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MiRNA-132 regulates the development of
osteoarthritis in correlation with the
modulation of PTEN/PI3K/AKT signaling
Wei Zhang†, Chengfang Hu†, Chi Zhang, Congfeng Luo, Biao Zhong and Xiaowei Yu*

Abstract

Background: Osteoarthritis (OA) is a commonly known prevalent joint disease, with limited therapeutic methods.
This study aimed to investigate the functions of miRNA-132 (miR-132) in the modulation of PTEN/PI3K/AKT
signaling pathway in the development and progression of osteoarthritis.

Methods: Eight male osteoarthritic patients and eight healthy males were recruited. Male Sprague Dawley (SD) rats
were used for cellular experiments. QRT-PCR was performed to detect the expression levels of miR-132, PTEN, PI3K
and AKT. MTT assay and apoptosis assay were carried out to measure the cell proliferation rate and cell apoptosis
rate, respectively. Western blotting was employed to detect the protein expression of related RNAs and
inflammatory factors.

Results: In osteoarthritic patients, the expression level of miR-132 was decreased, compared with that in the
normal group. Over-expression of miR-132 elevated cell proliferation and decreased apoptosis of chondrocytes.
Down-regulation of miR-132 decreased cell proliferation and induced apoptosis in chondrocytes. In addition, down-
regulation of miR-132 promoted the expression of Bax protein and activated caspase-3/9, increased inflammation
divisors. PTEN inhibitor antagonized the destructive effect of the miR-132 inhibitor on cell proliferation of
chondrocytes. PI3K inhibitor increased the destructive effect of the miR-132 inhibitor on osteoarthritis.

Conclusion: In conclusion, miR-132 is an important regulator of osteoarthritis in chondrocytes through the PTEN/
PI3K/AKT signaling pathway.
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Background
Osteoarthritis (OA) is a commonly known prevalent
joint disease accompanied by heavy pain, function
loss, and even disabilities in adults, especially in eld-
erly people [1–3]. OA is usually resulted from obesity,
major injury, as well as heavy labor and frequent knee
bending [4–6]. Although radiographic detection and
physical examinations are available, the diagnostics

and prognostics of OA are still unsatisfied [7]. Due to
the complexity and difficulty with early diagnostics,
there are no effective treatments to prevent or man-
age the development of OA [8, 9]. The pathophysi-
ology and pathogenesis of OA remain unclear.
Therefore, discoveries of more reliable biomarkers
and therapeutic agents are urgently needed.
MiRNAs form a big group of small non-coding RNAs

with 19–23 nucleotides, which could bind to the 3′-
UTR region of corresponding messenger RNAs
(mRNAs) to suppress their protein expression [10–12].
MiRNAs have been observed to implicate in various
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cellular processes, such as cell apoptosis, lipid metabo-
lisms, malignant transformations and cell differentiation
[13–15]. For osteoarthritis, accumulative evidence
suggests that many types of miRNAs could alleviate pro-
gressions of osteoarthritis, such as miR-140 [16], miR-
130a [17], miR-16-5p [18] and so on [19–21]. One study
proposed that miR-130a acted as a regulator in the ex-
pression of TNF-α in human chondrocytes and miR-
130a was identified as a potential inhibitor for OA [17].
MiR-132 has been demonstrated to have regulatory ef-
fects in antiviral innate immunity [22] and pancreatic
cancer [23]. It was observed that the expression levels of
miR-132 were decreased in osteoarthritic patients com-
pared with that in healthy controls [24]. Another study
also reported the potential of miR-132 in regulating the
progression of osteoarthritis [24].
The PTEN/PI3K/AKT signaling pathway was reported

