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Abstract

Background: Clinicians lack objective tests to help determine the severity of bronchiolitis or to distinguish a viral
from bacterial causes of respiratory distress. We hypothesized that children with respiratory syncytial virus (RSV)
infection would have a different metabolomic profile compared to those with bacterial infection or healthy
controls, and this might also vary with bronchiolitis severity.

Methods: Clinical information and urine-based metabolomic data were collected from healthy age-matched
children (n=37) and those admitted to hospital with a proven infection (RSV n=55; Non-RSV viral n=16;
bacterial n=24). Nuclear magnetic resonance (NMR) measured 86 metabolites per urine sample. Partial least
squares discriminant analysis (PLS-DA) was performed to create models of separation.

Results: Using a combination of metabolites, a strong PLS-DA model (R2=0.86, Q2 =0.76) was created differentiating
healthy children from those with RSV infection. This model had over 90 % accuracy in classifying blinded infants with
similar illness severity. Two other models differentiated length of hospitalization and viral versus bacterial infection.

Conclusion: While the sample sizes remain small, this is the first report suggesting that metabolomic analysis of urine
samples has the potential to become a diagnostic aid. Future studies with larger sample sizes are required to validate

the utility of metabolomics in pediatric patients with respiratory distress.
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Background

In children, problems with breathing are the leading
cause of hospitalization [1]. The most common cause of
respiratory distress is airway obstruction secondary to
viral bronchiolitis, most often due to respiratory syncytial
virus (RSV) [1]. Each pulmonary disease entity requires
different treatment, so correct diagnosis is important
[2, 3]. Further, the severity of the disease determines
the need for hospitalization. A test that could aid cli-
nicians in determining the diagnosis and the severity
of respiratory distress in young children in the emer-
gency department would be of great benefit.
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Metabolomics is the study of metabolic pathways and
the unique biochemical molecules created in a living sys-
tem [4, 5]. 'H-nuclear magnetic resonance (NMR) spec-
troscopy can be used to quantify specific chemical
constituents within a body fluid [6]. NMR is an attract-
ive technology because of its ability to non-invasively
provide both qualitative and quantitative measurements,
while simultaneously studying a number of compounds
in the same biologic fluid. Urine is an excellent bio-
logical fluid for various medical studies owing to its ease
of collection in patients of all ages, low cell and protein
content, and rich chemical composition with over 1000
metabolites already identified by NMR [7].

Each airway disease has some differences in the type
of airway cells involved. We hypothesized that children
with RSV infection would have a different urine metabo-
lomic profile compared to healthy controls, and that the
severity of the respiratory disease would also cause
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changes in this metabolome. We also hypothesized that
the urine metabolome of viral infection would differ
from other causes of respiratory distress including bac-
terial infection.

In this report, we demonstrate for the first time that
there is a specific metabolome associated with RSV-
induced respiratory disease. We suggest that with further
development, urine metabolomic data could become a
useful non-invasive diagnostic aid for clinicians dealing
with pediatric respiratory diseases.

Methods

Patient characteristics

Children of either gender and of any age admitted to the
Stollery Children’s Hospital (Edmonton, Alberta) were
approached for parental consent (as approved by the
Health Research Ethics Board, University of Alberta) if
they had any laboratory-proven viral or bacterial infec-
tion and the study nurse and parent were both available.
Parents consented to the use of their child’s clinical data
(e.g. age, sex, weight, vital signs, microbiology test re-
sults, and length of hospitalization) and collection of a
urine sample. Some parents also agreed to follow-up urine
sampling approximately two months later. Infections were
considered to be proven if a virus was detected by antigen
detection or culture from a nasopharyngeal sample or if
bacteria were grown from blood or another sterile site.
Children were excluded if co-infection was suspected or
proven. A separate cohort of healthy control children was
recruited through public health clinics while they attended
their immunization visits (Table 1). A formal sample size
calculation was not possible for this pilot study but a con-
venience sample of 100 children divided amongst the four
groups (RSV, other viruses, bacterial infections, and con-
trols) was thought to be sufficient to determine if further
study of this potential diagnostic test is warranted.

