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Abstract 

Background  Primary sclerosing cholangitis (PSC) patients have a risk of developing cholangiocarcinoma (CCA). 
Establishing predictive models for CCA in PSC is important.

Methods  In a large cohort of 1,459 PSC patients seen at Mayo Clinic (1993–2020), we quantified the impact of clini-
cal/laboratory variables on CCA development using univariate and multivariate Cox models and predicted CCA using 
statistical and artificial intelligence (AI) approaches. We explored plasma bile acid (BA) levels’ predictive power of CCA 
(subset of 300 patients, BA cohort).

Results  Eight significant risk factors (false discovery rate: 20%) were identified with univariate analysis; prolonged 
inflammatory bowel disease (IBD) was the most important one. IBD duration, PSC duration, and total bilirubin 
remained significant (p < 0.05) with multivariate analysis. Clinical/laboratory variables predicted CCA with cross-vali-
dated C-indexes of 0.68–0.71 at different time points of disease, significantly better compared to commonly used PSC 
risk scores. Lower chenodeoxycholic acid, higher conjugated fraction of lithocholic acid and hyodeoxycholic acid, and 
higher ratio of cholic acid to chenodeoxycholic acid were predictive of CCA. BAs predicted CCA with a cross-validated 
C-index of 0.66 (std: 0.11, BA cohort), similar to clinical/laboratory variables (C-index = 0.64, std: 0.11, BA cohort). Com-
bining BAs with clinical/laboratory variables leads to the best average C-index of 0.67 (std: 0.13, BA cohort).

Conclusions  In a large PSC cohort, we identified clinical and laboratory risk factors for CCA development and 
demonstrated the first AI based predictive models that performed significantly better than commonly used PSC risk 
scores. More predictive data modalities are needed for clinical adoption of these models.
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Background
Primary sclerosing cholangitis (PSC) is an immune-
mediated cholestatic liver disease characterized by 
inflammation and fibrosis of the bile ducts, often pro-
gressing to end-stage liver disease requiring liver trans-
plantation (LT). Nearly 75%–80% of patients with PSC 
have comorbid inflammatory bowel disease (IBD) [1] 
and are at high risk for developing cholangiocarcinoma 
(CCA) [2]. The lifetime risk of CCA in PSC patients has 
been reported to be 7%–13% [3]. While somewhat treata-
ble when detected early, CCA remains a significant cause 
of mortality in PSC patients, due to lack of clinically use-
ful prediction tools [4]. Ability to predict development 
of CCA in PSC patients could lead to better surveillance 
programs capable of identifying CCA at a curable stage 
resulting in improved outcomes.

Prior studies have identified risk factors for CCA in 
PSC patients including advanced age, male sex, and pro-
longed duration of IBD [5–9]. However, many of these 
studies suffered from small sample sizes, resulting in 
highly uncertain estimates of the effect sizes of the risk 
factors. Bile acids (BAs) have been proposed as impor-
tant chemicals implicated in the development and patho-
genesis of PSC and can be measured using inexpensive 
and noninvasive clinical assays [10].

Personalized risk prediction models, such as the Pri-
mary Sclerosing Cholangitis Risk Estimate Tool (PREsTo) 
[11], are currently used as clinical decision tools for esti-
mating survival rates and hepatic decompensation events 
in PSC. However, large sample sizes and a significant 
number of events are usually required to train the models 
reliably, which has hindered development of such models 
to predict CCA in PSC.

In this study, we leverage one of the largest single-
center well-phenotyped PSC cohorts to better under-
stand the clinical/laboratory and plasma BA signatures 
and identify risk factors for CCA development in PSC. 
Using a rigorous analytical approach employing statisti-
cal and artificial intelligence (AI) approaches, we aim 
to narrow the gap in individualized treatment of PSC 
through personalized CCA risk prediction models. We 
expect our approach to be adaptable for future studies 
focusing on comprehensive multi-omics profiling of PSC 
patients, with the goal of providing better clinical man-
agement tools for PSC through omics based individual 
risk-informed surveillance programs.

Methods
Patient population
The cohort of patients with PSC in this study are 
enrolled in the PSC Scientific Community Resource 
[12]. A detailed explanation and mechanisms of patients’ 

enrollment, consenting, chart review, data collection, 
questionnaires, and biospecimens have been recently 
described [12]. Briefly, patients with PSC who receive 
their medical care at the three main Mayo Clinic sites 
(Minnesota, Florida, and Arizona) and in the broader 
Mayo Clinic Health System were identified by manual 
chart review and invited in person or by mail to partici-
pate in our studies. All available medical charts (elec-
tronic and paper) were comprehensively reviewed by two 
experienced hepatologists. To be enrolled, patients must 
meet the following established diagnostic criteria for PSC 
according to the American Association for the Study of 
Liver Diseases guidelines [13]: (a) biochemical evidence 
of chronic cholestasis (≥ 6 months); (b) cholangiographic 
evidence of multifocal strictures and segmental dilata-
tions in the bile ducts and/or histological features con-
sistent with PSC; and (c) exclusion of secondary causes 
of sclerosing cholangitis. For each patient, demograph-
ics; clinical data relevant to PSC and IBD; laboratory; 
cholangiographic; histological; and endpoints’ data were 
extracted manually from patients’ charts. For the purpose 
of this study, charts of patients with PSC who developed 
CCA were re-reviewed by one of the hepatologists, and 
the following data regarding CCA were extracted: (a) 
date of CCA diagnosis; (b) cytology (negative; abnormal; 
atypical; suspicious; or positive for adenocarcinoma); (c) 
polysomy on fluorescence in  situ hybridization (FISH); 
(d) serum carbohydrate antigen 19–9 (CA 19–9) clos-
est to the date of diagnosis of CCA; (e) type of CCA 
(malignant-appearing stricture; mass); (f ) histopathology 
(benign; reactive; low-grade dysplasia; high-grade dyspla-
sia; or adenocarcinoma); (g) type of treatment of CCA, 
if any (partial hepatectomy; liver transplantation; en bloc 
resection of the bile ducts; or systemic chemotherapy); 
and (h) evidence of residual CCA in the explant after 
liver transplantation.

