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Abstract

Background: Tryptophan is an essential amino acid for the synthesis of proteins and important metabolites such as
serotonin, melatonin, tryptamine and niacin. After protein synthesis, more than 90 % of tryptophan catabolism
occurs along the kynurenine pathway. The inflammation-inducible enzyme indoleamine 2,3 dioxygenase (IDO) is
responsible for the first rate-limiting step in the kynurenine pathway, i.e., oxidation of tryptophan to kynurenine.
Excessive IDO activity in conditions such as HIV/AIDS may lead to tryptophan depletion and accumulation of
metabolites downstream from kynurenine. Little is known about the kynurenine pathway of HIV/AIDS patients in
sub-Saharan regions. This study, in a low income sub-Saharan HIV/AIDS population, examined the effects of
activities in the kynurenine pathway on plasma levels of tryptophan, kynurenine and the neurotoxin quinolinic acid,
and on de novo synthesis of nicotinamide.

Methods: Plasma samples were obtained from a cohort of 105 HIV patients and 60 controls. Kynurenine pathway
metabolites were analysed using gas chromatography — mass spectrometry. ELISA and flow cytometry were used
to assess plasma inflammatory markers.

Results: IDO activity, depletion of tryptophan, as well as accumulation of kynurenine and the neurotoxin quinolinic
acid, were not only significantly greater in the patients than in the controls, but also markedly greater than in
HIV/AIDS patients from developed countries. Tryptophan levels were 12.3 % higher, kynurenine levels 16.2 % lower,
quinolinic acid levels 43.2 % lower and nicotinamide levels 27,2 % lower in patients on antiretroviral treatment than
in antiretroviral-naive patients. Patients’ kynurenine pathway metabolites correlated with the levels of inflammatory
markers, including that of the major IDO-inducer, interferon-gamma. Indications are that the rate of de novo
synthesis of nicotinamide in the kynurenine pathway correlates with increases in quinolinic acid levels up to a point
where saturation of the enzyme quinolinate phosphoribosyl transferase occurs.

Conclusions: Higher levels of inflammatory activity in this low income sub-Saharan HIV/AIDS population than in
patients from developed countries lead to greater tryptophan depletion and greater accumulation of metabolites
downstream from tryptophan with quinolinic acid levels often reaching levels associated with the development of
HIV/AIDS-associated neurocognitive dysfunction. De novo synthesis of nicotinamide from quinolinic acid contributes
to the maintenance of nicotinamide, and by implication NAD levels, in HIV/AIDS patients from low income
populations. Antiretroviral treatment partially corrects disturbances in the kynurenine pathway.

* Correspondence: mviljoen@webafrica.org.za

Department of Psychiatry, School of Medicine, Faculty of Health Sciences,
University of Pretoria, Pretoria, South Africa

Full list of author information is available at the end of the article

- © 2015 Bipath et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-015-1087-5&domain=pdf
mailto:mviljoen@webafrica.org.za
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bipath et al. BMC Infectious Diseases (2015) 15:346

Background

The essential amino acid tryptophan is important for
protein synthesis and serves as substrate for the synthe-
sis of serotonin, melatonin and tryptamine. In addition,
it also serves as substrate for the de novo synthesis of
nicotinamide adenine dinucleotide (NAD) and niacin in
the kynurenine pathway of tryptophan metabolism. After
protein synthesis, more than 90 % of tryptophan catabol-
ism occurs along the kynurenine pathway [1].

The kynurenine pathway starts with the oxidative deg-
radation of tryptophan (Fig. 1). Kynurenine is the first
stable metabolite formed when tryptophan is oxidized
under influence of either L-tryptophan 2,3-dioxygenase
(TDO) or indoleamine 2,3-dioxygenase (IDO) [2]. Excess
tryptophan, i.e., at levels above the requirement for pro-
tein and serotonin synthesis, is oxidized in the liver
under influence of the liver-specific enzyme TDO, to
ATP, CO, and water. In contrast, tryptophan oxidation
under influence of the inflammation-inducible enzyme
IDO occurs in various cell types, is not limited by a
decrease in tryptophan levels and may even lead to trypto-
phan depletion [2]. The main cytokines for the induction
of IDO are interferon-gamma (IFN-y) in the periphery
and interleukin-6 (IL-6) in the central nervous system, but
other pro-inflammatory cytokines, as well as the HIV tat
and nef proteins, may also have an influence [3, 4].

After conversion of tryptophan to kynurenine, kynure-
nine is converted to 3-hydroxy-kynurenine by the enzyme
kynurenine 3-monoxygenase; 3-hydroxy-kynurenine is
converted under the influence of kynureninase to 3-
hydroxy-anthranilic acid and the latter converted under
the influence of 3-hydroyxanthranilate 3,4-dioxygenase
to a-amino-f3-carboxymuconate-e-semialdehyde (ACMS)
which, in turn, is converted to a-aminomuconate-e-
semialdehyde under the influence of the rate-limiting
enzyme ACMS decarboxylase (ACMSD). Some ACMS,
not metabolized to «-aminomuconate-e-semialdehyde
is non-enzymatically converted to quinolinic acid, the
precursor of NAD and niacin (Fig. 1) [5-7].