Urine sample collection

It did not seem justifiable to obtain in and out
catheterization samples. Therefore, urine bags were
placed on the infants and removed as soon as possible
after the child voided. In older children, midstream

Table 1 Patient Characteristics
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urines were collected. Samples were promptly placed in
a freezer (-20 °C). Within 3 h of collection, the urine sam-
ples were stored in a —80 °C freezer. We have previously
reported that such samples can be stable in the freezer for
one year [8, 9]. We were aware of the variability in urine
metabolomic data that can occur within each person re-
lated to diet and time of day [9, 10]; however our objective
was to design a test that could be used in a typical clinical
setting. Thus, we did not stipulate a specific time of day for
each urine collection nor did we mandate dietary restric-
tions. We hypothesized that the metabolites of interest
would be altered sufficiently between disease and non-
disease groups that such intrapersonal variability would be
superseded, as shown in our previous publications [11-13].

Statistical analysis of clinical data

Baseline characteristics were compared. As expected, the
RSV group was younger than all other groups. To ensure
that age was not a factor in the metabolomic models,
older children (>2 years of age) were removed from the
modeling and a Kruskal-Wallis with Dunn’s multiple
comparisons test was used to confirm the age-matching
of each group of children (GraphPad prism° (V.6)). Data
are presented as mean with 95 % confidence intervals. A
p value of <0.05 was considered significant. Length of
hospitalization (1 to 3 days, 4 to 7 days, and >7 days),
was used as a surrogate for severity of RSVs, and meta-
bolomics compared for those in the three groups and for
controls to attempt to derive a severity-of-illness model.

Sample preparation

Urine samples were thawed only once in a biosafety
fume hood and a 630 pl aliquot was removed and
placed in a 1.5 ml Eppendorff tube followed by the
addition of 70 pl of a reference buffer solution
((4.9 mM DSS (disodium-2, 2-dimethyl 2-silapentane-
5-sulphonate) and 100 mM imidazole in D,O)
Chenomx, Edmonton, AB). The pH of each sample
was adjusted to 6.8 +/- 0.1 using HCl and NaOH be-
fore transferring an aliquot of 600 pl to a standard
5 mm glass NMR tube (Wilmad, NJ, USA).

Age-matched (<2 years old)

Older children (>2 years)

Controls Blinded Controls® RSV Blinded RSV* Non-RSV Virus Bacterial Non-RSV Virus Bacterial
(n=27) (n=10) (n=45) (n=10) (n=10) (n=14) (n=6) (n=10)
Median Age 10.1 11.3 80 4.7 7.0 10.1 60 R4
(months), Range 88-115 74-152 6.2-9.9 21-74 3.7-103 58-144 15.7-103.3 61.0-1238
Sex 28/12 22/11 25/20 5/5 5/5 5/9 6/0 8/2
(#Male/#Female)
Hospital Stay Mean N/A N/A 52 7.2 78 19.6 8.6 18.3
# days (range) (1-14) (4-11) (1-30) (4-45) (2-29) (5-44)

“These subjects' samples were used for blinded analysis by the model to determine test accuracy
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NMR acquisition

All '"H-NMR spectra were acquired on a 600 MHz
VNMRS spectrometer (Varian Inc, Palo Alto, Ca.)
equipped with a 5 mm inverse-proton (HX) probe with
Z-axis gradient coil. One-dimensional "H-NMR spectra
utilizing the first increment of a two dimensional-'H,'H-
NOESY were collected at 25 °C with a spectrum width of
7200Hz, 4 steady state scans preceding acquisition, and 32
transients were acquired for each spectrum and apodized
with an exponential decay corresponding to a line broad-
ening of 0.5Hz prior to Fourier Transformation. Acquisi-
tion time per scan was 4 s, with a 990 ms saturation delay
(power of 6) followed by two 90° pulses and a 100 ms mix-
ing time and a final read 90° pulse. (detailed NMR acquisi-
tion parameters as previously described [12]).

