (N = 740) Lwak (N=347)

P value, Kibera

vs. Lwak
Female gender, n (Weighted %; 95% Cl) 547 (49.8; 46.5-53.1) 368 (48.2; 44.2-52.2) 179 (51.5;43.2-558) 033
Weighted mean age in months (95% Cl) 30.8 (29.9-31.8) 286 (27.5-29.6) 334 (31.8-35.0) <0.0001
Number sampled by age group, n (Weighted %; 95% Cl)

<1 years 184 (11.6;103-129) 158 (15.3)° 26 (745; 469-10.2)  <0.0001

1-4 years 903 (88.4; 87.1- 89.7) 582 (84.7)° 321 (92.5; 89.8-95.3)
Weighted mean number of months living in the community 28.1 (27.2-29.0) 26.1 (25.0-27.1) 304 (28.8-31.9) <0.0001
(95% Cl)

Weighted mean number of people sleeping in the same room 4.4 (4.3-4.5) 5.1 (4.9-5.2) 3.7 (3.5-3.8) <0.0001
Number of children under 5 years in the home, n (Weighted %; 95% Cl)

1 600 (583; 552-614) 379 (53.1;49.1-57.1) 221 (64.0; 59.2-68.8) <0.0001

2 424 (36.1; 33.0-39.1) 326 (43.3;39.3-47.3) 98 (28.0; 23.4-32.6)

23 63 (5.7, 4.2-7.2) 35 (36, 24-49) 28 (8.0; 5.2-10.8)

Number of days per week the child attends school or daycare per week, n (Weighted %; 95% Cl)

None 618 (51.6; 485-54.8) 480 (62.2; 583-66.1) 138 (39.9, 34.8-45.1)  <0.0001
Tobacco smoke in the home (Weighted %; 95% Cl) 132 (13.2;11.0 -15.5) 71 (9.3; 7.0-11.6) 61 (17.6; 136-21.6)  0.0002
Current illness® (Weighted %; 95% Cl)

Cough 481 (51.2; 485 -53.9) 391 (64.2; 61.8-66.7) 90 (33.0; 27.3-38.2)  <0.0001

Runny nose 622 (54.3; 51.2-574) 486 (680; 643-71.6) 136 (39.1; 34.0-442) <0.0001

Fever within 24 h 146 (14.7,12.3-17.0) 85 (12.2; 9.5-14.9) 61 (174; 135-21.3) 003
Recent illness (within 30 days) (Weighted %; 95% Cl)

Cough 534 (45.6; 424-48.7) 413 (55.2; 51.2-59.2) 121 (35.0; 30.1-40.0) <0.0001

Pneumonia 5(4.7;33-60) 7 (6.8; 4.7-8.8) 8 (25;08-42) 0.007

Fast breathing 136 (12.4; 10.2-14.5) 4 (12.7; 10.0-15.3) 42 (120, 88-154) 077

Fever 464 (40.2; 37.0-43.3) 344 (450, 41.0-490) 120 (34.7,29.7-39.7)  0.002
Any antibiotic use (Weighted %; 95% Cl)

Current® 59 (5.6; 4.1-7.1) 32 (36, 23-4.9) 27 (7.8; 5.0-10.6) 0.003

Within the past 7 daysb 201 (18.9; 164-215) 123 (15.8; 12.9-18.7) 78 (22.5;18.1-26.9) 0.01

Within the past 30 days® 413 (377, 345-408) 289 (20.8; 18.7-22.9) 124 (16.9; 145-19.3) 0.19

995% confidence not applicable because Kibera sample was stratified by children aged <1 years and 1 to 4 years, and therefore the variance is 0

PCurrent refers to the day of interview. The categories of antibiotic use in this table are not mutually exclusive (i.e., “within the past 30 days” include those who
reported current use and use within the past 7 days)

Table 2 Pneumococcal colonization of children in Kibera and Lwak, 2009-2010 surveys combined

Serotype of colonized
pNeumococcus

Total (N=1,087)
n (Weighted %; 95% Cl)

Kibera (N = 740)
n (Weighted %; 95% Cl)

Lwak (N =347)
n (Weighted %; 95% Cl)