Physical disorders such as autoimmune diseases, cancer,
AIDS, pellagra, rheumatoid arthritis and cardiovascular
abnormalities, as well as a host of neurodegenerative/
neuropsychiatric disorders, have been linked to alterations
in the kynurenine pathway of tryptophan metabolism
[2, 4, 8]. Excessive activities in the kynurenine pathway,
especially increases in quinolinic acid, are implicated in
neurodegenerative disorders such as Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, amyotrophic
lateral sclerosis, schizophrenia and related disorders, mul-
tiple sclerosis, epilepsy, attention deficit-hyperactivity dis-
order, anxiety, depression and in the AIDS dementia
complex [2, 8, 9]. Kynurenine pathway metabolites can
either act as neuroactive substances or affect neuronal
function through their oxidative/reductive properties, or
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through the supply of adequate NAD in conditions of a
deficient dietary niacin [2, 8, 9]. Excessive stimulation of
the kynurenine pathway may lead to tryptophan depletion,
accumulation of the neurotoxin quinolinic acid and to a
decline in serotonin synthesis [7-9].

Alterations in tryptophan metabolism along the kynur-
enine pathway in HIV/AIDS patients have previously
been shown [10-17]. The majority of those studies were
on populations from developed countries and primarily
dealt with the first segment of the pathway, ie., conver-
sion of tryptophan to kynurenine. No previous study in
HIV/AIDS patients could be found that simultaneously
looked at the plasma levels of tryptophan, kynurenine,
quinolinic acid, nicotinamide, as well as IDO activity,
and the relevant immunological factors, and little is
known about kynurenine pathway metabolism in HIV/
AIDS populations from developing countries. The present
study examined the effects of activities in the kynurenine
pathway on tryptophan levels, on the accumulation of
kynurenine and the neurotoxin quinolinic acid, and on
the de novo synthesis of nicotinamide in a low income
HIV/AIDS population from the Gauteng Province of
South Africa. The findings are compared to that of HIV/
AIDS patients from populations in developed countries.

Methods

This cross-sectional study received approval, in accord-
ance with the Declaration of Helsinki, from the Faculty
of Health Sciences Research and Ethics Committee
(Clearance Number 107/2008) of the University of
Pretoria and from the hospital superintendent of Kala-
fong Hospital. Written or verbal informed consent was
obtained from all participants. Patients unable to read or
write were informed by a clinician about the nature and
purpose of the study prior to obtaining verbal consent.
The immunology clinic at the Kalafong secondary hos-
pital in Pretoria was used as the research site for the
recruitment of HIV positive patients. The immunology
clinic provides health services to HIV positive patients
from areas west of Pretoria, as well as from the sur-
rounding townships. Patients are mostly of low socio-
economic status while many are unemployed or survive
on a single grant or pension. Maize meal was reported
as their staple food. An estimated 30 % of patients,
attending the clinic, are foreigners from surrounding
sub-Saharan African countries.

A total patient group of one hundred and five adult
(>18 years of age) HIV positive patients (HIV-1, sub-
group C) were voluntarily recruited at random during
their scheduled visit to the clinic. HIV status was con-
firmed by the clinic which utilises testing performed by
the National Health Laboratory Service (NHLS) at
Kalafong. Of the total patient group 30 patients were not
yet receiving highly active antiretroviral treatment
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(HAART), hereafter referred to as the HAART-naive
group, and 75 patients were already on HAART. Patient
demographic information is given in Table 1. A total of
60 HIV negative controls (63 % female) with a mean age
of 31.18+8 .09 years and body mass index (BMI) of
21.96 + 4.81 kg/m* were also recruited from the South
African National Blood Service (SANBS). Ethical clearance
and approval were received from the SANBS Human Re-
search Council (Clearance Number 2010/03) and written
informed consent was obtained from all of the participants.

The plasma levels of tryptophan, kynurenine, quinolinic
acid and nicotinamide were simultaneously determined by
gas chromatography coupled to mass spectrometry (GC-
MS) using the method which was developed and validated
in our laboratory. Briefly, samples were processed and
derivatized with pentaflouropropionic anhydride and pen-
taflouropropanol before analysis. The GC oven was pro-
grammed to begin at an initial temperature of 80 °C with
a ramp at a rate of 20 °C up to 180 °C followed by a 10 °C
ramp up to a maximum temperature of 280 °C. Sample
peaks were eluted on a DB-5MS capillary column within a
chromatographic runtime of 18 min using a Thermo
Scientific Trace 1300 gas chromatographer coupled to an
ISQ single quadropole mass spectrometer. Neopterin and
cytokine levels were determined by enzyme linked im-
munosorbent assay (ELISA) and cytometric bead array
flow cytometry respectively. All other variables were
determined by the National Health Laboratory Service at
Kalafong.