Spectral and statistical analysis

Spectral identification and quantification of 86 identifi-
able metabolites was performed using the Chenomx
NMR Suite Professional software package Version 4.6
(Chenomx Inc., Edmonton, AB). The software contains a
database of known metabolites with their referenced
spectral resonant frequencies or signatures. These
known resonant frequencies were matched to the ob-
served resonant frequencies of the collected spectra, en-
abling the qualitative and quantitative analysis of
metabolites in urine. To account for hydration status of
the subjects, metabolites were referenced to creatinine
and the values were log-scaled for normalization before
Partial Least Squares Discriminant Analysis (PLS-DA)
(SIMCA-P 11, Umetrics, USA). The SIMCA program
performs seven-fold internal cross validation. This
process identifies the metabolites whose concentrations
differed significantly between groups of patients. As
might be expected, most metabolites do not differ
greatly between groups and including metabolites of low
significance is detrimental to creating an accurate diag-
nostic model of separation. Metabolites with consistently
greater difference in concentration between groups are
displayed by the software as a Variables of Importance
Plot (VIP) and a Co-efficient of Variation (COV) Plot
(Fig. 1). To choose the most accurate list of metabolites,
we removed metabolites listed as being lower in signifi-
cance on the VIP until we were satisfied that the model
could still correctly diagnose blinded samples not part of
the model (10 healthy and 10 RSV positive infants). We
set a false positive rate of 5-10 % as an acceptable limit.
This resulted in the most sensitive models, both with re-
spect to correlation coefficients (R2) and prediction
properties (Q2). We previously reported using this tech-
nique in an animal model of asthma [11] and humans
with asthma [12, 13]. The PLS-DA based model gen-
erates a prediction score (0—1) of unclassified, blinded
data not part of the model (i.e., for data in Fig. 1
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scores <0.5 are predicted to be RSV infected versus
>0.5 are healthy controls).

Results

Baseline characteristics

Children enrolled included 55 with RSV, 16 with viruses
other than RSV (primarily respiratory viruses), 24 with
bacterial infections and 37 controls. The RSV group
tended to be younger than the other groups. To ensure
that age was not a factor in the metabolomic models,
the comparison groups were age-matched as discussed
in the Methods. As such, there was no significant differ-
ence in age for the models comparing RSV and non-RSV
groups as shown in Table 1. Metabolomic data from the
excluded older children (age >2 years) were still saved
for comparison to the younger RSV-infected children
and their data regarding age and sexes are shown in
Table 1. More boys than girls were consented for study
in the healthy control cohort. Duration of hospital stay
for all groups is shown in Table 1. The etiologies of in-
fection and number of children with each infection are
outlined in Table 2.

Urine metabolomics can differentiate healthy controls
from admitted patients with RSV

We compared the metabolites of age matched healthy
controls (7 = 27) to children with RSV infection (n = 45).
As would be expected, most of the metabolites excreted
in the urine did not differ greatly between groups, and
adding metabolites of low importance rendered the PLS-
DA based model less accurate. To remove irrelevant me-
tabolites, we randomly withheld urine samples from 20
children (10 healthy and 10 RSV infected children) to be
used as a test set. Using the test set, we removed metab-
olites that allowed the model to correctly classify these
blinded patients. The final list of remaining metabolites
used three components consisting of 19 metabolites in
the VIP list giving an R2=0.86, Q2=0.76. The import-
ance of the metabolites used for separation of these two
groups is shown as a VIP Plot (Fig. 1a). The differences
in concentration of these metabolites between groups
are shown as the COV Plot (Fig. 1b). Graphic presenta-
tion of the quality of separation between groups in the
model is shown by their respective PLS-DA scores
(Fig. 1c). The final metabolites chosen and their concen-
trations are shown in Table 3.

Validation of the RSV versus control model

Using this metabolomic model of RSV versus healthy
control, we studied the other children (non-RSV respira-
tory virus, n =16 and bacterial infection, n=23). The
values of the model’s specific metabolites were entered
for these children and presented blindly to the PLS-DA
based model to predict a diagnosis. We also stratified
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Fig. 1 The metabolomic model of RSV bronchiolitis versus healthy
control children. Urine metabolite levels were measured in age
matched healthy children and compared to those with RSV
bronchiolitis in the ED. Using a blind test set, PLS-DA analysis
(SIMCA P-11) of these metabolites created a model of separation
(R2=0.86, Q2=0.76). lllustrated are: a the Variables of Importance
plot ranking the metabolites according to their significance in
the model; b scaled and centered metabolite differences between
groups shown as the Coefficients of Variation plot; ¢ the PLS-DA
prediction scores for each subject with error bars representing means
and 95 % confidence intervals. The PLS-DA algorithm separates groups
of data based on a score of 0-1; in this case a value above 0.5 indicates
the infant is healthy while below 0.5 indicates RSV bronchiolitis