P value,
Kibera
vs. Lwak

Any serotype

PCV10 type

PCV13 type

Colonization by age group
<1 year

1-4 years

983 (90.0; 88.0-92.0)
408 (37.3; 34.2-40.5)
532 (48.6; 454-51.9)

173% (95.1; 92.3-98.0)
810* (89.3; 87.1-91.5)

677 (91.5; 89.3-93.8)
287 (394; 354-434)
365 (49.0; 45.0-53.0)

147 (93.0; 89.0-97.1)
530 (91.3; 88.7-93.8)

306 (88.3; 84.9-91.6)
1 (35.0; 30.0-40.0)
167 (48.2; 43.0-53.5)

26 (100)
280 (87.3; 83.7-90.9)

0.10
0.18
0.82

NA®
0.07

NA not applicable

*P =0.009 comparing pneumococcal colonization among all children aged <1 years vs. 1-4 years

P value was not calculated as at least one of the cell counts were <5
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95% CI 5.7-9.2). Overall, 39.2% of all pneumococcal
isolates were PCVI10 serotypes, and 51.9% were
PCV13 serotypes (Fig. 1). Serotypes 19F and 3 were
more frequent among Lwak isolates compared to
Kibera isolates (16.0% vs. 11.4% for serotype 19F, 5.9%
vs. 2.9% for serotype 3; both P <0.05). Serotype 7F
was only detected from Kibera isolates, and nontype-
able pneumococci were isolated more frequently from
the Kibera isolates (3.4% vs. 1.4%; P<0.05). Among
the non-vaccine serotypes, 35B (3.5%), 15B (3.4%),
19B (3.4%), and 11A (3.3%) were among the most
common, and nontypeable isolates constituted 4.9% of
the isolates (Additional file 3: Table S2).

Antibiotic susceptibility

Six hundred fifty-seven pneumococcal isolates collected
from 624 children (90% of those enrolled in 2009) were
tested for antibiotic susceptibility. Cotrimoxazole non-
susceptibility was found in 98.6% (95% CI 97.8-99.4%)
of the isolates, penicillin nonsusceptibility in 81.9% (95%
CI 78.7-85.2%), tetracycline nonsusceptibility in 19.2%
(95% CI 15.8-22.6), and <5% nonsusceptibility for chlor-
amphenicol (1.9% [95% CI 0.7-3.1%]), erythromycin
(0.9% [95% CI 0.3-1.5%]), and clindamycin (0.1% [95%
CI 0-0.3%]). All tested isolates were susceptible to levo-
floxacin and ceftriaxone. Penicillin nonsusceptibility was
driven largely by the large proportion of isolates with
intermediate susceptibility to penicillin (Table 3); MIC50’s
and MIC90’s for the strains tested were both 0.5 ug/ml for
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penicillin-intermediate isolates and 2 and 4 pg/ml, re-
spectively, for penicillin-resistant isolates.

MDR was found in 15.9% (95% CI 12.8—19.1%) of iso-
lates. All MDR isolates were nonsusceptible to cotrimox-
azole, and >90% of MDR isolates were nonsusceptible to
both penicillin and cotrimoxazole (Additional file 3:
Table S3). There were no statistically significant differ-
ences between the two sites in the proportion of MDR
isolates (16.7% for Kibera vs. 15.1% for Lwak; P = 0.64).
PCV10 serotypes and PCV13 serotypes accounted for
40.4 and 59.9% of the MDR isolates, respectively (Fig. 2).

Factors associated with colonization with antibiotic
non-susceptible pneumococci

PCV10 serotypes (PR: 1.2, 95% CI 1.1-1.3) and current
amoxicillin use (PR: 1.2, 95% CI 1.1-1.4) were associated
with penicillin nonsusceptibility in the multivariable
model, but not recent use (i.e., within 7 days or 30 days
before the survey) (Table 4). Another model showed that
PCV10 serotypes were also associated with cotrimoxa-
zole nonsusceptibility (Additional file 3: Table S4). None
of the reviewed factors were statistically significantly
associated with colonization with MDR pneumococcus
in multivariable analysis. (Additional file 3: Table S5).

