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Abstract

Background: Neuroimaging-biomarkers of Mild Cognitive Impairment (MCI) allow an early diagnosis in preclinical
stages of Alzheimer’s disease (AD). The goal in this paper was to review of biomarkers for Mild Cognitive
Impairment (MCI) and Alzheimer’s disease (AD), with emphasis on neuroimaging biomarkers.

Methods: A systematic review was conducted from existing literature that draws on markers and evidence for new
measurement techniques of neuroimaging in AD, MCI and non-demented subjects. Selection criteria included: 1)
age ≥ 60 years; 2) diagnosis of AD according to NIAAA criteria, 3) diagnosis of MCI according to NIAAA criteria with
a confirmed progression to AD assessed by clinical follow-up, and 4) acceptable clinical measures of cognitive
impairment, disability, quality of life, and global clinical assessments.

Results: Seventy-two articles were included in the review. With the development of new radioligands of
neuroimaging, today it is possible to measure different aspects of AD neuropathology, early diagnosis of MCI and
AD become probable from preclinical stage of AD to AD dementia and non-AD dementia.

Conclusions: The panel of noninvasive neuroimaging-biomarkers reviewed provides a set methods to measure
brain structural and functional pathophysiological changes in vivo, which are closely associated with preclinical AD,
MCI and non-AD dementia. The dynamic measures of these imaging biomarkers are used to predict the disease
progression in the early stages and improve the assessment of therapeutic efficacy in these diseases in future
clinical trials.

Keywords: Alzheimer’s disease, Mild cognitive impairment, Magnetic resonance imaging, Positron emission
tomography
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Background
Alzheimer’s disease (AD) is the most common age-
related neurodegenerative disease, characterized by pro-
gressive cognitive decline, accounts for 50–75 % of the
global dementia population, with a greater proportion in
the higher age ranges [1].
Clinicians and researchers have recently updated the

AD diagnostic criteria for use in clinical practice and
research [2]. Biomarkers (e.g., CSF protein levels, neu-
roimaging) may be used to rule out other causes of
dementia (e.g., vascular) and to support the AD diag-
nosis in cases with unclear or atypical presentations.
Attempts to diagnose AD at an earlier stage have led
to the appearance of new medical terminologies such
as pre-clinical AD, prodromal AD or mild cognitive
impairment (MCI). Recently, new criteria for diagno-
sis of MCI in clinical and research settings have been
published [3, 4].
In this context neuroimaging and fluid biomarkers

for amyloid deposition and hippocampal atrophy can
be measured more than 10 years before the onset of
dementia [5, 6]. The application of these markers
could enhance the specificity of clinical diagnosis and
improve the prediction of the disease progression.
The objective in this paper was to review of bio-
markers for Mild Cognitive Impairment (MCI) and
AD, with emphasis on neuroimaging biomarkers.

Methods
The search strategy and analysis was informed by: the
study’s aims, previous systematic reviews using qualitative
data, and best practice recommendations in the research
literature [7, 8]. Literature searches were conducted over
MEDLINE (2000 to June 2015) and Pubmed (2000 to June
2015), using the OVID search interface. The searches were
limited to human studies in English language including
potential Magnetic Resonance Imaging (MRI) and Posi-
tron Emission Tomography (PET) biomarkers.

Study selection
A single reviewer examined the abstracts retrieved by
the electronic search in order to identify articles that
met the inclusion criteria and to be fully reviewed.
Inclusion criteria: 1) age ≥ 60 years; 2) diagnosis of AD

according to the National Institute on Aging-
Alzheimer’s Association (NIAAA) criteria [2], 3) diagno-
sis of MCI according to NIAAA criteria [4] with a con-
firmed progression to AD assessed by clinical follow-up,
and 4) acceptable clinical measures of cognitive impair-
ment, disability, quality of life, and global clinical
assessments.
Exclusion criteria: 1) no English editing (as we lacked

resources for translation), 2) diagnosis of non-AD de-
mentia, and 3) MCI not progressed in AD.