Data are expressed as mean and standard deviation.
Groups were compared by ANOVA and subgroups by
non-parametric Kruskal-Wallis. Associations between
variables were tested by non-parametric Spearman rank
correlation coefficients. All testing was performed at a

Table 1 Patient demographic information

Total patients HAART HAART-naive
n 105 75 30
Females 66 (63 %) 48 (64 %) 18 (60 %)
Age (years) 3597+£958 3786+£886 37.13£10.24
Ethnicity 105 Black 75 Black 30 Black
Married 32 (30 %) 21 (28 %) 11 (37 %)
Employed 43 (44 %) 33 (44 %) 13 (43 %)
Smoker (21 cigarette 20 (19 %) 13 (17 %) 7 (23 %)
per day)
Alcohol consumer 12 (11 %) 7 (9 %) 5017 %)
(=1 drink per week)
Body mass index - BMI 2316591  2383+£631 2096+362
(kg/m?)
Average months on HAART - 1586+1649 -
Tuberculosis co-infection 24 (22.9 %) 14 (19 %) 10 (33 %)

Data expressed as mean + SD
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significance level of p <0.05 using SPSS (Version 22,
IBM Inc.).

Results

The plasma levels for tryptophan, kynurenine, quinolinic
acid, nicotinamide, neopterin, IFN-y, IL-6, as well as the
CD4 counts and the kynurenine/tryptophan ratios for
the patient groups and the controls, are compared in
Table 2. When patients and control groups were com-
pared, tryptophan levels were 49.4 and 42.3 % lower,
kynurenine levels 63.7 and 43.9 % higher, quinolinic acid
levels 2208 and 1512 % higher, and nicotinamide levels
31.0 and 3.02 % higher for the HAART-naive and
HAART groups, respectively, than for the control group.
Patients with CD4 counts below 200 cells/pl presented
with significantly higher kynurenine levels (3.92 + 1.54
vs. 2.87 £1.01; p=0.002) and kynurenine/tryptophan
(K/T) ratios (171.90+78.11 vs. 116.41 +48.45; p=
0.001) than patients with CD4 counts greater than 200
cells/pl. Figure 2 shows the comparisons for kynurenine
and the K/T ratios for the different groups. A search
was performed to find all studies in which one or more
metabolites of the kynurenine pathway have been mea-
sured in HIV positive patients. The results can be seen
in Table 3.

Correlations were determined to delineate any positive
or negative associations between the kynurenine path-
way metabolites on the one hand and immune indicators
on the other. The correlations for kynurenine levels, K/T
ratio, quinolinic acid levels and nicotinamide levels with
markers of immune activity are given in Table 4. Table 5
represents the comparison of neopterin levels between
the present study and that of developed countries at
corresponding levels of immune deficiency (CD4 counts).
Figure 3 illustrates the relationship between nicotinamide
and quinolinic acid for the HAART and HAART-naive

group.

Discussion

The study examined the effects of activities in the kynur-
enine pathway on the levels of tryptophan, kynurenine
and quinolinic acid, as well as on de novo synthesis of
nicotinamide in a low income HIV/AIDS population
from the Gauteng Province of South Africa. The findings
are compared to that of HIV/AIDS patients from popu-
lations in developed countries.

The total patient group was severely tryptophan de-
pleted compared to the controls (24.36 +4.14 pmol/l
vs. 43.57 +11.85 umol/l; p<0.0001) and the degree
of tryptophan depletion correlated with the degree
of immune deficiency (tryptophan vs. CD4: r=0.341;
p=0.004). The tryptophan levels in patients on anti-
retroviral treatment were significantly higher than those
not yet on treatment (HAART 2513 +3.80 pmol/l vs.
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Table 2 Comparison of the results between the patient groups and the control group

Total Patients HAART (H) HAART-Naive (N)  Controls (C)  p-value (H vs. N)  p-value (H vs. C)  p-value (N vs. C)

n 105 75 30 60 - - -
Tryptophan (umol/I) 2436+4.14 2513 +3.80 2204 +432 4357+1185 0033 <0.001 <0.001
Kynurenine (umol/l) 321+133 308+ 1.28 358+ 142 2.14+045 0.144 <0.005 <0.001
Quinolinate (umol/l) 446232 403+204 577 £2.65 0.25+0.06 0.072 <0.001 <0.001
Nicotinamide (umol/l)  14.25+ 947 1331 +9.65 1693 £ 861 1292+369  0.108 0.773 0.046
K/T ratio (UM/mM) 136.03+6545  12969+6536 15807 +£62.51 5218+1695 0.095 <0.001 <0.001
Neopterin (nmol/l) 4557 £41.82 35.51+35.70 66.63 +£40.73 823£5.71 <0.001 <0.001 <0.001
IFN-y (pg/ml) 44.00 + 2255 4143 +14.14 53.68 + 34.39 2485+29 0017 <0.001 <0.001
IL-6 (pg/ml) 11.16 + 14.95 956+ 1254 15.04+19.34 069+ 1.62 0.010 0.035 0.001
CD4 (cells/ul) 25992 +19532 296.21 £19550 170.05+167.26 - 0.003 - -

Results expressed as mean + SD

HAART-naive 22.04 +4.32 pmol/l; p =0.03). Tryptophan
levels were markedly lower in the population of this study
than in HIV/AIDS patients from developed countries
(Table 3).