them based on being age matched (<2 years old) or be-
ing an older child (age >2 years). The individual PLS-
DA prediction scores are shown in Fig. 2 with error bars
representing medians and interquartile ranges. The
model perceived 97 % of these children (38/39) as having
a metabolome more similar to the RSV group than to
the controls. Age did not appear to be a significant fac-
tor in the data. The misclassified child had a Staphylo-
coccus aureus infection post cardiac surgery.

We also hypothesized that as children recovered their
metabolome at the follow-up visit should also improve
and become similar to healthy controls. Unfortunately,
only 11 of the 46 RSV infected children had follow-up
urines collected. The model perceived seven as healthy
and four as having respiratory disease similar to RSV
(Fig. 3). Unfortunately, we do not have any clinical data
to determine whether these four had persistent symp-
toms of breathing difficulties in follow-up, which is a
strong possibility.

Urine metabolomic profile predicts RSV disease severity
and length of hospitalization

We stratified the children based on their length of hos-
pital admission (long stay>7 days; medium stay 4-7
days; short stay up to 3 days). We created a metabolomic

Table 2 Non-RSV etiology of infection (# cases)

Age matched

Older children

Parainfluenza virus 5 Parainfluenza virus 2
Influenza A 3 Influenza B 2
Influenza B 1 Influenza A 1
Adenovirus 1 Adenovirus 1
Streptococcus species 6 Staphylococcus aureus 5
Staphylococcus aureus 3 Streptococcus species 4
Escherichia coli 1 Brucella melitensis 1

Enterococcus faecalis
Klebsiella oxytoca
Neisseria meningitis

Stenotrophomonas




Table 3 The concentration of each metabolite for each subject group is shown as the median and interquartile range (IQR) in mmol of metabolite/mmol creatinine

Healthy Control RSV Other Respiratory Viruses Other Respiratory Viruses Bacterial Infection Bacterial Infection

Children (Age-matched) (Older children) (Age-matched) (Older children)