Data extraction
In total, 2243 articles, reports and reviews were identi-
fied. After reviewing abstracts, 425 were excluded on the
basis of the aforementioned inclusion/exclusion criteria
and the removal of duplicates (n. 1595). A further 151
were excluded after more in-depth examination (on the
basis of the same inclusion/exclusion criteria). Thus, 72
published studies were eligible for the current review
(Fig. 1).
Data extraction followed a number of stages. After

preliminary categorisation, categories were divided
among the authors according to expertise. Each category
was reviewed in depth by at least one author and the
lead author:

Potential structural neuroimaging biomarkers
Functional neuroimaging biomarkers

Co-authors provided a detailed summary of each study
including its strengths and weaknesses, as well as an
overall appraisal of the category [9, 10]. Quality of study
reporting was assessed using the Standards for the
Reporting of Diagnostic accuracy studies in dementia
(STARDdem) [11].

Results and discussions
Potential structural neuroimaging biomarkers
Structural MRI (sMRI)
Medial temporal and hippocampal atrophy were the
most common structural MRI (sMRI) markers of pro-
gression to AD [12, 13]. The 3-dimensional patterns of
cerebral atrophy progression over multiple serial MRI
were consistent with neurofibrillary pathological staging
scheme in AD, showing that the earliest changes in the
anterior medial temporal lobe and fusiform gyrus occur
at least 3 years before conversion to AD [14]. However,
one study showed that both baseline enthorhinal volume
and its slope of decline, but not initial hippocampal size
and its rate of decline, were independent predictors of
incident AD [15].
Molecular biomarkers of neuronal injury that are

present in advance of atrophy offer a complementary
target for sMRI [16]. Model-based magnetization trans-
fer (mMT) imaging could improve classification of sub-
jects with early AD and MCI compared with
magnetization transfer ratio (MTR) [17].
Individual biomarkers, such as white matter hyperinten-

sities (WMH), cerebral volume, hippocampal volume, en-
torhinal cortex thickness, ventricle volume, and CSF
markers had limited predictive value for cognitive decline
[18]. Combination of sMRI and plasma biomarkers, such
as whole genome single nucleotide polymorphism data,
tocopherols and tocotrienols, or CSF total tau, phosphory-
lated tau (p-tau) and Aβ42: amyloid-β42 (Aβ42) could
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enhance the accurancy of differentiating subjects with AD
and MCI from cognitively normal subjects [19–21]. An-
nual ventricular volume changes in serial sMRI were re-
lated to concurrent change on general cognitive and
functional indices in amnestic MCI (aMCI) and AD, and
were influenced by Apolipoprotein E (ApoE) genotype
[22]. The combination of imaging and CSF biomarkers
could improve the conversion prediction from MCI to AD
[21, 23–25] and time to develop dementia in subjects with
MCI and amyloid pathology [26]. Baseline fludeoxyglu-
cose (FDG) Positron Emission Tomography (PET) added
the greatest prognostic information compared with base-
line clinical testing [24], but marginally predicted longitu-
dinal cognitive decline [25]. Baseline sMRI was slightly
better predictor of future clinical/functional decline than
CSF t-tau/Aβ42 [21]. MRI imaging might be a more prac-
tical clinical biomarker for early detection of AD [27].
Multiple MRI markers of underlying dementia pathologies
improve the ability to identify patients with prodromal
dementia over a single MRI marker [28]. The areas of hy-
poperfusion in patients with asymmetric cortical degen-
erative syndromes measured by single-photon emission
computed tomography (SPECT) were larger than the cor-
responding atrophic regions showed by sMRI [29]. The
combination of both was useful in identifying the regional
structural and functional cerebral abnormalities.
The mild or severe atropy in sMRI with severe decline

in parietal regional Cerebral blood flow (CBF) on SPECT
could distinguish AD from FTD and VaD patients [30].