The initial step was to examine the degree of oxidation
of tryptophan to kynurenine in the first part of the
kynurenine pathway as a possible contributor to the
markedly lower tryptophan levels seen in this population
than in HIV/AIDS patients from developed countries.

Oxidation of tryptophan to kynurenine

In the first segment of the kynurenine pathway, trypto-
phan is converted to kynurenine under influence of the
rate limiting enzyme IDO [2]. The results of this study
showed that, despite significantly lower tryptophan levels
in the patients than in the controls (24.36 + 4.14 umol/l
vs. 43.57 £11.85 umol/l; p <0.001), kynurenine levels
were significantly higher in the patients (3.21 +£1.33 vs.
2.14+0.45 pmol/l; p <0.001). Although higher kynure-
nine levels were seen in the HAART-naive group than
the HAART group, the difference was not statistically
significant (kynurenine: 3.58 + 1.42 vs. 3.08 + 1.28 pmol/l;
p =0.144). The finding of higher kynurenine despite lower
tryptophan levels is in line with the fact that the activity of

the IDO enzyme is, in contrast to TDO, not substrate
dependent. The kynurenine/tryptophan (K/T) ratio is
generally used as an indication of the activity of IDO
[3, 4, 12, 15]. The K/T ratios were significantly higher
(<0.001) in the patients than in the control group.
The association between inflammatory activity and
IDO activity was subsequently investigated. When the
K/T ratios were compared to the levels of neopterin, a
marker of inflammatory activity, and to that of the pro-
inflammatory cytokine IL-6, significant positive correla-
tions were found, both between the K/T ratios and
neopterin (r=0.514; p <0.0001) and between the K/T
ratio and IL-6 (r=0.354; p =0.00071). This is in agree-
ment with the view of pro-inflammatory activity being
the main stimulus for the conversion of tryptophan to
kynurenine [3, 4, 7, 9], in other words the major stimu-
lus for IDO activation. Perhaps of more importance is
the significant positive correlation found between the
K/T ratios and the levels of IFN-y (r = 0.344; p = 0.001),
the pro-inflammatory cytokine considered to be the
primary IDO inducer (3, 4].

When the values of our patient group were compared
to values obtained for HIV/AIDS patients from developed
countries, the IDO activities, as indicated by the K/T
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Table 3 Studies in which metabolites of the kynurenine pathway have been assessed in HIV patients
Tryptophan  Kynurenine K/T ratio Quinolinic “Niacin, nico- tinic acid or  IFN-y (pg/ml)
(umol/l) (umol/l) Acid (umol/l) Pnicotinamide (umol/l)

Sub-Saharan Countries

Present Study,South Africa Patients 2436+4.14 321+133 13603+6545 446+232 1425+947 4446 + 2246
Controls 4357+11.85 2.14+045 5218+1695 025+0058 £1292+3.69 24.85+2.96
p-value  <0.0001 0.0001 <0.001 <0.0001 0.198 <0.0001

Byakwaga et al. 2014 [20], Uganda Patients 18 2157 131 Not done Not done Not done
Controls  Not done Not done  Not done Not done Not done Not done

Martinez et al. 2014 [21], Uganda Patients 18.17 ~2.22 122.2 Not done Not done Not done
Controls  Not done Not done  Not done Not done Not done Not done

Developed Countries

Fuchs et al. 1991 [11], Austria Patients 570£28 345+£014 - Not done Not done 259+ 7 (U/I)
Controls 91.0+6.63 231+023 - Not done Not done 23.5 (U/N)
p-value <001 <0.01 - Not done Not done <0.01

Huengsberg et al. 1998 [12], Austria  Patients  50.1 2.55 50.5 Not done Not done Not done
Controls  56.3 1.98 34.9 Not done Not done Not done
p-value  <0.01 <0.001 <0.001 - - -

Look et al. 1998 [13], Germany Patients 44.6 4. 1082 0.848 Not done Not done
Controls  52.6 27 514 0.303 Not done Not done
p-value 0.14 0.002 0.002 0.001 - -

Zangerle et al. 2002 [14], Austria Patients 44.1+133  301£091 792+603 Not done Not done Not done
Controls 658+128  202+066 30.7+87 Not done Not done Not done
p-value  <0.001 <0.001 <0.001 - - -