CCA was diagnosed by: (a) imaging/cholangiographic 
findings characteristic of CCA with positive cytology or 
histopathology; (b) malignant-appearing strictures with 
FISH polysomy plus suspicious cytology; (c) malignant-
appearing strictures with FISH polysomy plus elevated 
serum CA 19–9; (d) malignant-appearing strictures 
with FISH polysomy; and (e) malignant-appearing stric-
tures with persistently elevated serum CA 19–9 [14–16]. 
Occurrences of gallbladder cancer (GBC), hepatocellular 
carcinoma (HCC), LT, and death from causes other than 
PSC were recorded and considered competing events. 
GBC and HCC were diagnosed according to published 
criteria [16–18]. This study was approved by the Mayo 
Clinic’s Institutional Review Board. All participating sub-
jects gave informed consent and thus, the study follows 
the ethical standards laid down in the 1964 Declaration 
of Helsinki and its later amendments.
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Data collection and preprocessing
Clinical variables and laboratory parameters were 
abstracted from the electronic medical record (EMR) of 
PSC patients and used in analysis of the baseline cohort. 
A subset of these patients had plasma BA data available 
from a previous study [10]. This cohort, defined as the BA 
cohort for the purpose of this study, was used to evaluate 
the potential of BAs to improve prediction of CCA (Fig. 
S1). Cinical variables included sex, date of birth, date of 
PSC diagnosis, date of IBD diagnosis (if applicable), event 
dates (diagnosis of CCA, GBC, HCC, LT, and death), date 
of last clinical encounter, and disease severity of PSC at 
the time of PSC diagnosis assessed by the Model for End-
stage Liver Disease (MELD) score [19], Mayo PSC Risk 
Score [20], and PREsTo score [11]. Diagnosis dates of 
PSC, IBD, CCA, GBC, and HCC were shifted to 30 days 
prior to the documented dates to accommodate testing 
performed to establish the diagnoses. The first available 
laboratory test results in the Mayo EMR following PSC 
diagnosis and prior to any of the outcomes (i.e., CCA, 
GBC, HCC, LT, and death) were extracted and used as 
baseline measurements for prediction. These labora-
tory tests included albumin, alkaline phosphatase (ALK), 
alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), bilirubin (total and direct), CA 19–9, com-
plete blood count (hemoglobin, leukocytes, and platelet 
count), immunoglobulin G (total IgG and IgG4), inter-
national normalized ratio (INR), sodium, and creatinine. 
Missing laboratory parameters were imputed first using 
the closest measurement of the same laboratory param-
eter within the past one year or the next seven days after 
baseline. Two separate strategies were adopted to impute 
the remaining missing laboratory parameters: (i) for risk 
factor identification, we adopted the strategy of multi-
ple imputation to get unbiased p-value estimates from 
the pooled results using the predictive mean matching 
method in the Multivariate Imputation by Chained Equa-
tions (MICE) package [21] (version 3.14.0); and (ii) for 
predictive models construction, we integrated missing 
data imputation into the cross-validation process. Spe-
cifically, we used the training data to learn to impute each 
feature from all other features with the scikit-learn [22] 
(version 0.24.2) package.

Plasma primary and secondary BAs data (described in 
Mousa et  al. [10]) available for a subset of the patients 
included: CA, CDCA, DCA, LCA, UDCA, HDCA; and 
their taurine conjugated forms: TCA, TCDCA, TDCA, 
TLCA, TUDCA, THDCA; and their glycine conjugated 
forms: GCA, GCDCA, GDCA, GLCA, GUDCA, and 
GHDCA (see list of abbreviations). The total BA concen-
tration was calculated by summing the concentrations 
of all evaluated BAs. Total concentration of BA “fami-
lies” were calculated by summing the unconjugated and 

conjugated forms (e.g., Total CA = CA + GCA + TCA). 
Conjugated fraction was calculated as the sum of the 
conjugated forms divided by the total (e.g., ConFrac 
CA = [GCA + TCA]/[CA + GCA + TCA]). The G:T con-
jugation ratios were calculated by dividing the glycine-
conjugated form by the taurine-conjugated form (e.g., 
GTratio CA = GCA/TCA). GTratio HDCA was excluded 
due to the high percentage of zero values (undetect-
able) in THDCA concentrations. Ratios of CA:CDCA, 
CA:DCA, and CDCA:(LCA + HDCA + UDCA) were 
calculated using the “total BA” family concentrations. 
For fractions and ratios, values were set to blank if the 
denominator was equal to zero. Patients in whom BAs 
measurements were performed after developing any 
of the outcomes (i.e., CCA, GBC, HCC, LT, and death) 
were excluded. To synchronize the measurement time 
of the BAs and the laboratory parameters, we queried 
the EMR and abstracted laboratory test results collected 
closest to and within one year of the BAs measurement. 
Patients without laboratory data within this interval were 
excluded. Hence, the BA cohort was a “time-shifted” sub-
set of the baseline cohort wherein laboratory parameters 
close to the BAs measurement time were used instead of 
the baseline values.

Incidence of CCA​
We analyzed the incidence of CCA in patients with PSC 
treating GBC, HCC, LT, and death from causes other 
than PSC as competing events. Patients who did not 
develop CCA or any of the competing events were cen-
sored at the last known clinical encounter. We used the 
mstate package [23] to generate the cumulative incidence 
functions (CIF) for the probability of developing CCA in 
light of the competing events.