The most common non-AD dementia is vascular demen-
tia (VaD) with considerable overlap with AD pathology.
VaD results from cerebrovascular and cardiovascular dis-
orders. Non-significant vascular lesions on structre brain
imaging result in overdiagnosis of VaD [31]. A signifi-
cantly higher allele frequency of ApoEε4 in AD patients
was found than these with VaD in a community popula-
tion [32]. The increase of WMH in deep white matter, but
not WMH in periventricular white matter on MRI scans
indicates 86 % classification accuracy [33]. MRI measure
of infarcts, a vascular brain injury, were significantly re-
lated to medial-temporal and cerebral atropy in VaD but
not in AD patients with 71 % sensitivity and 76 % specifi-
city [34]. The combination of MRI and SPECT could dif-
ferentiate VaD with sensitivity 88 %, specificity 75 % and
FTD with sensitivity 73 %, specificity 78 % respectively,
and enhance specificity of AD diagnosis by CSF bio-
markers from 71 to 93 % [35].

Diffusion MRI
The diffusion tensor imaging (DTI) metrics including
fractional anisotropy (FA), mean diffusivity, axial diffu-
sivity and radial diffusivity (RA), can assess the connect-
ivity between brain regions [36–38]. Both vascular and
AD degenerative process have different region-specific
structural injury patterns of cerebral white matter [39].
The combination of mean tanscallosal prefrontal FA and
the Fazekas score in volume by T2-weighted measures

Records identified through 
database searching

(n = 2243)

Additional records identified 
through other sources

(n = 0)

Records after duplicates removed
(n = 648) 

Records screened
(n = 648) 

Records excluded
(n = 425)

Full-text articles assessed
for eligibility
(n = 223) 

Full-text articles excluded,
with reasons

(n = 151)

Studies included in 
qualitative synthesis

(n = 72) 

Fig. 1 Flow diagram outlining the selection procedure to identify articles which were included in the systematic review of neuroimaging
biomarkers of pathologic brain changes in Mild Cognitive Impairment and Alzheimer’s disease
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could differentiate VaD from AD with 87.5 % accuracy,
100 % specifity and 93 % sensitivity [40].
The reduced FA and RA values in patients with AD

than in patients with MCI suggested that the brain DTI
was useful to confirm clinical manifestation of AD but
not in the detection of MCI [41]. White matter micro-
structural changes identified with DTI derived FA
doesn’t appear as a significant predictor of cognition
[42]. In another study, it was shown that high WMH
predict progression from normal to MCI, but not pro-
gression from MCI to dementia [43]. Conversely, the
brain parenchymal fraction (BPF) which showed whole-
brain atrophy, did not predict conversion from normal
to MCI but predicted conversion to dementia [43]. In a
study, it was shown that posterior periventricular and
corpus callosum extension of WMH associated with
MCI and AD indicate involvement of strategic white
matter bundles that may contribute to the cognitive defi-
cits [44]. Increased amyloid burden, as measured with
florbetapir PET imaging, was associated with changes in
weighted structural connectome metrics independent of
brain region [45]. The decrease of FA and the mode of
anisotropy in intracortically projecting fiber tracts of
MCI-AD and AD subjects suggested early axonal degen-
eration in intracortical projecting fiber tracts [46]. To as-
sess the decrease of the cingulum fibers using DTI-
derived FA could help early diagnosis of AD [47]. The
hippocampal apparent diffusion coefficients were higher
in MCI and AD subjects than in controls [48]. The ele-
vated apparent diffusion coefficients in hippocampus
may indicate early pre-clinical AD.

Functional neuroimaging biomarkers
PET imaging for metabolism status
A study showed that 30 min was enough foroptimal
FDG accumulation for AD PET scan, especially for the
early stage of AD [49]. Bilateral temporoparietal hypo-
metabolism on [18 F] fludeoxyglucose-positron emission
tomography (FDG-PET) could differentiate AD demen-
tia from VaD dementia with leukoaraiosis [50].
(18)FDG-PET showed FDG uptake reductions in AD re-
lated brain regions in cognitively normal individual with
ApoEε4 genotype and subjective cognitive complaint
[51], or a maternal history of AD [52]. Compared with
nonconverters, converters of MCI patients had lower
FDG uptake in the right temporoparietal contex [53].
Hypometabolism in brain regions may be related to on-
going pathologies and to reduced neuronal input in re-
mote but functionally connected regions [54]. MCI
patients who did not develop dementia after 2 years
showed even higher uptake in the basal forebrain than
those who developed dementia [55]. Longitudinal
changes in individual subjects in the spatial pattern of
brain glucose metabolism measured with (18)F-FDG