Schroeksnadel et al. 2008 [15], Austria  Patients 5140 260 51.15 Not done Not done Not done
Controls  Not done Not done  Not done Not done Not done Not done

Heyes et al. 1998 [29], USA Patients Not done Not done  Not done 16.85+336 Not done Not done

Skurnick et al. 1996 [44], USA Patients Not done Not done  Not done Not done 2439+ 0.89 Not done
Controls  Not done Not done  Not done Not done 374+138 Not done
p-value - - - - 0.0001 -

Heyes et al. 2001 [30], USA Patients Not done Not done  Not done 1.358+0.939 Not done Not done
Controls  Not done Not done  Not done 0416+0.122 Not done Not done

Bogden et al. 1990 [45], USA Patients Not done Not done  Not done Not done 94386+ 244 Not done
Controls Not done Not done  Not done Not done Not done Not done

Results expressed as mean + SD. P-values represent comparisons between patients and control values, where available. The superscripted symbol a denotes that
niacin values were reported. The superscripted symbol b denotes that nicotinamide levels were reported.

Table 4 Correlations of kynurenine, K/T ratio, quinolinic acid and nicotinamide with CD4 counts, neopterin, IL-6 and IFN-y

Kynurenine (umol/l) K/T ratio Quinolinic Acid (umol/1) Nicotinamide (umol/l)
Variable Rho p-value Rho p-value Rho p-value Rho p-value
CD4 count -0.393 0.0008 —-0.366 0.0027 -0.110 0371 —-0.082 0516
Neopterin 0514 <0.0001 0.538 <0.0001 0.309 0.0036 -0.014 0.904
IL-6 0.354 0.0007 0.362 0.0008 0.062 0.566 -0.112 0317
IFN-y 0.344 0.0010 0.366 0.0007 —-0.030 0.781 —0.145 0.192

Spearman Rho correlations for the total patient group; significance at p < 0.05
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Table 5 Neopterin levels in HIV patients from the present study and from populations in developed countries

Total patient groups

At lower CD4 counts At higher CD4 counts

Study NPT @z NPT D4 NPT D4

Present Study 4557 257.97 cells/ul 7048 <200 cells/ul 24.07 >200 cells/ul
Zangerle et al. 2002 [14] 234 112 cells/ul 234 112 cells/ul 80 232 cells/ul
Schroeksnadel et al. 2008 [15], 14.05 404 cells/mm? - - - -

Mildvan et al. 2005 [53], 16.03 75 cells/ml 204 50 cells/ml 99 200 cells/ml
Hanna et al. 2009 [54], - - 244 <200 cells/pl 125 >200 cells/pl
Kurz et al. 2009 [55], 250 204 cells/mm? - - - -

Bogner et al. 1988 [56], - - 29.7 264 cells/ul 144 487 cells/ul

NPT Neopterin (nmol/l). CD4 count units given as cells per unit volume as indicated per publication

ratios, were markedly higher in the patients from our
population (Table 3). However, inflammatory activity was
also much higher at comparable levels of immune defi-
ciency (Table 5). These findings of higher K/T ratios and
higher pro-inflammatory activity in our population com-
pared to populations from developed countries, coupled
to the highly significant positive associations found be-
tween the K/T ratios and inflammatory activity, especially
IFN-y (neopterin: r=0.514; p <0.0001; IL-6: r=0.354;
p =0.0007; IEN-y: r = 0.344; p =0.001), and the negative
associations between IFN-y and tryptophan (r=-0.217;
p =0.036), strongly suggest higher levels of inflamma-
tory activity, leading to a higher rate of tryptophan
oxidation in the kynurenine pathway, to be a major
contributor to the lower tryptophan levels found in the
black, low income, sub-Saharan population of this
study than in HIV/AIDS populations from developed
countries. In view of the reported high incidence of
clinical and/or subclinical infections and malnutrition
in low income sub-Saharan populations [18] and the
fact that malnutrition further stimulates inflammatory
activity [19], findings of a higher inflammatory activity
at comparable CD4 counts comes as no surprise.

The frequency of tuberculosis is one example of infec-
tions that may potentially contribute to higher rates of
inflammatory activity in our HIV/AIDS patients, and
thus to higher rates of tryptophan degradation. In this
study 24 of the 105 patients were diagnosed with tuber-
culosis. However, they were all already on treatment
(isoniazid, pyrazinamide, rifampicin, and ethambutol) for
tuberculosis. Although no significant differences were
found for either tryptophan (p =0.591) or IFN-y levels
(p = 0.432) between the TB-positive and the TB-negative
of the total group, a potential bias was present in the
fact that 14 TB-positive patients were from the HAART
group (19 % of 75), and 10 TB-positive patients were
from the HAART-naive group (33 % of 30). Further
investigation is necessary to assess the influence of
TB-co-infection, preferably including HIV/AIDS TB-
positive patients not yet on treatment for tuberculosis.