to regulate the signaling of various biological processes
such as cell apoptosis, proliferation and growth [25–27].
PTEN (phosphatase and tensin homolog deleted on
chromosome ten) is a dual protein/lipid phosphatase,
which regulated the downstream molecules of PI3K/
AKT pathway [28]. The activation of the PI3K/AKT
pathway could help prevent cell apoptosis and promote
cell proliferation [29]. PTEN/PI3K/AKT pathway was
demonstrated to impact the pathological development of
glioma tumor [26] and the viability of prostate cancer
stem-like cells [30]. More importantly, it was well estab-
lished that the PTEN/PI3K/AKT pathway was targeted
by miR-214 and affected osteoclast-genesis [28]. In this
study, we aimed to investigate the role of miR-132, and
the interactions between miR-132 and the PTEN/PI3K/
AKT signaling pathway in the progression of osteoarth-
ritis. Our findings may provide novel insights into the
prevention or therapeutic approaches of osteoarthritis.

Methods
Patients
Eight male osteoarthritic patients with an average age of
52.46 ± 5.18 years old and eight healthy males with an
average age of 54.72 ± 6.05 years old were recruited from
the Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital during total knee replacement surgeries. Periph-
eral blood (10mL) was taken and centrifuged at 2000 g at
4 °C for 10min. The serum was stored at − 80 °C.

Cell isolation and treatment
Male Sprague Dawley (SD) rats weighted from 220 to 250 g
and aged 8–9 weeks old were purchased from Shanghai
Slick Experimental Animal Co., Ltd., China. Rats were
maintained at 22.5 °C with 58% humidity. The rats were
anesthetized by sodium pentobarbital (30mg/kg body
weight, Sigma Chemical Co., St. Louis, MO, USA) intraper-
itoneally and euthanized by cervical dislocation. The

cartilage tissues were taken, washed, sterilized and sliced.
Tissues were digested by 0.25% Trypsin-EDTA for 30min
and collagenase II (Invitrogen, USA) for 4 h on the ice, and
filtered by the 200-mesh sieve. Chondrocytes were cultured
with DMEM with 4.5 g/l glucose, 10% FBS, and 1% penicil-
lin/streptomycin at 37 °C with 5% CO2. The miR-132
mimics (5′-UAACAGUCUACAGCCAUGGUCG-3′),
negative controls (NC) (5′-UCACAACCUCCUAGAAAG
AGUAGA-3′), miR-132 inhibitor (5′-CGACCATGGC
TGTAGACTGTTA-3′) and inhibitor NC (5′-GTGTAA
CACGTCTATACGCCCA-3′) were obtained from Sangon
Biotech Co., Ltd., Shanghai, China. Lipofectamine 2000 re-
agent (Invitrogen, USA) was used for transfection. VO-
Ohpic trihydrate (10 nM, PTEN inhibitor) or wortmannin
(2 nM, PI3K inhibitor) were added to cells for 72 h.

qRT-PCR
Total RNAs were extracted from serum and cells by
TRIzol reagent. RNA samples were treated by DNase I
(Invitrogen, USA) to remove genomic DNAs. Super-
script II reverse transcriptase (Invitrogen, USA) and
oligo (dT)20 were used to reverse transcribe RNAs into
cDNAs. RT-PCR was performed in a StepOnePlus Real-
time PCR system (Applied Biosystems, USA). PCR was
performed at 95 °C for ten min, 40 cycles of 94 °C for 30
s, 55 °C for 30 s, 60 °C for 10 s, and 72 °C for 30 s. was
used. The expression levels of miR-132 were determined
with U6 as the internal reference. The primers used were
listed as following: 5′-TGGATCCCCCCCAGTCCC
CGTCCCTCAG-3′ (forward) and 5′-TGAATTCGGA
TACCTTGGCCGGGAGGAC-3′ (reverse) for miR-132;
5′-CTCGCTTCGGCAGCACA-3′ (forward) and 5′-
AACGCTTCAGAATTTGCGT-3′ (reverse) for U6.

Cell viability assays
After transfection, 10 μl 3-(4, 5-Dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) (5 mg/ml; Invi-
trogen) was pipetted and incubated at 37 °C for 4 h.
After removing the culture medium, dimethyl
sulphoxide (150 μl; Invitrogen, USA) was added to each
well and incubated at room temperature for 3 h in the
dark. The absorbance at 570 nm was measured.