Discussion

Before the introduction of PCV10 in Kenya, almost all
(90%) Kenyan children aged <5 years were colonized
with pneumococci, and 37.3% were colonized with

19F* 23F 6B 14 9V 5 7F

NVT: non-vaccine serotypes *P < 0.05
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Table 3 Number and proportion of pneumococcal isolates from children aged <5 years in Kibera and Lwak, 2009, that are susceptible,

intermediate, and resistant by antibiotic (N =657)

Antibiotic Susceptible Intermediate Resistant

Break-point* ug/ml N (%) Break-point* ug/ml N (%) Break-point* ug/ml N (%)
Penicillin® <0.06 118 (18.6) 0.12-1 500 (79.0) 22 524
Chloramphemcolb <4 615 (98.1) n/a n/a >8 12 (1.9)
Levofloxacin® <2 627 (100) 4 0 >8 0
Erythromycin® <025 625 (98.7) 05 1(0.2) 2] 7(1.1)
Ceftriaxone® <7 633 (100) 2 0 >4 0
Tetracycline® <2 1 (80.7) 4 15 (2.4) 28 07 (16.9)
Cotrimoxazole® <0.5/9.5 2(19) 1/19-2/38 58 (9.2) >4/76 561 (88.9)
Clindamycin® <025 632 (99.8) 0.5 0 2] 1(0.2)

*Breakpoints defined using Clinical and Laboratory Standards Institute (CLSI) guidelines 2012. For penicillin, breakpoints for oral penicillin were used

224 isolates missing information on susceptibility
P30 isolates missing information on susceptibility
€26 isolates missing information on susceptibility

PCV10 serotypes. Most isolates were not susceptible to
penicillin and cotrimoxazole; PCV10 serotypes were
more likely to be nonsusceptible to penicillin and cotri-
moxazole than non-PCV10 serotypes, and PCV10 sero-
types accounted for >40% of the MDR isolates. Notably,
the high prevalence of colonization did not differ for
samples collected in the urban (Kibera) and rural (Lwak)
sites, in spite of differences in the frequency of certain
characteristics for children enrolled in the two sites,
such as the number of children aged <5 years in the
household or the number of children in the household
attending school or daycare.

The prevalence of pneumococcal colonization found
in our study is high compared to what has been reported
in previous studies. A pre-vaccine colonization study

completed in Kilifi, Kenya in 2009 and 2010 found
74% pneumococcal colonization among children aged
<5 years [46]. A meta-analysis of pre-PCV pneumococcal
colonization studies in children aged <5 years showed an
overall colonization prevalence of 64.8% (95% CI 49.8—
76.1%) for low income countries (Bangladesh, the Gambia,
Kenya, and Tanzania) and 47.8% (95% CI 44.7-50.8%) for
lower-middle income countries (Fiji, Gaza strip, Chana,
India, Indonesia, and Vietnam) [30], although one study
from the Gambia [47] had similarly high prevalence (93%,
95% CI 89.9 -95.2) as our study. In addition to the
crowded living conditions observed in our study popula-
tion, which has been shown to intensify pneumococcal
transmission [48—50], we attribute the high pneumococcal
recovery rate to the broth enrichment step that was used
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Table 4 Factors associated with penicillin non-susceptibility among children in Kibera and Lwak, 2009

Characteristic Total number of
children N=69%4

PCN-nonsusceptible N =490
(Weighted %; 95% Cl) ratio (95% Cl) ratio (95% Cl)

Unadjusted prevalence Adjusted prevalence

Place of residence

Lwak 155

Kibera 469
Serotype group

NVT 368

PCV10 serotype 256
Age group

<1 years 101

1-4 years 523

Number of children aged <5 years in the home

1

2 or more

Number of days attending school or daycare per week

0

1 or more

312
312

357
265

125 (80.6; 74.4-86.9)
365 (77.7; 73.9-81.5)

267 (74.1; 69.3-79.0)
223 (86.6; 81.9-91.3)

85 (85.1; 77.5-92.7)
405 (78.1; 74.2-82.0)

241 (76.9; 71.7-82.2)
249 (81.2; 76.6-85.9)

288 (81.0; 76.5-85.4)
201 (77.2; 71.8-82.7)

Recent illness (within 30 days, compared to those with no illness)

Ref
0.96 (0.88-1.06)

Ref
1.17 (1.08-1.27)*

Ref
0.92 (0.83-1.02)

Ref
1.06 (0.97-1.15)

Ref
0.95 (0.87-1.04)

ref
0.94 (0.85-1.03)

ref
117 (1.07-1.27)*

ref
0.94 (0.84-1.04)