Median  IQR Median  IQR Median IQR Median IQR Median QR Median  IQR
2-Hydroxyisobuterate (a)*  0.014 0012 0017 0008 0004 0013 0.006 0004 0011 0.006 0003  00M 0.007 0002 0013 0011 0.005 0020
3-Hydroxyisovalerate (3)° 0019 0010 0028 0014 0010 0020 0014 0004 0021 0.023 0011 0036 0012 0004 0021 0015 0009 0022
3-Indoxylsulfate (B)? 0.018 0006 0052 0.022 0.006 0057 00206 0.006 0.061 0.031 0.009 0.097 0.006 0006 0015 0012 0.006  0.028
Acetoacetate (o) 0.004 0003 0010 0012 0006 0020 0016 0008 0038 0023 0008 0063 0010 0005 0029 0017 0.005 0034
Acetone (a)° 0.006 0006 0009 0013 0007 0027 0010 0006 0029  0.008 0004 0035  00M 0005 0047 0011 0003 0044
Alanine (a)® 0.131 0.104 0.164 0.156 0090 0230 0.140 0.057 0.239 0.080 0.023 0.155 0.113 0076 0193 0044 0.014  0.091
Betaine (B)° 0.205 0094 0514 0425 0058 0932 0171 0036 0424 0010 0007 0223 0044 0014 0178 0013 0.008 0018
Blue 1.06 () 2.165 1675 2954 1.967 1520 2276 2040 1.531 2352 1.231 0393 2131 1.880 0200 2620 1.033 0832 1.797
Carnitine (a)° 0.037 0013 0066 0014 0.008 0039 0013 0.006 0.051 0.017 0.010 0.041 0.009 0004 0022 0013 0.007 0033
Citrate (a)° 0.690 0485 1089 0334 0.182 0602 0.153 0093 0540 0251 0053 0615  0.197 0041 0402 0183 0.086 0399
Creatine (a)® 0513 0251 1082 0029 0015 0206 0.125 0035 0725 0031 0.021 0259 0039 0017 0195 0017 0.008 0035
Ethanolamine (a,)” 0.084 0069 0.107 0.126 0.098 0.181 0.09% 0.072 0.155 0.086 0.051 0.169 0.112 0.081 0.148  0.065 0.041  0.085
Fumarate (a,8)° 0.003 0001 0006 0.006 0001 0010 0.002 0.001 0.008  0.002 0002 0349 0001 0.001 0004 0.001 0.001 0001
Glucose (a)* 0.096 0067 0136 0.170 0103 0258 0.189 0.145 0.217 0.066 0.031 0.191 0.293 0115 0907 0.062 0.034 0.156
Glutamate (B)? 0.010 0010 0010 0.037 0010 0076 0010 0.010 0.066 0.010 0.010 0.087 0.010 0010 0044 0013 0.010 0.064
Glutamine (a)® 0.139 0112 0153 0215 0.140 0337 0.87 0.134 0.295 0218 0.076 0.529 0.188 0.077 0378 0052 0.022 0191
Hippurate (3)° 0.160 0083 0292 0104 0038 0219 0137 0038 0290 0236 0111 0464 0538 0103 0992 0173 0070 0306
Hypoxanthine (a)® 0.015 0009 0023 0019 0.008 0024 0019 0.002 0.027 0.010 0.008 0.018 0.006 0002 0030 0013 0.006  0.017
Lactate (o)° 0.032 0026 0047 0052 0037 0074 0057 0043 0084  0.030 0017 0049 0051 0040 0075 0012 0011 0038
Lysine () 0011 0006 0047 0056 0035 0128 0029 0006 0063  0.006 0005 0020 0070 0029 0108 0028 0016 0061
Methanol (a)? 0.001 0.001 0008 0014 0.008 0018 0012 0.008 0.020 0.002 0.001 0.008 0.012 0009 0036 0.006 0.003 0011
NN-Dimethylglycine (3)*  0.048 0030 0067 0.066 0028 0104 0031 0017  0.144 0007 0003 0042 0024 0006 0098 0.004 0.002 0007
Pantothenate (B) 0.021 0015 0029 0018 0011 0024 0019 0012 0028 0007 0002 0010 0009 0001 0017  0.005 0001 0016
Propylene glycol (a) 0.018 0002 0089 0053 0019 0136 0073 0.017 0172 0.017 0.008 0.045 0.068 0018 0336 0024 0.007  0.084
Pyruvate (o) 0.009 0006 0012 0016 0009 0059 0022 0012 0.091 0.003 0000 0020  0.007 0001 0018 0.003 0.001 0010
Serine (a,3) 0.075 0020 0123 0.197 0.146 0282 0179 0020 0281 0.020 0014 0148 0264 0102 0302 0035 0020 0208
Succinate (B)* 0.128 0062 0.165 0.099 0062 0.140 0.062 0.027 0.075 0.059 0.020 1.942 0.029 0015 0071 0014 0.004 0.023
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Table 3 The concentration of each metabolite for each subject group is shown as the median and interquartile range (IQR) in mmol of metabolite/mmol creatinine (Continued)

Tartrate (3) 0.008
Taurine (a)? 0.253
Threonine () 0.046
Uracil (B)° 0.009
Urea (0)? 3360
trans-Aconitate (a)® 0.019