PET showed correlations with the cognitive decline of
AD and MCI [56, 57].
The combination C-labeled Pittsburgh Compound-B

([(11)C]PIB) and FDG track molecular changes could
show different stages of AD. Increased [(11)C]PIB im-
ages of binding potential was found in MCI patients and
progressive decrease of FDG uptake was only observed
in AD patients [58]. The hypoperfusion patterns showed
by arterial spin labeling MRI and hypometabolism pat-
terns showed by FDG-PET could provide largely overlap-
ping information of fuctional deficits in affected areas of
AD [59]. Regional cerebral blood flow measured by
[11C]dihydrotetrabenazine (DTBZ)-PET also provided
similar information in assessment of regional cerebral
metabolic deficits in mild dementia and MCI with FDG-
PET, and exhibited a mild decrease in sensitivity [60].
Preclinical and clinical studies have shown that the use
of PET imaging for tracking neuroinflammatory changes
seems to have a promising role in AD and other central
nervous system (CNS) pathologies [61, 62]. Translocator
protein (TSPO) radioligands [11C](R)-PK11195,
[11C]DAA1106 and [11C]PBR28 suggest the increased
expression of TSPO by activated microglia in AD pa-
tients [62].
The radioligand 11C-deuterium-L-deprenyl ([11C]-

DED) showed the highest binding among PIB in MCI in-
dividuals, that suggests the reactive astrocytosis occurs
at the early stages of AD [63]. Activation of cytosolic
phospholipase A2 (cPLA2) and secretory phospholipase
A2 (sPLA2) after microglia-derived inflammatory cyto-
kines bind astrocytic cytokine receptors results in the
hydrolysis of membrane phospholipids, liberating arachi-
donic acid (AA) [64]. A common single nucleotide poly-
morphism (rs6971) in exon 4 of the TSPO gene has
been identified as the key determinant of affinity with
second generation TSPO radioligands [11C]DAA1106
and [11C]PBR28 [65]. Cerebral blood flow, which is re-
duced in AD, highly influences monoamine oxidase B
(MAO-B) binding that seems to increase with age in al-
most all brain regions (with the exception of the cingu-
late gyrus) in healthy human subjects [62]. PET
neuroinflammation imaging may, alternately, be more
useful in monitoring the responsivity to anti-
inflammatory therapies in AD.

PET imaging for amyloid load
Amyloid accumulation evidenced by florbetapir PET
may be a potential marker of preclinical AD. Cognitively
normal subjects with florbetapir uptake increase in brain
were associated with worse globe cognitive performance
[66]. [(11)C]PIB data showed expected differences
among subjects of control, MCI and AD [67–69] and
identified subjects with significant annual increases in
amyloid load across the subject groups [67].
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Longitudinal studies showed that PET Aβpositive sub-
jects of cognitively normal, MCI and AD subjects had
greater cognitive and global deterioration than Aβnega-
tive subjects [70, 71] and Aβpositive subjects of MCI
had higher risk for conversion to AD than Aβnegative
subjects [71, 72]. Florbetapir PET measurements showed
that 76 % AD, 38 % MCI, and 14 % cognitively normal
subjects was amyloid positive [73]. The global cortex
standardized uptake value ratio of Florbetapir could dif-
ferentiate AD and MCI from healthy normal controls
with high specificity and sensitivity [74]. Amyloid depos-
ition has already slowed or ceased when dementia
occurs [75]. Combination baseline sMRI and (18)F-flor-
betaben (FBB) uptake values did not improve predictive
accuracy of MCI conversion to AD [76]. CSF Aβ42 did
not always become abnormal prior to fibrillar Aβ accu-
mulation early in the course of disease [77]. 2-(1-{6-[(2-
fluorine 18-labeled fluoroethyl)methylamino]-2-napthy-
l}ethylidene) malononitrile ([(18)F]FDDNP) provides a
measure of both amyloid and tau. [(18)F]FDDNP could
predict future cognitive decline and conversion of MCI
to AD [78].