Ref
1.06 (0.97-1.15)

Ref
0.94 (0.86-1.04)

No cough 297 235 (80.7; 75.9-85.5) Ref Ref

Cough 327 255 (774; 72.3-82.5) 0.96 (0.88-1.05) 0.98 (0.89-1.08)
No pneumonia 589 460 (78.7; 75.1-82.3) Ref Ref
Pneumonia 35 30 (85.5; 72.4-98.6) 1.09 (0.93-1.28) 1.07 (0.91-1.27)
No fast breathing 543 424 (78.9; 69.9-89.8) Ref Ref

Fast breathing 81 66 (79.8; 69.9-89.8) 1.01 (0.89-1.16) 1.03 (0.89-1.19)
No fever 345 273 (80.6; 76.1-85.1) Ref Ref

Fever 279 217 (77.0; 71.4-82.5) 0.95 (0.87-1.05) 0.95 (0.85-1.05)

Penicillin, ampicillin, or amoxicillin use (compared to those with no use)®

No current use 610 477 (78.6; 75.0-82.2) Ref Ref

Current use® 14 13 (95.3; 86.1-100) 1.21 (1.09-1.35) 1.22 (1.07-1.39)*
No use within the past 7 days 572 449 (79.1; 75.4-82.8) Ref Ref

Within the past 7 days 52 41 (78.3; 65.8-90.8) 0.99 (0.84-1.17) 1.00 (0.84-1.19)
No use within the past 30 days 501 393 (79.3; 75.4-83.2) Ref Ref

Within the past 30 days 123 97 (77.7; 69.4-85.9) 0.98 (0.87-1.10) 0.98 (0.86-1.11)

NVT non-vaccine type
*Statistically significant
Current refers to the day of interview

PThe categories of antibiotic use in this table are not mutually exclusive (i.e., “within the past 30 days” include those who reported current use and use within
the past 7 days), therefore, the adjusted prevalence ratios “within the past 7 days” and “within the past 30 days” were calculated using separate models

which only include one antibiotic use category

in our study, but not in the studies included in the afore-
mentioned meta-analysis [51-60] or the Kilifi study [46].
This specific broth enrichment combining STHB, yeast,
and rabbit serum has been shown to improve pneumococ-
cal isolation compared to conventional culture-based re-
sults by 16% [38]. Although the detected colonization
prevalence was higher in our study, the proportion of
PCV10-serotypes (37.3%) among children aged <5 years

was similar to the results reported in other studies from
Kenya, the Gambia and Nigeria [31, 46, 61, 62].

Another notable finding from our study was the large
proportion of pneumococcal isolates that were nonsus-
ceptible to penicillin (81.9%) or cotrimoxazole (98.6%).
Although direct comparisons cannot be made between
different studies, previous reports of pneumococcal
penicillin susceptibility in Kenya suggest that there may
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be an increase in the proportion of penicillin nonsuscep-
tible pneumococci over the years: a study published in
1997 reported that 60.8% of pneumococcal isolates were
of intermediate susceptibility (MIC 0.12-1 pg/ml) to
penicillin [63]; another study published in 2005 reported
that 77% of the pneumococcal isolates had intermediate
susceptibility [64]. Neither study found any penicillin re-
sistant (MIC 22 pg/ml) pneumococci, whereas 2.4% of
the tested isolates in our study were penicillin resistant.

Several factors have been thought to contribute to the
emergence of drug-resistant pneumococcal isolates in
Kenya [65]. The high burden of respiratory infections,
diarrhea, HIV/AIDS and a variety of other infectious dis-
eases may have resulted in frequent use of antibiotics. In
our study, more than one-third of the participants re-
ported being on antibiotics within the month prior to
the survey. Cotrimoxazole and penicillin are two of the
most commonly available antibiotics in the country, and
HIV-infected individuals are more likely to be exposed
to cotrimoxazole for prophylaxis [66], which has been
associated with development of cotrimoxazole-resistant
pneumococci [67]. Healthcare practices are also possible
factors influencing emergence of drug resistance. Self-
medication is quite common due to inadequate access to
formal healthcare and the wide availability of antibiotics
without prescriptions.