0.001
0.174
0.036
0.001
23.80
0.006

0016
0395
0.063
0016
49.10
0.043

0.018
0.160
0.058
0.013
33.20
0.002

0.005
0.050
0.038
0.001
2290
0.002

0.030
0.345
0.098
0.018
5067
0.008

0.012
0.112
0.052
0.011
5083
0.002

0.001
0.061
0.040
0.001
2336
0.002

0.026
0.703
0.131
0.024
73.76
0.009

0.003
0.103
0.030
0.007
27.94
0.002

0.001
0.073
0.008
0.004
12.87
0.001

0.051
0.309
0.087
16.34
40.72
0.002

0.004
0.115
0.075
0.001
47.22
0.002

0.001
0.051
0.036
0.001
2411
0.002

0.030
0.265
0.112
0.026
83.14
0.002

0.001
0.170
0.026
0.001
3975
0.002

0.001
0.082
0.010
0.001
2899
0.002

0.002
0.344
0.151
0.011
4718
0.009

The metabolites used to discriminate the different groups of subjects are labeled as: (a) required for separation of Healthy Infants vs RSV infection; (B) required for separation of RSV vs. Bacteria. Metabolites labelled

with? are known to be endogenously produced within the human body
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model based on the ends of the spectrum, comparing
healthy control children with those with RSV infection
with long stays, using the same metabolites important for
differentiating the healthy versus RSV infected children.
We hypothesized that the value of these metabolites
should reflect disease severity. Based on these metabolites,
a model of separation was created (R2=0.83 Q2=0.81).
Graphic presentation of the quality of separation between
groups and the stratification by length of stay is shown by
their respective PLS-DA scores (Fig. 4). There appears to
be a step-wise change in the prediction scores based on
duration of stay.

Urine NMR metabolomic profiling to differentiate RSV
infection from bacterial infection

We then determined if a metabolomic approach could
discern differences between RSV infected children com-
pared to those with non-RSV airway viral infection or
compared to children with a bacterial infection. We first
compared the metabolites of the RSV-infected children
(n=45) with those positive for a non-RSV respiratory
virus (7 =16). There were no consistent differences in
the 86 metabolites tested between RSV and non-RSV
virus infection regardless of age, thus a significant PLS-
DA model could not be generated.

In contrast, we compared the metabolites of RSV in-
fected children (n =45) with age-matched infants with a
bacterial infection (n =14). In this case, there were sig-
nificant differences and a PLS-DA model could be gen-
erated. To remove irrelevant metabolites, we withheld
10 RSV-infected infants to be used as a test set. Unfortu-
nately, we did not have enough age-matched bacterial
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Fig. 4 The metabolites used in the model of RSV bronchiolitis versus
healthy control children also predict length of hospitalization. Using
the same metabolites, we created a new PLS-DA-based model (R2 =0.83,
Q2=081) comparing the same healthy children in relation to the
duration of hospitalization for RSV infection. Illustrated are the PLS-DA
prediction scores for each infant stratified based on length of

hospitalization. Error bars represent the means and 95 %
confidence intervals
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infected infants to use as a test set. Thus, we re-
moved metabolites that allowed the model to remain
robust in terms of the R2Q2 value, while still cor-
rectly classifying the blinded RSV-infected children.
The final list of remaining metabolites used two com-
ponents consisting of 17 metabolites in the VIP list
giving an R2=0.75, Q2=0.61. The importance of the
metabolites used for separation of these two groups is
shown as a VIP Plot (Fig. 5a). The differences in con-
centration of these metabolites between groups are
shown as the COV Plot (Fig. 5b). Graphic presenta-
tion of the quality of separation between groups in
the model is shown by their respective PLS-DA
scores (Fig. 5c). The final metabolites chosen and
their concentrations are shown in Table 3.

Validation of the RSV versus bacteria model

Using this metabolomic model of RSV versus age-
matched bacterial infants, we studied the other children
(non-RSV respiratory virus, n=16 and older children
(>2 years of age) with bacterial infection, n=10). We
also stratified the non-RSV virus samples by age. The
values of the model’s specific metabolites were entered
for these children and presented blindly to the PLS-DA
based model to predict a diagnosis. The individual PLS-
DA prediction scores are shown in Fig. 5c. The model
perceived 9 of the 10 age matched non-RSV samples
correctly as a virus infected child (90 % correct). In con-
trast, samples from older children with non-RSV viral or
bacterial infection were not perceived with high accuracy
by this model. As such, age could be a significant factor
in the data. Unfortunately, we did not have enough older
children with RSV to create this model.