Apoptosis assay and ELISA test
After inhibitor treatment, cells were washed, resuspend
and stained by 5 μl Annexin V-FITC and 5 μl propidium
iodide (PI) (BD Biosciences) at 25 °C for 15min in the
dark. Flow cytometry (FACSCanto™) was used to measure
apoptosis rate, which was analyzed by CellQuest Pro (BD
Biosciences). Supernatants were collected to detect IL-1β,
IL-6 and IL-18 via ELISA kit from Jiancheng Biology,
China. Multiskan Go Microplate Spectrophotometer
(Thermo Fisher Scientific) measured the absorbance at
450 nm.
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Western blotting
After transfection, cells were lysed and centrifuged at
12,000 rpm at 4 °C for 10 min. Proteins were resolved
on SDS-PAGE, transferred to PVDF membranes
(Millipore, USA), and blocked by 5% non-fat milk.
Membranes were then incubated with primary anti-
bodies against: Bax (1:500, 2774; CST, USA), cleaved
Caspase-3 (1:500, 9661; CST, USA), cleaved Caspase-9
(1:500, 20,750; CST, USA), PTEN (1:500, 9552; CST,
USA), PI3K (1:500, 4255; CST, USA), p-AKT (1:500,
4060; CST, USA) and GAPDH (1:2000, 5174; CST,
USA) at 4 °C for overnight. After wash, HRP-linked
anti-rabbit secondary antibodies (1:5000, 7074; CST,
USA) were incubated with the membrane. Protein sig-
nals were detected by chemiluminescence kit and ana-
lyzed by AlphaEaseFC 4.0.

Statistical analysis
Statistical analysis was conducted by SPSS 17.0. Data
were presented as mean ± SD. T-test was utilized for
comparisons between two groups. All experiments were
repeated for 3 times. The one-way ANOVA and Bonfer-
roni’s post-hoc tests were carried out to explore the dif-
ferences among multiple groups. P < 0.05 was considered
to be significant difference.

Results
Effects of miR-132 on cell proliferation and apoptosis of
chondrocytes
To identify the function of miRNA-132 in the devel-
opment and progression of osteoarthritis, the expres-
sion of miRNA-132 was evaluated by qRT-PCR. As
shown in Fig. 1A, the expression levels of miR-132

Fig. 1 Effects of miR-132 on cell proliferation and apoptosis of chondrocytes. a The expression of miR-132 in osteoarthritic patients. b qRT-PCR
for relative expression of miR-132 in chondrocytes after transfection of miR-132 mimics. c Cell proliferation of chondrocytes after transfection of
miR-132 mimics. d Chondrocytes cell apoptosis rate of after transfection of miR-132 mimics. e qRT-PCR for the expression of miR-132 in
chondrocytes after transfection of miR-132 inhibitor. f Cell proliferation of chondrocytes after transfection of miR-132 inhibitor. g Cell apoptosis of
chondrocytes after transfection of miR-132 inhibitor. NC: negative control. N = 4 per group. *P < 0.05, **P < 0.01
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were down-regulated in the serum of OA patients,
compared with that in the normal group (P < 0.01). In
addition, miR-132 mimics effectively elevated the expres-
sion of miR-132 (Fig. 1B), suggesting the successful trans-
fection of miR-132. Over-expression of miR-132 increased
cell proliferation (Fig. 1C) and inhibited cell apoptosis of
chondrocytes (Fig. 1D) (P < 0.05, P < 0.01). As shown in
Fig. 1E, miR-132-inhibitor suppressed the expression
of miR-132, suggesting the successful transfection of
miR-132 inhibitor (P < 0.01). Furthermore, transfection
of miR-132 inhibitor also repressed cell proliferation
and induced chondrocytes cell apoptosis (P < 0.01)
(Fig. 1F and G).