Identifying risk factors
We used Cox proportional hazards models (CoxPH) [24] 
to identify risk factors for the development of CCA. Cen-
soring was made at the time of GBC, HCC, LT, death, 
or the last clinical encounter, whichever occurred first. 
Patients without an IBD diagnosis were considered to 
have an IBD duration of 0 year. To make the hazard ratios 
(HRs) estimated from the CoxPH models more straight-
forward to interpret, we categorized age into nine bins of 
10-year intervals and kept year as the unit for PSC dura-
tion and IBD duration at baseline. We normalized MELD 
score, Mayo PSC Risk Score, PREsTo score, hemoglobin, 
and sodium by dividing the actual values by their inter-
quartile range (IQR). Continuous laboratory parameters 
and BAs with zero value (undetectable) were replaced 
with half of the smallest nonzero values. Laboratory 
parameters and BAs apart from hemoglobin and sodium 
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were log-transformed (base 10) because they were highly 
right-skewed.

We first constructed univariate CoxPH models for each 
baseline clinical variable and laboratory parameter and 
reported their p-values and HRs with the 95% confidence 
interval (CI). The Benjamini–Hochberg procedure [25] 
was performed to control the false discovery rate (FDR) 
to be below 20%. Using baseline factors that passed the 
FDR threshold, we constructed a multivariate CoxPH 
model to estimate the combined effect of the baseline 
factors and assessed each factor’s influence in the pres-
ence of other features. We did not consider the com-
posite scores (Mayo PSC Risk Score, PREsTo score, and 
MELD score) in the multivariate model because they are 
calculated from laboratory parameters and will obscure 
the HR interpretation. Additionally, we excluded direct 
bilirubin because it was found to be highly correlated 
with total bilirubin (Pearson correlation = 0.98). A similar 
approach was used in analysis of the BA cohort.

Predictive modeling
We first constructed a set of models using baseline clini-
cal variables and laboratory parameters of the baseline 
cohort. Censoring was again made at the time of GBC, 
HCC, LT, death, or the last clinical encounter, whichever 
occurred first. Patients without an IBD diagnosis were 
considered to have an IBD duration of 0 year. We simi-
larly excluded the composite scores and direct bilirubin. 
We excluded total IgG and IgG4 for their high missing-
ness. We applied Yeo-Johnson power transformation 
[26] to the highly right-skewed features (same as the log-
transformed variables in risk factor identification). We 
then standardized all the continuous features, including 
the power-transformed features.

Three models were used in predicting CCA: (i) the 
abovementioned multivariate CoxPH model with regu-
larization term(s); (ii) Random Survival Forest (RSF) [27], 
and (iii) Gradient Boosting Survival Analysis (GBSA) 
[28]. CoxPH assumes that the HR of two subjects is con-
stant over time and that the population of interest shares 
a common baseline hazard function. We used the non-
parametric Breslow’s method [29] to estimate the base-
line hazard. We added l2 and l1 regularization terms to 
reduce the chance of overfitting and encourage the selec-
tion of fewer features. We set the regularization param-
eters to 0.005 for both terms. Both RSF and GBSA are 
tree-based ensemble AI methods that automatically han-
dle the nonlinear relationship between features and out-
comes. RSF is one of the most popular learning-based 
AI alternatives to CoxPH for survival analysis [30], while 
gradient boosting methods have been widely used and 
proven successful in prediction competitions [31] and 
medical applications [11]. RSF leverages bootstrapping to 

construct multiple survival trees and average their results 
for a robust prediction. We chose the log-rank statistic 
as the splitting rule for building the survival trees. We 
used 100 trees for stable performance according to the 
weak law of large numbers. GBSA iteratively learns an 
ensemble of decision trees that maximize the partial log-
likelihood of the observed survival outcomes. We set the 
number of trees to be the default value of the software, 
which was also 100. For both RSF and GBSA, we set each 
tree’s maximum depth to 3 to allow nonlinear 3-way 
interactions among the features when making predic-
tions. We required a minimum of 30 patients at each leaf 
node for reliable estimation. We implemented all three 
methods in Python using the scikit-survival package [32] 
(version 0.16.0).

We evaluated the predictive performance using the 
concordance index (C-index). C-index values range from 
0 to 1. A high C-Index indicates the model correctly 
predicts higher risk for patients who developed CCA 
in shorter times. We calculated the mean and standard 
deviation of the test set C-index from a 20-fold Monte 
Carlo cross-validation with 80%–20% train–test split. 
Specifically, we randomly split the dataset into a training 
set (80%) and a test set (20%) and repeated this process 
20 times. The results were calculated by taking the mean 
and standard deviation of the test set C-index across all 
20 splits. All models shared the same train–test splits to 
ensure a fair comparison.

We calculated the permutation feature importance by 
measuring decrease in C-index of each model when the 
values of a feature were randomly permuted (across test 
set patients). For each cross-validation fold, the permu-
tation was repeated three times, and the mean decrease 
in the test set C-index was evaluated. To assess how well 
the model performs at different time points in the disease 
course, we also evaluated the models using clinical varia-
bles and laboratory parameters collected at 2 and 5 years 
post PSC diagnosis.  Time related clinical variables such 
as age and disease duration were updated according to 
the status at the evaluated time points.

For the BA cohort, we constructed a second set of 
models using plasma BAs and/or clinical variables and 
laboratory parameters. Composite BA variables with no 
blank values were also included. We employed the same 
methodology as above, except due to the smaller number 
of patients and CCA occurrences in the BA cohort, we 
adopted a more balanced 70%–30% train–test split and 
performed recursive feature elimination on the training 
set to select the three most important BAs associated 
with CCA. In CoxPH, since feature selection was explic-
itly performed, we dropped the l1 regularization term 
and used only an l2 regularization term with 0.01 as the 
parameter. We kept the choices of other hyperparameters 
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consistent with the models for the baseline cohort. The 
models were then trained with the selected BAs, and 
C-index was calculated on the test set. To compare the 
predictive power of BAs, clinical variables, and labora-
tory parameters, we repeated the abovementioned pro-
cedure replacing BAs with clinical/laboratory variables. 
Furthermore, we trained models combining the three 
selected BAs and the three selected clinical/labora-
tory variables from the corresponding cross-validation 
fold. Feature importance was again measured with three 
permutations.