Discussion
We have previously shown that metabolomic profiling of
urine could differentiate children with asthma from
healthy subjects and could differentiate stable from un-
stable asthma [12]. For the first time, we show that there
are metabolomic differences in the urine of children
with RSV infection that differ from healthy children and
from children with bacterial infection, and also vary
based on the severity of illness. At the time of manu-
script submission, there were no articles found in a
PubMed, Ovid and Embase literature search for urine
based metabolomics studies of patients with respiratory
viral infections. One article by Atzei [14] described
metabolomics in neonates with RSV bronchiolitis, but
they were still just in the early phase comparing urine
collected from intubated and nonintubated infants.
While this was a pilot study, we have reviewed the me-
tabolites in the context of their potential relation to
known metabolomic pathways. Metabolites related to
the citric acid cycle such as citrate, succinate and trans-
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Fig. 5 The metabolomic model of RSV infection versus age matched
children with bacterial infection. Urine metabolite levels were measured
in age matched children with bacterial infection and compared
to those with RSV bronchiolitis. PLS-DA analysis of these metabolites
created a model of separation (R2=0.75, Q2 =061). lllustrated are: a
the Variables of Importance plot ranking the metabolites according to
their significance in the model; b scaled and centered metabolite
differences between groups shown as the Coefficients of Variation
plot; ¢ the PLS-DA prediction scores for each subject with error
bars representing means and 95 % confidence intervals. The PLS-DA
algorithm separates groups of data based on a score of 0-1; in this
case a value above 0.5 indicates the infant has RSV while below 0.5
indicates bacterial infection

aconitate appear to be important in subjects with viral
respiratory tract infections. We previously documented
similar citric acid cycle metabolites using an animal
model of asthma [11]. Other researchers have hypothe-
sized that citric acid cycle reflects stress and an increase
in anaerobic glycolysis [15, 16].
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Similarly, lactate, alanine, and acetoacetate are altered
in a number of studies of inflammatory or metabolic
perturbations. A metabolomics study of ventilator-
induced lung injury in a rat model noted that in injured
animals had higher concentrations of lung tissue as well
as bronchoalveolar lavage lactate levels [17]. Increased
lactate has been identified in metabolomics studies of
pediatric asthma and have been suggested to reflect a
stronger energy demand of allergic airway, abnormal
lung respiration and altered energy metabolism, possibly
under hypoxic or inflamed conditions [18]. Further,
when lactate is produced, alanine levels are expected to
change as well as part of gluconeogensesis [19]. Alanine
levels were increased in the urine of piglet models of
hypoxia Skappak [20], in the CSF of fetal hypoxic sheep
[21] and cellular cultures undergoing apoptosis [22].
Perturbations in acetoacetate can be identified during
periods of physical exertion and training in otherwise
healthy individuals [23]. Animal studies of sepsis have
noted that alterations in metabolites such as lactate,
acetate and acetoacetate were identified in septic rats
that did not survive [24, 25]. Increased serum levels of
acetone have been related to increased myocardial
energy expenditure in heart failure patients [26, 27]. Al-
tered acetone levels were helpful in a model of exhaled
breath condensate to differentiate healthy subjects from
those with cystic fibrosis [28]. Many of these metabolites
were similarly increased in infants with neonatal bacter-
ial sepsis compared to healthy control infants [29]. The
changes identified in our study surrounding acetoace-
tate, acetone and lactate may again point to altered en-
ergy metabolism in children with increased work of
breathing secondary to respiratory viral infections.

Glutamine levels have been reported to be low in
adults with chronic obstructive pulmonary disease
(COPD) compared to healthy subjects [30, 31] and
higher in asthma subjects compared to healthy controls
[32]. Creatine has been reported in COPD patients in
relation to work of breathing and muscle wasting [31].
Elevated levels of 3-hydroxyisobutyrate, acetone, alanine,
and pyruvate have been correlated to early stages of
cerebral ischemia and reperfusion injury models in rats
[33]. Methanol was a component of the model to iden-
tify stable from unstable patients with cystic fibrosis
[28]. A number of these same metabolites were found to
be altered in our model and may point towards altered
energy metabolism as well as ongoing injury to the lung
with respiratory viral infections. None have been re-
ported previously in children with RSV infection.