Effects of miR-132 inhibitor on the expression of Bax and
caspase-3/9 protein and inflammation divisors in
chondrocytes
Western blotting was performed to examine the effects of
miR-132 inhibitor on the the expression of inflammation
related proteins. It showed that down-regulation of miR-
132 markedly promoted the expression of Bax and caspase-
3/9 in chondrocytes (P < 0.01) (Fig. 2A-D). Also, the expres-
sion of BAX, Bcl-2, cleaved caspase-3 and cleaved caspase-

9 after adding miR-132 mimics to chondrocytes presented
similar trend (Fig. 2E-H). In addition, the expression levels
of IL-1β, IL-6 and IL-18 in chondrocytes were significantly
increased by down-regulation of miR-132, but not in the
negative control group (P < 0.01) (Fig. 2I-K). These results
indicated that downregulation of miR-132 could enhance
the expression of inflammation related protein.

Down-regulation of miR-132 upregulated the expression
of PTEN in chondrocytes
To further investigate the role of the PTEN/PI3K/Akt
signaling pathway on the regulation of microRNA-132 in
osteoarthritis, miR-132 was knocked down. As shown in
Fig. 3A-D, down-regulation of miR-132 greatly elevated
the expression of PTEN, and inhibited the expression of
PI3K and p-AKT in chondrocytes when compared with
that in the negative control (P < 0.01).

PTEN inhibitor antagonized the destructive effect of miR-
132 inhibitor on PTEN/PI3K/AKT signaling pathway, cell
proliferation, and inflammation divisors of chondrocytes
VO-Ohpic trihydrate, PTEN inhibitor, was used to inhibit
the expression of PTEN in chondrocytes after

Fig. 2 Effects of miR-132 inhibitor on Bax and caspase-3/9 protein expression and inflammation divisors in chondrocytes. a Representative
western blot bands of Bax, cleaved Caspase-9, cleaved Caspase-3, and GAPDH. b Quantitative densitometry of the expression of Bax protein after
transfection of inhibitor NC and miR-132-inhibitor. c Quantitative densitometry of the expression of Caspase-9 protein. d Quantitative
densitometry of the expression of Caspase-3 protein. e IL-1β levels in cells transfected with inhibitor NC and miR-132-inhibitor. f IL-6 levels in cells
transfected with inhibitor NC and miR-132-inhibitor. g IL-18 levels in cells transfected with inhibitor NC and miR-132-inhibitor. Pg/mg means
contents of IL-1β/IL-6/ IL-18 per mg of proteins. **P < 0.01
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downregulation of microRNA-132. It showed that
PTEN inhibitor significantly inhibited the expression
of PTEN, and resulted in upregulated expression of
PI3K and p-AKT after down-regulation of miR-132
(P < 0.01) (Fig. 4A-D). It also showed that PTEN in-
hibitor greatly enhanced cell proliferation, inhibited
cell apoptosis, and suppressed the expression of Bax
and caspase-3/9 in chondrocytes after down-
regulation of miR-132 (P < 0.05, P < 0.01) (Fig. 4E-J).
As shown in Fig. 4K-M, PTEN inhibitor markedly
decreased the expression of IL-1β, IL-6 and IL-18
in chondrocytes after down-regulation of miR-132
(P < 0.05, P < 0.01).

Wortmannin increased the destructive effect of miR-132
inhibitor on PI3K/AKT signaling pathway, cell
proliferation, and inflammation divisors of chondrocytes
To further explore the molecular mechanisms under-
lying the suppressive effect of miR-132 on osteoarth-
ritis, PI3K inhibitor was used to assess its function
and mechanisms. As shown in Fig. 5A-C, wortman-
nin, PI3K inhibitor, greatly inhibited the expression of

PI3K and p-AKT in chondrocytes after the down-
regulation of miR-132 (P < 0.01). In addition, the sup-
pression of PI3K significantly reduced cell prolifera-
tion, elevated cell apoptosis, and induced Bax and
caspase-3/9 protein expression in chondrocytes after
the down-regulation of miR-132 (P < 0.05, P < 0.01)
(Fig. 5D-I). The suppression of PI3K obviously in-
creased inflammation divisors in chondrocytes after
down-regulation of miR-132 (P < 0.05, P < 0.01) (Fig.
5J-L). Overall, the PI3K inhibitor enhanced the func-
tions of miR-132 on inflammation in osteoarthritis.