PET radioligands of tau protein
In the amyloid cascade hypothesis, although tau path-
ology is considered secondary to Aβpathology, the post-
mortem classification of AD cases into pathological sub-
types with distinct clinical characteristics is determined
by the localization and distribution of tau pathology in
the brain [79, 80]. Abnormal burden of tau species can
accurately predict disease severity and the rate of cogni-
tive decline [79, 80]. The recent progress in tau protein
ligands makes tau PET imaging a potential biomarker.
Radioligands [18 F]-T807 and [18 F]-T808 used in hu-
man brain images with different pharmacokinetic char-
acteristics were the most selective compounds for
filamentous tau, and the level of selective binding with
tau was 27-fold higher than that of Aβ [81, 82]. A
phenyl/pyridinyl-butadienyl-benzothiazoles/benzothiazo-
lium (PBB) showed the greatest specificity for tau in vivo
PET imaging of tau transgenic mouse models, and
[(11)C]PBB3 patterns were consistent with the spreading
of tau pathology with AD progression and non-AD tauo-
pathy corticobasal syndrome in a clinical PET study [83].

fMRI and SPECT
A set of medial prefrontal and temporo-parietal re-
gions, such as the posterior cingulate and hippocam-
pus, are referred to as the default-mode network
(DMN), which is most active at rest and deactivated
during cognitive tasks. Amyloid deposition in AD
brains is most obvious in brain areas of the default
network. Functional MRI showed that the DMN
exhibits both reduced functional connectivity and

impaired task-induced deactivation in AD, mild cogni-
tive impairment (MCI) and pre-MCI [84–89].
Subjects with aMCI showed decreased DMN activity in

memory function related brain regions, such as left medial
temporal lobe before atrophy was detectable by sMRI
[86]. Based on a multi-modal imaging approach, including
FDG-PET and sMRI and diffusion-weighted MRI results,
AD patients revealed decreased structural and functional
connections, corresponding consistent reduction of meta-
bolic activity and atrophy within DMN [90]. The disrupted
connectivity in AD turns the high metabolic activity of
DMN into hypometabolism [84]. A 2- to 3- year follow-up
study revealed that functional connectivity indices could
predict conversion of MCI to AD [91]. Education, a factor
in cognitively demanding tasks, reduces AD risk by redu-
cing neuronal activity and Aβ generation within the de-
fault network [92]. It was observed that in the earliest
phase of MCI the individuals exhibited significantly
greater hippocampal activation than controls even if two
group without difference in hippocampal or entorhinal
volumes [93]. Longitudinal fMRI in cognitively normal
elderly participants reveals that subjects with the highest
hippocampal activation at baseline and the greatest loss of
hippocampal activation demonstrated more rapid cogni-
tion decline [94]. Compensatory efforts as a result of pre-
clinical pathological changes in learning and memory
tasks induce enhanced brain activity in some areas in the
initial targets of AD, and these changes may precede the
diagnosis of AD by 30 years [95]. Neuronal activity stimu-
lates aerobic glycolysis and increases Aβ production and
secretion into the interstitial fluid (ISF). The degree of Aβ
aggregation and plaque deposition is directly proportional
to ISF Aβ concentrations in vivo [96]. Factors including el-
evated endogenous neuronal activity may accelerate the
Aβ deposition process. Cognitively normal ApoEε4 car-
riers show elevated resting-state activity in the default net-
work and increased hippocampal activation in fMRI
during a memory-encoding task compared to non-carriers
[97]. Cerebral perfusion abnormalities were evident in AD
progression. CBF was a more sensitive parameter than
cerebral blood volume for perfusion normalities and ap-
peared before the latter in the progression of AD [98]. A
reduced CBF of the left posterior cingulated gyrus [99], bi-
lateral prefrontal and frontal, and left parietal [100], and
right parietal and hippocampal regions [101] evidenced by
SPECTcould predict the conversion of MCI to AD at least
2 years before clinical AD. But low parietal and medial
temporal flow using SPECT demonstrated limited utility
in predicting MCI conversion to AD [102]. Semi-
quantitative circumferential-profile analysis of brain
SPECT showed that AD patients have more significant re-
ductions in the posterior temporo-parietal regions, and
white matter VaD patients have greater reducutions in the
frontal brain regions [103].
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Combination the pattern of hypoperfusion and the se-
verity of memory deficits could predict the risk of pro-
gression to AD in MCI subjects with a sensitivity and
specificity [102, 104].
Regional CBF measured by Arterial spin-labeling