Shortly after completion of this study, information
emerged on the first segment of the kynurenine pathway
(tryptophan conversion to kynurenine) in an Ugandan
population (Table 3) [20, 21]. This appears to be the first
data published on the kynurenine pathway in an African
population. The results of the Ugandan project and that
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of the present study are in agreement with regards to
the findings of higher kynurenine levels and K/T ratios
in patients from resource-limited settings than in HIV
populations from developed countries. Inflammatory ac-
tivity was unfortunately not assessed in their study. As
in the Ugandan study, associations were seen in the
present study for CD4 counts with kynurenine levels
and with the K/T ratios (Table 4). This could perhaps be
seen, as was suggested by the authors of the Ugandan
paper [20], as an association between kynurenine path-
way activity and immune deficiency or disease progres-
sion and mortality. However, it is more likely a reflection
of the association between the higher inflammatory ac-
tivity with a decline in immune deficiency (neopterin vs.
CD4 count: r=-0.558; p <0.0001; II-6 vs. CD4 count:
r=-0.435; p=0.00012; IFN-y vs. CD4: r=-0.271; p =
0.02), coupled to the influence of inflammatory activity on
IDO activity (Table 4). Such negative associations between
inflammatory activity and CD4 counts and positive as-
sociations between inflammatory activity and disease
progression have been demonstrated by us in a previ-
ous paper [22].

Kynurenine to quinolinic acid
Downstream from kynurenine in the kynurenine path-
way, quinolinic acid is synthesized from ACMS (Fig. 1).
The largest part of ACMS is metabolized to a-
aminomuconate-e-semialdehyde under influence of the
rate-limiting enzyme ACMSD. ACMS, not converted to
a-aminomuconate-e-semialdehyde, is non-enzymatically
converted to quinolinic acid [5-7]. ACMSD thus deter-
mines the amount of ACMS available for conversion to
quinolinic acid and decreased ACMSD activity could
therefore increase ACMS turnover towards quinolinic
acid [6, 23, 24]. The activity of ACMSD is known to be
down-regulated by diets low in protein and low in poly-
unsaturated fatty acids [24, 25]. ACMSD activity is also
inhibited by dietary phthalic acid diesters, leading to an
increase in quinolinic acid synthesis and in the conver-
sion ratio of tryptophan to niacin [25, 26]. Various
enteric-coated medications are said to contain phtha-
lates, including the antiretroviral Didanosine [27].

Quinolinic acid is found in micromolar concentrations
in the plasma and reported normal values are usually in
the range of 0.2 to 0.5 pmol/I [13, 28, 29, 30]. However,
it is known to increase with several immune-associated
disorders and quinolinic acid levels several times normal
have been reported in cerebrospinal fluid (CSF) and
plasma in neurological conditions such as Alzheimer’s
disease, Parkinson’s disease and other neurocognitive
and psychiatric disorders [2, 30, 31, 32].

In the present study plasma quinolinic acid levels for
the control group corresponded to published values for
normal. However, quinolinic acid levels were significantly
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higher for the total patient group than for the controls
(4.46 £ 2.32 vs. 0.25 + 0.058 pmol/l; p < 0.0001). The dif-
ference in quinolinic acid levels between the HAART
(4.03+£2.04 pmol/l) and the HAART-naive groups
(5.77 £ 2.65 pumol/l) bordered on significance (p = 0.072).
In line with previous studies [13, 30], the present study
thus showed lower quinolinic acid levels in patients on
HAART than in HAART-naive patients. When quinoli-
nic acid levels were compared to markers of pro-inflam-
matory activity, significant positive correlations were seen
with neopterin for the total patient group (r=0.309; p =
0.0036) and for the HAART group (r=0.249; p =0.041).
The HAART-induced decline in quinolinic acid pro-
duction was most probably related to the partial
correction of the pro-inflammatory/anti-inflammatory
balance brought about by anti-retroviral medication
(HAART-naive neopterin vs. HAART neopterin: 66.63 +
40.73 vs. 35.51 + 35.70 nmol/l). As for kynurenine, quino-
linic acid levels increased with increased immune defi-
ciency. Patients with CD4 counts below 200 cells/pl
presented with higher quinolinic acid levels as compared
to patients with CD4 counts above 200 cells/ul (5.13 +
2.67 umol/l vs. 3.98 + 2.02 umol/l; p = 0.052). This increase
in quinolinic acid levels with increased immune deficiency
was most likely the result of the increased inflammatory
activity that accompanied immune deficiency.

Comparing the quinolinic acid plasma values of our
study to values obtained for HIV/AIDS patients else-
where proved to be difficult. It would appear that only a
few groups in developed countries studied plasma qui-
nolinic acid as part of the kynurenine pathway in HIV
patients, whereas no such study could be found on pa-
tients from sub-Saharan Africa (Table 3). In the present
study quinolinic acid levels were 21.1 fold higher in the
HAART-naive patients and 16.1 fold higher in the
HAART patients than in the controls. The increments
above control values were much higher than that found
by Heyes et al. 2001 [20], and by Look et al. 2000 [13],
in populations from developed countries (Table 3).