Discussion
Osteoarthritis is a painful disease of articulating
joints, with increasing prevalence all over the world.
The initiation and progression of OA involve complex
multi-factorial results from genetic mutations, mech-
anical stresses, and environmental factors. As the
early diagnostics and treatment for OA are not ideal,
searching for more sensitive biomarkers and reliable
therapeutic targets are quite necessary. In this study,
we evaluated the role of miR-132 and its interactions

Fig. 3 Down-regulation of miR-132 activated PTEN/PI3K/AKT signaling pathway in chondrocytes. a Representative western blot bands for protein
expression of PTEN, PI3K, p-AKT, and GAPDH. b The ratio in the expression of PTEN versus GAPDH. c Ratio in the expression of PI3K versus GAPD
H. d Ratio in the expression of p-AKT versus GAPDH. **P < 0.01
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Fig. 4 (See legend on next page.)
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with PTEN/PI3K/AKT signaling pathway in the regu-
lation of OA.
Studies have revealed that miRNAs are involved in the

regulation/mediation of in cell viability, proliferation
[31]. For instance, the silencing of miR-34a was observed
to inhibit chondrocyte cell apoptosis in a rat osteoarth-
ritis model in vitro [32]. In our study, we found that the
expression levels of miR-132 were down-regulated, com-
pared with the normal group. Over-expression of miR-
132 elevated cell proliferation and inhibited cell apop-
tosis of chondrocytes, while down-regulation of miR-132
also repressed cell proliferation and induced chondro-
cytes cell apoptosis. Our studies confirmed that miR-132
correlated positively with cell proliferation, and negative
with cell apoptosis.
It was observed that some miRNAs could regulate the

expression of inflammation factors in osteoarthritides,
such as miR-146a [33], miR-142-3p [34] and miR-130a
[17]. One study reported that miR-146a regulated pain-
associated inflammatory factors in human knee joint
synoviocytes [33]. Our Western blotting results revealed
that the down-regulation of miR-132 greatly enhanced
the expression of Bax and caspase-3/9, as well as the in-
flammation factors in chondrocytes, comparing to the
negative control group. It was well established that
down-regulation of miR-132 can lower the protein ex-
pression of Bax and caspase-3/9 and inflammation divi-
sors in chondrocytes.
Previous studies have shown that the PTEN/PI3K/

AKT signaling pathways actively participate in the regu-
lation of many kinds of human cancer [25] and
osteoclast-genesis [28]. In addition, the dysregulations of
specific miRNAs could impact the activation or inactiva-
tion of this pathway, including miR-214 [28], miR-21
[35] and miR-519a [36]. To the best of our knowledge,
we are the first to investigate the interactions between
miR-132 and the PTEN/PI3K/AKT pathway in OA. Our
Western blotting results and the ratio analysis strongly
suggest that down-regulation of miR-132 greatly elevates
the expression of PTEN and inhibits the expression of
PI3K and p-AKT in chondrocytes. Also, down-
regulation of miR-132 elevated the expression of PTEN,
while PETN inhibitor resulted in the up-regulation of

PI3K and p-AKT. One explanation could be that miR-
132 diminished PETN, and indirectly activated the
PI3K/AKT signaling pathway. Similar to the effect of
overexpressing miR-132, PTEN inhibitor greatly en-
hanced cell proliferation, inhibited cell apoptosis, and re-
pressed the expression of Bax and caspase-3/9 and
inflammatory factors in chondrocytes. PTEN inhibitor
antagonized the destructive effects from miR-132 inhibi-
tor on PTEN/PI3K/AKT signaling pathway, which is in
agreement with previous studies [28].
Wortmannin, the PI3K inhibitor [37], negatively af-