Results
Baseline cohort
A total of 1,459 PSC patients were included in the 
baseline cohort, and their characteristics are summa-
rized in Table  1. Median age at baseline was 44.2  years 
(IQR: 32.7–55.2) and 64.2% of the patients were male. 
Median time from PSC diagnosis to baseline (i.e., the 
first available laboratory test following PSC diagnosis) 
was 0.56  years (IQR: 0.16–3.47). One thousand thirty-
five patients (70.9%) had received a diagnosis of IBD at 
baseline, with a median IBD duration of 8.45 years (IQR: 

2.3–19.51). In the baseline cohort, 125 cases of CCA 
(8.6%), 15 GBC (1.0%), and 32 HCC (2.2%) were recorded. 
Four patients had both CCA and GBC, and two had both 
CCA and HCC. The median time from PSC diagno-
sis until the last clinical encounter was 10.5 years (IQR: 
5.2–17.8). As shown in Fig. S2, the cumulative incidence 
of CCA grew linearly with time, representing a constant 
incidence rate. The cumulative incidence of CCA was 
found to be 2.2%, 5.3%, 8.4%, and 15.9% at 2, 5, 10, and 
20 years from the time of PSC diagnosis, respectively.

Diagnosis of CCA​
Of the 118 PSC patients who developed CCA prior to 
any other outcomes, the diagnosis of CCA was estab-
lished/confirmed pretreatment and/or posttreat-
ment histopathologically and/or cytologically in 78.8% 
(93/118). To elaborate, pre-CCA treatment cytology pos-
itive for adenocarcinoma was identified in 52 patients 
and histopathology positive for adenocarcinoma in 20 
patients. Further, histopathology on liver explant posi-
tive for adenocarcinoma was identified in 8 patients, his-
topathology on partial hepatectomy specimens positive 
for adenocarcinoma in 6 patients, fine needle aspiration 
of liver/metastatic mass positive for adenocarcinoma in 
6 patients, and on en bloc resection of the bile ducts in 
1 patient. Of the 25 patients without tissue diagnosis, 8 
had clear evidence of CCA by a visible mass on abdomi-
nal cross-sectional imaging, 6 patients had malig-
nant-appearing stricture with suspicious cytology and 
polysomy on FISH, 6 patients had malignant-appearing 
strictures with negative cytology but polysomy on FISH, 
and 5 patients had malignant-appearing strictures and 
elevated serum CA 19–9.

Risk factor Identification
The HRs of the baseline clinical variables and laboratory 
parameters from the univariate CoxPH models are sum-
marized in Table  2. Longer IBD duration, longer PSC 
duration, IBD diagnosis, higher total bilirubin, higher 
Mayo PSC Risk Score, higher CA 19–9, higher direct bili-
rubin, and older age have been found to be independent 
predictors of CCA development in the descending order 
of significance (FDR < 20%). Lower sodium, higher white 
blood cell count, higher PREsTo score, higher MELD 
score, and male sex all had q-values of 0.221, slightly 
above the 20% FDR threshold. The multivariate CoxPH 
model using baseline features that passed the FDR 
threshold of 20% in the univariate models is summarized 
in Table  3. Longer IBD duration, longer PSC duration, 
and higher total bilirubin were statistically significantly 
predictive of CCA (p < 0.05).

Table 1  Summary characteristics of the baseline cohort

Continuous features expressed as median (IQR)

Binary features expressed as percentage

Feature N Summary

Age, years 1,459 44.19 (32.73–55.18)

Male sex 1,459 64.2%

PSC duration, years 1,459 0.56 (0.16–3.47)

IBD diagnosis 1,459 70.9%

IBD duration, years 1,035 8.65 (2.3–19.51)

MELD Score 1,081 5.78 (3.11–8.86)

Mayo PSC Risk Score 1,296 0.17 (-0.52–1.07)

PREsTo Score 1,039 0.04 (0.03–0.1)

ALK x ULN 1,409 2.21 (1.22–3.84)

AST, U/L 1,398 62 (36–105)

ALT, U/L 1,092 78 (43.75–136)

Total bilirubin, mg/dL 1,394 0.9 (0.6–1.7)

Direct bilirubin, mg/dL 1,131 0.3 (0.2–0.8)

INR 1,099 1 (0.9–1.1)

Albumin, g/dL 1,270 4 (3.6–4.3)

Sodium, mmol/L 1,004 140 (138–141)

Creatinine, mg/dL 1,321 0.9 (0.8–1.1)

Hemoglobin, g/dL 1,240 13.5 (12.2–14.7)

White Blood Cells, 109/L 1,209 6.5 (5.2–8.4)

Platelets, 109/L 1,362 247.5 (193–318)

IgG4, mg/dL 364 37.35 (18.5–81.58)

Total IgG, mg/dL 126 1305 (1085–1745)

CA 19–9, U/mL 902 17.65 (9–42)
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Predictive modeling
The test C-index values of different models in predict-
ing CCA-free survival for the baseline cohort using 
clinical variables and laboratory parameters are shown 
in Table  4. At baseline, CoxPH had the highest average 
C-index (0.69 (std: 0.06)) of the three models, followed by 

RSF (C-index = 0.68, std: 0.06). All three predictive mod-
els performed significantly better compared to the com-
monly used PSC scores, including the Mayo PSC Risk 
Score, the MELD score, and the PREsTo score in predict-
ing CCA development (p < 0.005 comparing any of the 
predictive models with any of the risk scores). We evalu-
ated performance of the models at future time points, 2 
and 5  years post PSC diagnosis. The C-index values of 
each model at 2 and 5 years post PSC diagnosis remained 
unchanged compared to baseline.