Several factors probably contributed to the high levels
of quinolinic acid synthesis seen in our HIV/AIDS popu-
lation. Firstly, ACMS, the precursor of quinolinic acid,
levels are dependent on the activities in the kynurenine
pathway upstream from quinolinic acid, especially the
levels of kynurenine produced by the oxidative catabol-
ism of tryptophan [24]. The high levels of kynurenine
found in this study were discussed in a previous para-
graph. Secondly, in addition to the increase in the up-
stream substrate levels for ACMS synthesis, there might
have been a shift in the metabolism of ACMS in favour
of the non-enzymatic conversion to quinolinic acid.
Such a shift, previously ascribed to an immune-induced
suppression of ACMSD expression, has previously been
reported in primary cultures of human macrophages
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stimulated by IFN-y [33]. Thirdly, the fact that ACMSD
activity can also be down-regulated by diets low in pro-
teins and polyunsaturated fats [9, 24, 25] could have been
a contributing factor in the population of the present study
where, in the majority of patients, maize represented the
staple food. Although the phthalate-containing enteric-
coated antiretroviral medication Didanosine [27], which is
on code at the hospital attended by the HIV/AIDS popula-
tion of this study, can suppress ACMSD activity, it is not
as a rule prescribed and can thus in most patients be ruled
out as a contributor to the high quinolinic acid levels.

Support for the occurrence of quinolinic acid at levels
as high as those found in the present study were derived
from studies on neurocognitive function in HIV/AIDS
patients. Quinolinic acid has previously been implicated
in AIDS dementia and a number of studies measured
quinolinic acid in cerebrospinal fluid of HIV/AIDS patients
[34—-35]. A few of these studies measured it in CSF, as well
as in plasma [36, 37]. At least one such study [37] found
plasma quinolinic acid levels (4.041 + 0.892 uM) compar-
able to that of the present study (4.46 + 2.32 pmol/l). From
papers where quinolinic acid were measured in both
plasma and CSF it would appear that a correlation exists
between plasma and CSF levels, but that plasma quinolinic
acid levels are up to 10 times higher than in CSF [36]. As
shown by the present study for plasma (QA vs. neopterin:
r=0.309; p=0.0036), quinolinic acid levels in CSF were
reported to correlate with immune activity as indicated by
neopterin levels [22, 36, 37].

Serious neurological/psychiatric effects such as in in-
flammatory brain disorders and in the AIDS dementia
complex have been reported with CSF quinolinic acid
levels in the range of 0.5 to 1.2 pmol/l [31, 32, 30]. In
the present study plasma quinolinic acid levels ranged
between 1.56 and 12.33 pumol/l. In view of the latter, the
high quinolinic acid levels of this study, primarily resulting
from excessive inflammatory activity, do not augur well
for the neuropsychiatric wellness of HIV/AIDS patients
from the population of the present study.

Quinolinic acid to nicotinamide

The term niacin is the generic name for the two com-
pounds, nicotinic acid and nicotinamide, the major pre-
cursors for NAD [38, 39]. Nicotinamide is said to be the
predominant and biologically active form of niacin in
circulation, with nicotinic acid, after absorption, being
converted to nicotinamide by hepatocytes [38, 39]. Diet-
derived nicotinamide, as well as nicotinic acid can be
metabolised to NAD, although in slightly different path-
ways [9, 45]. Although niacin is generally described as a
vitamin, niacin and NAD can also be synthesized in the
kynurenine pathway. Tryptophan is the primary sub-
strate for this de novo synthesis with quinolinic acid as
the direct precursor of niacin and NAD (Fig. 1) [6, 39].
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While it has in the past been assumed that only about
2 % of niacin is derived from de novo synthesis, there are
indications that the contribution is of much greater im-
portance [6]. Synthesis from tryptophan has even been
suggested as the primary source of NAD and niacin [9].

Several papers refer to a niacin/NAD deficiency in
HIV/AIDS patients [7, 38, 40—42]. However, no clinical
study has actually proved niacin deficiency in HIV pa-
tients without pellagra. Instead of assessment of plasma
niacin or nicotinamide levels, deficiency is generally as-
sumed by the appearance of symptoms of pellagra and
occasionally by the determination of metabolites of nia-
cin excreted in the urine [41]. However, the incidence of
pellagra in HIV/AIDS is probably overestimated. Pitche
P et al, 1999, for instance, found the incidence of pel-
lagra and pellagra-like erythema in HIV patients in Togo
not to be higher than that in the general population
[43]. Two groups seem to have actually measured the
plasma or serum levels of niacin in HIV patients, one in
1990 and the other in 1996 [44, 45]. Both studies re-
ported niacin levels to be higher in their HIV positive
groups than in their controls.