(ASL) magnetic resonance showed that regional CBF of
AD patients was significantly lower in both the bilateral
frontal and temporal lobes, and the value of VaD pa-
tients was significantly in left frontal and temporal white
matter [105]. SPECT imaging of regional benzodiazepine
receptors (rBZR) can reflect neuronal integrity in the
cerebral cortex. VaD and mixed AD/VaD dementia
showed predominant reduction of regional CBF and
rBZR in the frontal lobe, and AD in parietotemporal
lobe. Furthermore, rBZR images of VaD and mixed de-
mentia showed more extensive and severe defects than
CBF images, and CBF images of AD showed more ex-
tensive defects than rBZR [106]. Although the hetero-
geneity index of the whole brain CBF on SPECT images
was not significantly different between the AD and VaD
groups, the herogeneity of CBF for AD and VaD was
posterior and anterior-dominant respectively [107].

Conclusion
The use in clinical practice of neuroimaging biomarkers
of brain pathological processes could permit to perform
an early diagnosis and to estimate the disease progres-
sion. Some neuroimaging-biomarkers have been widely
used in clinical diagnosis of AD. The more neuroimag-
ing biomarkers are still used for clinical studies. The use
of neuroimaging biomarkers depended on the stage of
disease progress. The proposed pathophysiological se-
quence contains Aβaccumulation, neuronal dysfunction
(synaptic dysfunction, glial activation, tangle formation),
brain atrophy due to neuronal death, and finally cogni-
tive impairment [108].
Amyloid imaging is useful for differential diagnosis in

early-onset dementia and clinical diagnosis of AD in
noncarriers of ApoEε4 who are older than 70 years [5].
However, amyloid imaging may not be sufficient to make
correct diagnosis in an individual [109]. PET with FDG,
tau and other neurochemical tracers, fMRI and SPECT
are used to measure the neuronal dysfunction. Finally,
sMRI, advanced MRI techniques, such as DTI and MRS
are used to show atrophy and hypoperfusion in cortex
and white matter. The ordering and the sigmoidal-like
time changes of imaging biomarkers are useful to detect
early pathophysiological changes in preclinical stage; the
extensive and severe impairment means greater AD-like
pathology. Therefore, imaging biomarkers often are used
to detect the comversion of preclinical AD and MCI to
AD and predict outcomes of clinical intervention trials.
Particularly, imaging biomarkers are helpful to differenti-
ate AD dementia from VaD and other non-AD

dementia. To find early different vascular pathological
contribution to AD and VaD, an advanced dynamic
contrast-enhanced MRI could quantify hippocampus
blood brain barrier permeability in the living human
brain; CA1 and dentate gyrus subdivisions showed obvi-
ously worsened in patients with mild cognitive impair-
ment,which was correlated with injury to BBB-
associated pericytes [110].
The combination of structural, functional neuroimag-

ing and fluid biomarkers improved the accuracy of pre-
diction [111]. With same diagnosis power, one should
give preference to the less expensive, safer and less inva-
sive techniques. However, some factors, including envir-
onmental factor, ApoE genetic variation and brain or
cognitive reserve can affect or alter the cuves of these
biomarkers.
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