The permutation feature importance for the baseline 
clinical variables and laboratory parameters is shown in 
Fig. 1. IBD duration had the greatest feature importance 
for all three models, with an average of 0.11 (CoxPH), 
0.08 (RSF), and 0.12 (GBSA) decrease in C-index when 
replaced with randomly permuted values. Among the 
remaining features, CA 19–9 level, PSC duration, total 
bilirubin, and sodium had the largest sum of feature 
importance across models.

Impact of BAs on predicting CCA​
Of the 1,459 PSC patients, 300 had BA data and con-
stituted the BA cohort. The median time from PSC 
diagnosis until the last clinical encounter in this cohort 
was 9.6  years (IQR: 5.6–17.1), and during follow-up, 21 
(7.0%) of the 300 patients were diagnosed with CCA. 
BA values, clinical variables and laboratory parameters 
of the BA cohort are provided in Table S1. Univariate 
analysis of BAs’ ability to predict CCA is provided in 
Table 5. Among individual BAs, only CDCA was statis-
tically associated with CCA after controlling for FDR, 
with increased levels appearing to be protective against 
CCA. Conjugated fraction of LCA and HDCA as well 

Table 2  Univariate associations with development of CCA in the 
baseline cohort

q-values are the Benjamini–Hochberg procedure adjusted p-values

Variable N Hazard Ratio (95% 
CI)

p-value q-value

IBD duration, years 1,459 1.05 (1.03–1.06) 1e-11 3e-10

PSC duration, years 1,459 1.08 (1.05–1.12) 1e-07 1e-06

IBD diagnosis 1,459 2.34 (1.43–3.83) 7e-04 0.005

Total bilirubin, (log 
10)

1,394 2.19 (1.37–3.51) 0.001 0.006

Mayo PSC Risk Score, 
(IQR)

1,296 1.61 (1.19–2.16) 0.002 0.008

CA 19–9, (log 10) 901 1.76 (1.23–2.54) 0.002 0.008

Direct bilirubin, (log 
10)

1,118 1.8 (1.23–2.65) 0.003 0.008

Age, (per 10 years) 1,459 1.21 (1.06–1.38) 0.004 0.011

Sodium, (IQR) 1,004 0.89 (0.77–1.02) 0.087 0.221

White Blood Cells, 
(log 10)

1,209 2.62 (0.84–8.17) 0.097 0.221

PREsTo Score, (IQR) 1,039 1.07 (0.98–1.16) 0.109 0.221

MELD Score, (IQR) 1,081 1.24 (0.95–1.62) 0.117 0.221

Male sex 1,459 1.36 (0.92–2.02) 0.125 0.221

INR, (log 10) 1,099 0.08 (0–3.04) 0.171 0.281

ALK, (log 10) 1,409 1.22 (0.69–2.14) 0.497 0.750

AST, (log 10) 1,398 1.21 (0.68–2.13) 0.522 0.750

Hemoglobin, (IQR) 1,240 0.93 (0.72–1.21) 0.597 0.807

Total IgG, (log 10) 126 2.23 (0.04–137.08) 0.702 0.822

Creatinine, (log 10) 1,321 0.72 (0.13–4.05) 0.709 0.822

ALT, (log 10) 1,092 1.11 (0.62–2) 0.715 0.822

Platelets, (log 10) 1,362 0.89 (0.34–2.34) 0.818 0.868

Albumin, (log 10) 1,270 1.45 (0.05–42.63) 0.830 0.868

IgG4, (log 10) 364 1.03 (0.53–2.03) 0.923 0.923

Table 3  Multivariate associations with development of CCA in 
the baseline cohort

Only baseline features with estimated FDR (q-values) less than 20% from the 
univariate models were considered

Variable Hazard Ratio (95% CI) p-value

IBD duration, years 1.04 (1.02–1.05) 2e-04

PSC duration, years 1.05 (1.02–1.08) 0.003

Total bilirubin, (log 10) 2.05 (1.23–3.41) 0.006

CA 19–9, (log 10) 1.4 (0.97–2.04) 0.071

IBD diagnosis 1.57 (0.87–2.83) 0.132

Age, (per 10 years) 1.06 (0.9–1.24) 0.501

Table 4  CCA predictive modeling C-Index in the baseline cohort

• Results shown in mean ± std estimated from 20-fold Monte Carlo cross-
validation with 80%–20% train–test split

• Row 1–3 show models trained using baseline clinical variables and laboratory 
parameters

• Row 4–6 show C-index of commonly used risk scores

• Pairwise comparison between row 1–3 and row 4–6 show that the predictive 
models are significantly better than all individual risk scores (p-value < 0.05)

• The three columns show test C-index using variables collected at: baseline, 
2 years post PSC diagnosis (DX), and 5 years post DX

Test Scenario Baseline 2 years post DX 5 years post DX

CoxPH 0.69 ± 0.06 0.68 ± 0.06 0.67 ± 0.11

RSF 0.68 ± 0.06 0.67 ± 0.06 0.71 ± 0.09

GBSA 0.65 ± 0.06 0.64 ± 0.07 0.66 ± 0.09

Mayo PSC Risk Score 0.57 ± 0.08

MELD Score 0.53 ± 0.08

PREsTo Score 0.57 ± 0.07
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as the ratio of CA:CDCA were also found to be predic-
tive, with increased values associated with higher risk of 
CCA. Notably, increased conjugated fractions of total 
BA, CA, and CDCA were also nominally associated with 
increased risk of CCA (p < 0.05), although they were not 
statistically significant when controlling for FDR.