It is known that drug-resistance is more likely to
be observed among pneumococcal vaccine serotypes
[68-72], and PCV10 serotypes were associated with
penicillin and cotrimoxazole nonsusceptibility in the
multivariable model, although there was not a statistically
significant association with MDR. While amoxicillin use
at the time of the survey was associated with penicillin
nonsusceptibility, none of the other factors, such as anti-
biotic use within a week or a month of the survey, or at-
tending school or daycare [73, 74] were associated with
increased risk of antibiotic resistance. There are several
possibilities that may explain this observation. First, since
antibiotic use and history of illness relied on self-report
from the participants, it is possible that the information
was not accurate due to problems with recall. Second,
given that the study targeted children aged <5 years, who
would not usually attend school, and since two-thirds of
participants lived in crowded conditions (Kibera), most of
the transmission may have occurred inside households or
communities. This could have diluted the potential influ-
ence of attendance at school or daycare attendance.

We used existing data to estimate the expected reduc-
tion of PCV10 serotype colonization in our study popula-
tion after vaccine introduction. Using estimated vaccine
effectiveness of 60% for direct [46, 75] and 50% for indirect
[75, 76] effects of PCV10 on reducing PCV10 serotype
colonization among young children, an estimated PCV10
immunization coverage rate of approximately 80% in
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Kenya [77], and 37.3% pre-vaccine PCVI10 serotype
colonization prevalence from our study, we estimate that
PCV10 introduction would result in a 54% reduction of
PCV10-type pneumococcal colonization among children
aged <5 years in Kenya early in the PCV10 program. Later,
reduced transmission could reduce PCV10-serotype
colonization further. Reduction in colonization does
not translate directly to a reduction in IPD, and certain
serotypes, such as serotypes 1 and 5, which are associ-
ated with IPD [21], are rarely isolated in colonization
studies [78, 79]; in fact, surveillance results on pneumo-
coccal disease in the region have shown that PCV10
will have provided coverage for >70% of children age
<5 years with invasive pneumococcal disease [80]. Add-
itionally, PCV introduction has been shown to reduce
IPD caused by both penicillin-nonsusceptible and MDR
pneumococci [72, 81]; similar effects are expected in
Kenya after PCV10 introduction.

Our study has several limitations. First, since this was
a cross-sectional study, the results provide only a snap-
shot in time of pneumococcal colonization in this popu-
lation. However, our study includes data from two years
from two different settings (urban and rural), and we
demonstrated that the distribution of serotypes and
prevalence of colonization did not differ between the
two years or by study setting. Second, data collection of
key variables, including history of symptoms and anti-
biotic use, were based on self-report and might not have
been accurate due to recall. Third, since HIV status of
the children were available for only a small proportion
of those enrolled, association between HIV status and
nonsusceptible pneumococci could not be assessed.
Fourth, the relatively high proportion of antibiotic use
within a month prior to the survey could have cleared
the antibiotic susceptible isolates and have resulted in an
overestimation of antibiotic nonsusceptible isolates. Lastly,
children were sampled from surveillance records con-
ducted in two sites in Kenya, and there might be differ-
ences between those who were under surveillance and
those who were not. However, given that results from the
two very different populations did not differ, our findings
are likely representative of much of the Kenyan population.

Conclusions

In conclusion, our study was able to characterize
pneumococcal colonization and antibiotic susceptibility
patterns among children aged <5 years in two sites in
Kenya prior to PCV10 introduction. Our carriage study
showed high pneumococcal colonization and prevalence
of antibiotic nonsusceptibility for penicillin and cotri-
moxazole, which were the main contributors to MDR.
PCV10 serotypes were independently associated with
penicillin and cotrimoxazole nonsusceptibility. Success-
ful PCV10 introduction in Kenya is likely to result in



Kobayashi et al. BMIC Infectious Diseases (2017) 17:25

substantial reductions of vaccine-type pneumococcal
disease and drug-resistant pneumococcal infections, in-
cluding MDR, given that PCV10 contains serotypes that
are more likely to cause IPD and that 40% of colonized
MDR isolates were PCV10 serotypes. Changes in the
pneumococcal colonization prevalence, serotype distribu-
tion, and prevalence of antibiotic nonsusceptible isolates
should be closely followed in the post-vaccine surveys.
Success in Kenya could help impact vaccine policy
decisions in other resource-limited settings.
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