fected the expression of PI3K, and inactivated the ex-
pression of p-AKT. It was reported that wortmannin
inhibited cell growth and phosphorylation of AKT [38].
Therefore, PI3K inhibitor might pose a negative effect
on cell proliferation through the inactivation of the AKT
pathway. In the present study, suppression of PI3K sig-
nificantly reduced cell proliferation, elevated cell apop-
tosis, and induced the expression of Bax and caspase-3/
9, as well as inflammatory factors in chondrocytes after
the down-regulation of miR-132. Inhibition of PI3K in-
creased the destructive effect of miR-132 inhibitor on
the PI3K/AKT signaling pathway, cell proliferation, and
inflammation divisors of chondrocytes. These results
could further support the role of PI3K/AKT in cell pro-
liferation and apoptosis. However, there are still some
limitations in our study. Due to the degenerative and in-
flammatory nature of OA, it is necessary to explore the
catabolic index like MMP13, collagen II and inflamma-
tion cytokines such as IL-1β、IL-6、TNF-αin in further
studies. On the other hand, it has been reported that
downregulation of miR-132 inhibited the PI3K/Akt sig-
naling and increased inflammation divisors in chondro-
cytes [34, 39]. Depending on the cell type, environment
and stimulation manners, exogenous interventions might
have complex interactions with physiological and patho-
logical processes (apoptosis, inflammation, and etc.) by
involving different molecules/signaling pathways (PI3K/
AKT, NF-κB, and etc.). As a result, they can have differ-
ent effects on cell survival and death. Therefore, it might
be possible that a more complex network is involved in
the regulation of OA by miR-132, which remains to be
further explored.

(See figure on previous page.)
Fig. 4 PTEN inhibitor antagonized the destructive effect of the miR-132 inhibitor on PTEN/PI3K/AKT signaling pathway, cell proliferation, and
inflammation divisors of chondrocytes. a Representative western blot bands of PTEN, PI3K, p-Akt, and GAPDH in control, miR-132 inhibitor and
miR-132 inhibitor +VO-Ohpic trihydrate group. b Quantitative densitometry of the expression of PTEN protein. c Quantitative densitometry of the
expression of PI3K protein. d Quantitative densitometry of the expression of the p-AKT protein. e Cell proliferation of chondrocytes. f Apoptosis of
chondrocytes. g Representative western blot bands of Bax, cleaved Caspase-9, cleaved Caspase-3, and GAPDH. h Quantitative densitometry of the
expression of Bax protein. i Quantitative densitometry of the expression of Caspase-9 protein. j Quantitative densitometry of the expression of
Caspase-3 protein. k IL-1β levels. l IL-6 levels. m IL-18 levels. VO-Ohpic trihydrate is the PTEN inhibitor. **P < 0.01 vs inhibitor NC group; #P < 0.05,
##P < 0.01 vs miR-132 inhibitor group
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Fig. 5 Wortmannin increases the destructive effect of the miR-132 inhibitor on PI3K/AKT signaling pathway, cell proliferation, and inflammation
divisors of chondrocytes. a Representative western blot bands of PI3K, p-Akt, and GAPDH. b Quantitative densitometry of the expression of PI3K
protein. c Quantitative densitometry of the expression of the p-AKT protein. d cell proliferation of chondrocytes. e Apoptosis of chondrocytes. f
Representative western blot bands of Bax, cleaved Caspase-9, cleaved Caspase-3, and GAPDH. g Quantitative densitometry of the expression of
Bax protein. h Quantitative densitometry of the expression of Caspase-9 protein. i Quantitative densitometry of the expression of Caspase-3
protein. j IL-1β levels. k IL-6 levels. l IL-18 levels. Wortmannin is the PI3K inhibitor. **P < 0.01 vs inhibitor NC group; #P < 0.05, ##P < 0.01 vs miR-
132 inhibitor group
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Conclusion
This study demonstrated that miR-132 was an important
regulator of osteoarthritis in chondrocytes via regulation
of the PTEN/PI3K/AKT signaling pathway.
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