We evaluated the predictive power of BAs compared 
to clinical variables and laboratory parameters on the BA 
cohort, with the most frequently selected features shown 
in Fig. 2. When only BAs were included in the modeling, 
RSF had the best average C-index of 0.66 (std: 011), with 
CDCA being the most frequently selected feature from 
the recursive feature elimination process, followed by 
conjugated fraction of CDCA and conjugated fraction 
of CA (Fig.  2a). While the GBSA model did not per-
form as well (average C-index of 0.61, std: 0.11), feature 
importance was similar to that of RSF. When only clini-
cal variables and laboratory parameters were included in 
the modeling, CoxPH performed best, with an average 
C-index of 0.64 (std: 0.11) (Fig.  2b). The gain in perfor-
mance using BA variables compared to clinical variables 
and laboratory parameters was significant for GBSA 
(p = 0.036) and marginally significant for RSF (p = 0.054). 
Whereas, the loss in performance using BA variables 
for CoxPH model was not significant (p = 0.572). When 
selected clinical variables, laboratory parameters, and 
BAs were combined, the RSF and GBSA models had 
improved performance compared to when using only the 
clinical/laboratory variables alone (p < 0.01) (Fig. 2c). Per-
formance when combining all variables was comparable 
to using BAs alone.

Discussion
In this study, we report that longer history of IBD and 
PSC as well as higher bilirubin and CA 19–9 were found 
to be the most important predictors of CCA in PSC 
patients. We showed that clinical variables and labo-
ratory parameters predicted CCA significantly better 
than the commonly used risk scores. The results were 
generalizable over the course of PSC, showing similar 
performance at 2- and 5- years post PSC diagnosis. By 
studying a subset of patients, we found that BAs margin-
ally improved CCA prediction beyond clinical variables 
and routine laboratory parameters.

CCA is one of the most common causes of morbidity 
and mortality in patients with PSC. Accurate biomark-
ers with high sensitivity and specificity for prediction of 
CCA in PSC are lacking. Worsening of liver biochemistry 
or cholestasis, and onset of symptoms such as abdomi-
nal pain and jaundice should raise the suspicion for CCA. 
However, many patients with PSC complicated by CCA 
are asymptomatic. Recently updated guidelines from the 
American Association for the Study of Liver Diseases 
recommend routine screening for CCA in patients with 
PSC by cross sectional imaging with or without CA 19–9 
[33]. However, the imaging modality and the optimal cut-
off CA 19–9 to be used for screening are stil a subject of 
debate [33]. Thus, identification of markers and strategies 
to build predictive models of CCA represents a signifi-
cant area of unmet clinical need in PSC.

Our analysis showed that longer IBD duration was the 
most significant risk factor for CCA at baseline, which 
is in keeping with a previous report [7]. It is beyond the 
scope of this paper to further examine the link between 

Fig. 1  Permutation feature importance of the baseline clinical variables and laboratory parameters. The height of each rectangle shows the 
average importance (across cross-validation folds) of that feature. The error bars represent the 95% confidence interval. Features were ranked in a 
descending order according to the sum of their feature importance across models and cross-validation folds. Only the top 10 features are shown. 
Abbreviations: CA 19–9, carbohydrate antigen 19–9; CoxPH, Cox Proportional Hazards; RSF, Random Survival Forest; GSBA, Gradient Boosting 
Survival Analysis; IBD, inflammatory bowel disease; INR, international normalized ratio; PSC, primary sclerosing cholangitis
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IBD and CCA carcinogenesis, but we hypothesize that 
the prolonged bowel wall injury results in interrup-
tion of the intestinal barrier, which in turn leads to 
increased exposure of the biliary tree to tumor-pro-
moting substances such as bacterial products/toxins 

and toxic BAs [34]. PSC duration at baseline was also 
a significant risk for CCA, which is not surprising, and 
highlights the ongoing risk of CCA in these patients.

CA 19–9 is a well-known serum tumor marker that 
has been found to be overexpressed by epithelial tumors 

Table 5  Univariate associations with development of CCA in the bile acid cohort

All bile acids except the ratios were log-transformed (base 10)