The patient population of the present study were gen-
erally of low income or unemployed with some families
surviving on a single grant or pension. Maize meal,
known to be an inadequate source of niacin [46, 47] was
the staple diet of the population. It would thus not be
unreasonable to expect niacin levels to have been sub-
normal. A number of patients were, however, prescribed
B complex supplementation comprising 40 mg nicotina-
mide per day (two B.CO tablets/day; 20 mg nicotinamide
per tablet; European RDA <700 mg/day, based on side
effects). The international guideline for daily niacin sup-
plementation, established by the Food and Nutrition
Board, ranges from 14 to 18 mg with an upper intake
level of 35 mg [48].

In the present study nicotinamide levels were numerical
higher for the total patient (HAART plus HAART-naive)
group than for the controls, but this difference was not
statistically significant (14.25 + 9.47 vs. 12.92 + 3.69 pmol/l;
p =0.198). However, although the difference between the
HAART and HAART-naive patients were not of statistical
significance (13.31 £ 9.65 vs. 16.93 + 8.61 umol/l; p = 0.108),
nicotinamide levels were significantly higher in the
HAART-naive patients compared to the controls (16.93 +
8.61 vs. 12.92 + 3.69 pmol/l; p = 0.046). None of the patients
showed signs of pellagra on clinical examination.

Despite the fact that niacin supplementation was only
prescribed for some of the patients and despite strong
reservations about patient compliance (personal com-
munication), it must be assumed that supplementation
contributed to the nicotinamide levels in at least some
of the patients studied. The question does, however,
arise whether de novo synthesis made a significant
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compensatory contribution for the dietary deficiencies,
as well as the absorption problems and increased NAD
utilisation, previously reported for HIV/AIDS patients
[49, 50]. Plasma nicotinamide levels were therefore cor-
related to that of the precursor, quinolinic acid. In Fig. 3
the relationship between plasma nicotinamide and qui-
nolinic acid is shown. Nicotinamide levels increased with
increases in quinolinic acid concentration up to a plasma
level of 5 pmol/l in HAART patients and up to about
8 pmol/l in HAART-naive patients after which hardly
any further increases occurred. Significant positive cor-
relations were seen between nicotinamide and quinolinic
acid concentrations for the HAART patients up to a
plasma level of 5 pmol/l (r=0.545; p=0.0001) and for
the HAART-naive patients up to 8 pmol/l (r=0.882;
p <0.0001). These significant positive correlations sug-
gest a substantial portion of the circulating nicotinamide
to be derived from de novo synthesis from quinolinic acid.

Quinolinate phosphoribosyl transferase (QPRT) is the
rate limiting enzyme in the synthesis of NAD, nicotina-
mide and nicotinic acid from quinolinic acid. Although
QPRT activity is known to increase in response to in-
creases in the levels of quinolinic acid [51], it is also
known that conversion of quinolinic acid to NAD and
nicotinamide is, in the human central nervous system,
limited by saturation of QPRT [52]. Neuronal QPRT
activity is saturated when quinolinic acid concentration
exceeds 500 nM (0.5umol/l), and it is suggested that this
may play a role in the toxic accumulation of quinolinic
acid [52]. It was therefore of interest to know whether
QPRT saturation also limits the conversion outside the
central nervous system. From the levelling-off in niacin
levels seen in Fig. 3 it would appear that QPRT becomes
saturated at plasma levels around 5 pumol/l in patients
on HAART and just above 8 pmol/l in HAART-naive
patients. Of interest is the fact that, according to the
literature, quinolinic acid are on average up to 10 times
higher in plasma than in CSF [36], which would be in
line with the observation that nicotinamide levels started
to level off in plasma at quinolinic acid levels 10 times
higher than that reported for CSF.

Conclusions
This is the first study to assess plasma tryptophan levels,
kynurenine levels, IDO activity, quinolinic acid levels
and nicotinamide levels, as well as pro-inflammatory sta-
tus and IFN-y levels, simultaneously in one HIV/AIDS
population. Patients of the present study were all from a
black, low income sub-Saharan population where malnu-
trition and higher rates of clinical and subclinical infec-
tions are bound to have had an influence.

The results of this study showed that higher levels of
inflammatory activity, at comparable levels of immune
deficiency, contributed to a higher degree of tryptophan
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depletion in this low income sub-Saharan population
than in populations from developed countries. This, as
shown in the results, contributed to higher levels of
kynurenine pathway metabolites such as kynurenine and
quinolinic acid. Largely due to the high inflammatory
activity, but ostensibly also due to the effects of dietary
insufficiencies on ACMSD activity, quinolinic acid levels
were above the saturation level for QPRT activity and,
for several patients, within the range associated with
the development of HIV/AIDS-associated neurocognitive
dysfunction. Associations between quinolinic acid and
nicotinamide levels suggested a sizeable contribution of
the kynurenine pathway to the maintenance of nicotina-
mide, and by implication NAD, in patients with HIV/
AIDS. Antiretroviral treatment partially corrected distur-
bances in the kynurenine pathway.
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