The majority of metabolomics research looking at
ethanolamine has surrounded its involvement in the
generation of cellular membranes and its utility in iden-
tifying apoptosis in cancer cells and possibly cellular res-
piration [34]. Ethanolamine has also been investigated as
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a source of carbon and nitrogen for bacterial during in-
fectious pathogenesis and immune evasion [35]. Our
analysis of urine from children with respiratory viral in-
fections also detected perturbations in serine levels.
Fluctuations in serine and ethanolamine and lipid layers
have been noted in other pediatric respiratory diseases
such as neonatal Respiratory Distress Syndrome. Further
analysis is required to help elucidate the possible
phospholipid changes that may be occurring in patients
with viral respiratory tract infections.

We could find no publications specifically comparing
differences in the metabolome of infants or children
with viral versus bacterial infections. There was one
study suggesting there are differences in adults with viral
versus bacterial pneumonia, but the specific metabolites
were not reported [36]. A group in Italy identified urin-
ary metabolite perturbations in newborns with congeni-
tal cytomegalovirus infection. Our study of children with
respiratory viral infections shared some similar metabol-
ite changes; including taurine, betaine, and ethanolamine
[37]. A metabolomic investigation of urine and plasma
samples from children with severe pneumonia identified
changes when compared with healthy controls [38].
Interestingly two of the metabolites identified in the
Laiakis study [38], hypoxanthine and glutamate, were
also found to be among the metabolites used to separate
RSV infected children from those with bacterial infections
in our current study. A mouse model of pneumonia due
to either Streptococcus pneumoniae or Staphylococcal aur-
eus noted changes in urine metabolites including ethanol-
amine, uracil, hippurate, betaine, succinate, fumarate, and
3-indoxysulfate [39], which were also important in our
children with bacterial infection. Another metabolomics
investigation of human urine sampled from patients in-
fected with Streptococcus pneumoniae identified changes
in fumarate, hypoxanthine, threonine, serine, and succin-
ate [39]. Once again, these same metabolites were relevant
in our model, distinguishing children with RSV versus
bacterial infections. A unique feature of this present study
is the ability to identify children with RSV confirmed
respiratory infections as compared to those with a
bacterial infection. Continued research in this area
may advance the ability of metabolomics to impact
the clinical identification and therefore care of these
unique infectious etiologies.

There are limitations of the study. First, the sample
size was small. We did not have enough age matched
children for each category to fully validate the models.
To still show some measure of accuracy, we used the in-
fants (age matched) with non-RSV infection or bacterial
infection. We also used this approach with the RSV ver-
sus bacterial differentiation. The data looked quite com-
pelling when studying the blinded samples for potential
accuracy. Second, bag urine samples could have been
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contaminated with bacteria. It did not seem justifiable to
obtain catheterization samples for a pilot study. Urine
bags were removed as soon as possible after the child
voided and the urines frozen. In retrospect, it may have
been useful to add an anti-bacterial to the urine bags to
inhibit growth. Finally, the metabolite Blue 1.06 is an as
yet unidentified metabolite. If this peak continues to show
relevance in future work, we do plan to design methods
using NMR and mass spectrometry to fully identify it.

Conclusions

Overall, this was a pilot study intended to determine
whether a metabolomic approach could be developed
for use in the diagnosis and management of viral re-
spiratory tract infections with an emphasis on RSV. In
this report, we demonstrate for the first time that there
is a specific metabolome associated with RSV-induced
respiratory disease. This metabolome changes with the
severity of illness and during recovery from illness.
There also appears to be a metabolome differentiating
respiratory distress from RSV compared to bacterial in-
fection. Many of the metabolites identified were identified
by previous work by our laboratory studying humans and
animal with respiratory distress [11-13]. Additional model
refinement and validation in on-going studies might help
elucidate the principal metabolic pathways responsible for
the unique pathophysiology observed in the pediatric lung
and may better dictate management options for the
bronchiolitic patient. The ultimate goal of this research is
to develop a point-of-care test on urine that is both diag-
nostic and predictive of the severity of illness. This ap-
pears to be worth pursuing based on the results of the
current study. As respiratory infections in young children
lead to high hospitalization costs, improved diagnosis
using a metabolomic test could lower health care costs by
optimizing early management.
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