q-values are the Benjamini–Hochberg procedure adjusted p-values

Variable N Hazard Ratio (95% CI) p-value q-value

CDCA 300 0.34 (0.16–0.72) 0.004 0.18

ConFrac LCA 217 37.44 (2.14–656.64) 0.013 0.18

CA:CDCA 300 1.48 (1.08–2.03) 0.015 0.18

ConFrac HDCA 178 6.66 (1.4–31.76) 0.017 0.18

ConFrac all BA 300 95.31 (1.75–5180.88) 0.025 0.21

ConFrac CA 300 460.41 (1.48–143,616.99) 0.036 0.23

ConFrac CDCA 300 273.58 (1.17–64,085.63) 0.044 0.23

CA 300 0.45 (0.2–0.99) 0.048 0.23

GTratio DCA 223 0.88 (0.77–1) 0.055 0.23

UDCA 300 0.66 (0.44–1.01) 0.056 0.23

GTratio all BA 299 0.96 (0.92–1) 0.061 0.23

TCA​ 300 1.47 (0.96–2.27) 0.079 0.27

GHDCA 300 2.36 (0.87–6.42) 0.094 0.28

GTratio CDCA 299 0.93 (0.85–1.01) 0.095 0.28

GTratio UDCA 247 0.98 (0.96–1) 0.109 0.30

Total UDCA 300 0.74 (0.51–1.08) 0.124 0.32

GUDCA 300 0.75 (0.52–1.09) 0.135 0.32

TDCA 300 1.46 (0.89–2.41) 0.138 0.32

GTratio LCA 130 0.82 (0.63–1.07) 0.151 0.33

GTratio CA 295 0.93 (0.84–1.03) 0.163 0.33

GCA​ 300 1.47 (0.84–2.55) 0.177 0.35

TLCA 300 1.66 (0.75–3.72) 0.214 0.40

TCDCA 300 1.38 (0.82–2.33) 0.232 0.41

Total CA 300 1.4 (0.79–2.48) 0.246 0.42

HDCA 300 0.53 (0.17–1.67) 0.279 0.46

ConFrac DCA 261 2.58 (0.39–16.94) 0.323 0.51

LCA 300 0.68 (0.29–1.56) 0.359 0.55

DCA 300 0.8 (0.49–1.31) 0.384 0.56

Total HDCA 300 0.75 (0.3–1.9) 0.549 0.76

ConFrac UDCA 294 2.18 (0.16–29.76) 0.559 0.76

TUDCA 300 0.88 (0.54–1.44) 0.622 0.82

GDCA 300 1.12 (0.71–1.76) 0.637 0.82

Total DCA 300 1.09 (0.71–1.68) 0.682 0.85

GLCA 300 1.1 (0.58–2.11) 0.771 0.93

GCDCA 300 1.09 (0.51–2.34) 0.816 0.94

Total Bile Acids 300 0.93 (0.45–1.94) 0.850 0.94

CA:DCA 261 1 (1–1) 0.864 0.94

Total CDCA 300 1.06 (0.49–2.29) 0.874 0.94

Total LCA 300 1.03 (0.58–1.84) 0.920 0.97

CDCA:(LCA + HDCA + UDCA) 294 1 (1–1) 0.972 1.00

THDCA 300 0 (0–Inf ) 0.997 1.00
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of the gastrointestinal tract, such as pancreatic and bil-
iary cancers [35]. In many medical centers, CA 19–9 
is used as a screening marker for CCA in patients with 
PSC. The reported sensitivity and specificity of CA 19–9 
for detecting CCA have varied, ranging between 50%–
90% and 54%–98%, respectively [36]. While CA 19–9 
has been reported to be a useful marker for predicting 
CCA in patients with PSC [37–42], there are some limi-
tations, including its elevation in some non-CCA condi-
tions such as smoking as well as in patients with benign 
biliary obstruction and ascending cholangitis [43]. Our 

univariate analysis showed that a tenfold increase in CA 
19–9 level was associated with a 1.8-fold increase in the 
hazard of developing CCA, lending strength to the pro-
posed value of CA 19–9 in predicting CCA in patients 
with PSC. Previous studies have reported conflicting 
findings regarding the utility of bilirubin in prediction of 
CCA in PSC patients. Burak et al. reported a univariate 
CoxPH model in which serum bilirubin was not found to 
be a significant risk factor for CCA development in PSC 
[8]. However, we found bilirubin to be statistically signif-
icant in both univariate and multivariate models, which 

Fig. 2  Most frequently selected features for the bile acid cohort with predictive modeling C-index shown in mean ± std estimated from 20-fold 
Monte Carlo cross-validation. The recursive feature elimination process selected three most important features in each of the 20 cross-validation 
folds. The height of each rectangle shows the number of times a feature was selected out of the 20 folds. Features were ranked in a descending 
order according to the sum of their selected times across models and cross-validation folds. Only the top 10 features are shown. Note that the 
feature selection process was only performed for a only bile acids and for b only clinical variables and laboratory parameters, and the selected 
features from a and b were combined to train the models in (c). Abbreviations: CA 19–9, carbohydrate antigen 19–9; CoxPH, Cox Proportional 
Hazards; RSF, Random Survival Forest; GSBA, Gradient Boosting Survival Analysis; IBD, inflammatory bowel disease; INR, international normalized 
ratio; PSC, primary sclerosing cholangitis. For a complete list of abbreviations of the bile acids please see abbreviations
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is in keeping with multiple previous reports [41, 44, 45]. 
The relationship between bilirubin and CCA develop-
ment is not clear, but we speculate that the serum bili-
rubin concentration rises in response to formation of 
biliary strictures which could lead to future development 
of CCA.

Although studies have identified risk factors for CCA 
in patients with PSC, individualized predictive models 
that can estimate the probability of CCA-free survival 
are lacking. To the best of our knowledge, we constructed 
the first individualized predictive models for predict-
ing CCA-free survival in PSC. Although higher C-index 
values are desired, we believe our work represents a criti-
cal addition to the existing literature since our cohort is 
one of the largest single-center populations with well-
documented PSC. Our models predicted CCA in PSC 
significantly better than the commonly used risk scores, 
including the Mayo PSC Risk Score, the MELD score, 
and the PREsTo score. While the Mayo PSC Risk Score 
and the MELD score used death as endpoints and the 
PREsTo used hepatic decompensation (ascites, variceal 
hemorrhage, or encephalopathy) as endpoint, they do 
not consider risk factors for CCA, such as IBD duration 
or CA19-9, which were shown to be the most important 
predictors in our individualized models. Data from our 
study substantiate the notion that CCA in PSC presents 
a complex interaction of clinical, biochemical, genetic, 
and environmental factors that it might not be possible 
to identify only using the routinely obtained clinical and 
laboratory variables.

Part of the putative complex interaction might be 
explained by the BAs. We hence examined plasma BA 
data as an additional data modality for the prediction 
of CCA development in PSC. Our results showed that, 
in the BA cohort, BAs predicted CCA with a C-index 
of 0.66. To put this number in context, in the same BA 
cohort, clinical variables and laboratory parameters pre-
dicted CCA with a C-index of 0.64, slightly worse than 
the BAs-based prediction. Combining selected BAs, 
clinical variables and laboratory parameters resulted in 
the best predictive performance with a C-index of 0.67. 
It is worth noting that the relatively small number of 
CCA cases available for training (15 CCA cases on aver-
age) hindered the models’ abilities to accurately learn the 
relationships between predictors and CCA. Furthermore, 
we only selected three features (six features in the com-
bined scenario) to reduce overfitting. Since our prelimi-
nary results for the BA cohort suggest that BAs improved 
CCA prediction beyond clinical variables and routine 
laboratory parameters, it would be valuable to study the 
predictability of BAs in a larger patient population. A 
larger cohort would enable the models to accurately learn 

the relationships and retain richer information from a 
wider set of features.

AI involves computer programs,which can execute 
functions that we associate with human intelligence, 
such as learning [46]. AI techniques have shown prom-
ises in predicting disease outcomes and are increasingly 
being used in gastroenterology [47]. To understand the 
utility of AI in predicting CCA development in PSC, 
we implemented two AI algorithms, RSF and GBSA, 
and compared them with the classical CoxPH model. 
CoxPH relies on the proportional hazards assumptions, 
whereas RSF and GBSA are free of such assumptions, 
and hence have the power to uncover complex relation-
ships between predictors and outcomes. However, when 
sample size is small, RSF and GBSA are prone to overfit 
the random fluctuations in the training data, leading to 
suboptimal generalizability on the test set. This is indeed 
the case in our analysis, especially for GBSA. CoxPH and 
RSF had the best performance when predicting CCA 
with clinical variables and laboratory parameters in the 
baseline cohort. Even though we consciously regularized 
the RSF and GBSA models through our hyperparam-
eter choices, we still observed a large gap between their 
training and testing performance, indicating the presence 
of overfitting. In the BA cohort, using clinical variables 
and laboratory parameters only, CoxPH again had the 
best performance, suggesting the proportional hazards 
assumption may be well suited to capture the relation-
ship between clinical variables, laboratory parameters, 
and CCA. However, under this assumption, potential 
nonlinear effects and interactions of the predictors will 
be ignored. This may be why RSF had better performance 
than CoxPH when predicting CCA using BAs as predic-
tors. Overfitting in RSF and GBSA was also observed 
in the BA cohort, suggesting that a larger BA cohort is 
needed to mitigate overfitting, which may help realize the 
powerful capacity of the AI algorithms.

Our study has limitations. Although it provides valu-
able preliminary results on predicting CCA in patients 
with PSC and showed that individualized predictive 
models were significantly better than the commonly 
used risk scores, models with better performance are 
needed for direct clinical utility. We believe the pre-
sent work sets the stage for future efforts aimed at 
development of more accurate CCA risk determina-
tion tools, which are desperately needed in clinical 
practice. The use of cross-sectional data limited our 
ability to comment on the importance of different risk 
factors over time, this could be addressed with longitu-
dinal data. The patients in this study were largely seen 
in academic tertiary high-volume medical centers, and 
thus are more likely to be inherently complex cases. 
Furthermore, the frequency of CCA cases among our 
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PSC population is higher compared to other medical 
centers due to the fact that our institution is a referral 
center for these diseases. Consequently, the results of 
our study may not necessarily apply to the entire PSC 
population. It should be noted that the clinical appli-
cability of our results requires cross-validation in an 
independent PSC cohort. The criteria we use for CCA 
diagnosis may be different from other medical centers. 
The diagnosis of CCA can be extremely challenging 
especially in patients with PSC due to its silent clinical 
presentation and lack of accurate and sensitive mark-
ers. It requires high clinical suspicion combined with 
comprehensive laboratory, imaging, and endoscopic 
evaluation. Positive cytology, although 100% specific 
for CCA, has very low sensitivity, as low as 20% [48]. 
Thus, given the limitations of conventional cytology, 
other cytology techniques have been recently devel-
oped. For example, Mayo Clinic investigators have 
developed and use biliary FISH (fluoresence in  situ 
hybridization) as an additional tool for diagnosis of 
CCA, and reported a 65% sensitivity for detecting CCA 
without compromise to specificity [15]. In one study, 
biliary FISH polysomy was observed in 77% of CCA 
cases [49]. At our medical center, we use the combina-
tion of a malignant stricture and biliary FISH polysomy 
as criteria for the diagnosis of CCA. In our study, the 
diagnosis of CCA in a few cases was established based 
on a malignant appearing stricture and persistent rise 
in serum CA 19–9 not explained by bacterial cholan-
gitis. Thus, there is a possibility that a small number 
of patients might not had CCA. The serum IgG4 lev-
els were available for only one quarter of the patients 
included. However, we note that no PSC patient in 
the current study cohort had clinical or imaging fea-
tures to suggest IgG4-related disease (IgG4-RD), and 
therefore only a very small number of patients could 
possibly have IgG4-related sclerosing cholangitis 
(IgG4-SC) and misclassified as having PSC. Differ-
ent phenotypes of CCA (for example by location, i.e., 
intrahepatic- and extrahepatic CCA) were combined 
in our analysis; models based on different CCA phe-
notypes should be considered in future studies. While 
we presented plasma BA signatures of CCA in PSC 
and showed promises for improving CCA prediction, a 
larger cohort is needed to validate our results. Moreo-
ver, imaging techniques such as magnetic resonance 
imaging/magnetic resonance cholangiopancreatogra-
phy (MRI/MRCP) provide detailed images of bile ducts 
and surrounding tissue, and their use has been shown 
to predict with good accuracy PSC-related complica-
tions, such as time to hepatic decompensation and 
liver-related death, [50–53]. However, data on using 
MRI/MRCP to predict CCA in patients with PSC are 

lacking. Adapting our approach to incorporate imag-
ing data might lead to better prediction models in the 
future. Finally, the complexity of PSC and CCA in PSC 
requires comprehensive examination and integration 
of genetic and environmental factors to elucidate the 
pathophysiology and improve the prediction models. 
This study is a first step towards a multi-omics based 
model for individualized CCA prediction in PSC.

Conclusions
In a large well-documented PSC cohort, we identified 
clinical and laboratory risk factors for CCA develop-
ment and examined a statistical learning method and 
two AI methods that predicted CCA occurrence sig-
nificantly better than common risk scores. We explored 
the use of BAs as novel biomarekers, which showed 
promise for improving CCA prediction. Larger stud-
ies and novel biomarker studies are needed for clinical 
adoption of these models to improve the care of these 
patients.
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