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Abstract 

Background  Esophageal squamous cell carcinoma (ESCC) is closely correlated with malignant biological character-
istics and poor survival. Recently, chemokines have been reported to be involved in the progression of tumors, and 
they can also regulate the tumor microenvironment. However, it is unclear whether chemokine-related long noncod-
ing RNAs (lncRNAs) affect the prognosis of ESCC.

Methods  We downloaded RNA-seq and clinical data from the Gene Expression Omnibus (GEO database. 
Chemokine-related lncRNAs were screened by differential analysis and Pearson correlation analysis. Then, prognosis-
related lncRNAs were screened by using univariate COX regression, and risk models were constructed after the least 
absolute shrinkage and selection operator (LASSO) regression and multivariate COX regression. The predictive value 
of the signature was assessed using Kaplan–Meier test, time-dependent receiver operating characteristic (ROC) 
curves, decision curve analysis (DCA) and calibration curve. Moreover, a nomogram to predict patients’ 1-year 3-year 
and 5-year prognosis was constructed. Gene set enrichment analyses (GSEA), Gene Ontology/Kyoto Encyclopedia of 
Genes and Genomes (GO/KEGG), evaluation of immune cell infiltration, and estimation of drug sensitivity were also 
conducted.

Results  In this study, 677 chemokine-related lncRNAs were first obtained by differential analysis and Pearson correla-
tion. Then, six chemokine-related lncRNAs were obtained by using univariate COX, LASSO and multivariate COX to 
construct a novel chemokine-related lncRNAs risk model. The signature manifested favorable predictive validity and 
accuracy both in the testing and training cohorts. The chemokine-related signature could classify ESCC patients into 
two risk groups well, which indicated that high-risk group exhibited poor prognostic outcome. In addition, this risk 
model played an important role in predicting signaling pathways, immune cell infiltration, stromal score, and drug 
sensitivity in ESCC patients.
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Conclusions  These findings elucidated the critical role of novel prognostic chemokine-related lncRNAs in prognosis, 
immune landscape, and drug therapy, thus throwing light on prognostic evaluation and therapeutic targets for ESCC 
patients.
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Introduction
As the seventh most common type of tumor [1], esopha-
geal cancer (EC) is histologically classified into two sub-
types: esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC) [2]. To be specific, 
ESCC accounts for > 90% of EC, thus it becomes the 
main EC histologic type, especially in high-incidence 
areas of Asia [3]. The past decades have witnessed the 
major progress in diagnosis and management of ESCC, 
such as, surgical techniques, radiotherapy, and chemo-
therapy. However, most ESCC patients still have suffered 
poor prognosis mainly caused by delay in diagnosis [4, 5]. 
Consequently, it is urgent to identify reliable biomarkers 
associated with the prognosis of ESCC in an aim to pro-
mote disease stratification and therapeutic measure.

Many noncoding RNAs including long noncoding 
RNAs (lncRNAs) could also be identified as diagnostic 
biomarkers or prognostic factors in ESCC [6, 7]. LncR-
NAs are composed of sequences > 200  bp, and lack 
protein-coding capabilities. Numerous lncRNAs play a 
crucial role in the tumor development, such as partici-
pating in gene regulation and various biological functions 
at the transcriptional, post-transcriptional and epigenetic 
levels [8–10]. In addition to gene regulation, lncRNAs are 
also involved in the regulation of many biological pro-
cesses related to tumorigenesis [11]. Mounting evidence 
suggested that lncRNAs play an important role in prog-
nosis prediction in ESCC. For example, prognostic signa-
tures such as lactic acid metabolism, ferroptosis-related 
lncRNA, and m7G-related lncRNA were proved to have 
favorable prognosis prediction in ESCC [12–14]. In addi-
tion, lncRNA based model can be used as therapeutic 
target, which could forecast the effect of immunotherapy 
or chemotherapy [15, 16].

Chemokines are a large class of cytokines with chemo-
tactic activity. Chemokines have been reported to mod-
ulate cancer progression and may serve as therapeutic 
targets [17]. For example, CC and CXC chemokines can 
promote tumor angiogenesis, which further promotes 
tumor growth and metastasis [17]. Previous study also 
indicated that chemokine-related genes may exert impor-
tant effects in the infiltration of various immune cells and 
the tumor microenvironment (TME), thereby affecting 
tumor progression. Specifically, they can induce anti-
tumor immune responses by increasing interferon-γ 
expression by regulating T cell infiltration, and generate a 

tumor-promoting microenvironment by recruiting regu-
latory T cells (Treg) or tumor-associated macrophages 
(TAMs) [18, 19]. For example, CCL24 can contribute to 
the progression of multiple cancers through M2 mac-
rophage polarization, angiogenesis, invasion and migra-
tion, and eosinophil recruitment [20].

Indeed, the identification of the TME is associated 
with tumorigenesis, progression, and novel immuno-
therapeutic targets. TME may also provide meaningful 
clues for future treatment of ESCC, particularly immu-
notherapy. At present, Clinical and biological function 
of chemokine-related lncRNA still need to be further 
investigated. Associations between chemokine-related 
lncRNAs and the immune microenvironment of ESCC 
have yet not been reported. Therefore, in this study, we 
aimed to construct and validate a lncRNA signature 
model consisting of six chemokine-related lncRNAs and 
other clinical indicators derived from the Gene Expres-
sion Omnibus (GEO) database. Apart from that, we also 
planned to clarify the correlation between chemokine-
related signature and immune cell infiltration, and fur-
ther explore potential chemotherapeutic agents.

Methods
Data collection and pre‑processing
The GSE53624 and GSE53622 datasets were obtained 
from the GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/). In brief, the GSE53624 dataset includes 119 
ESCC patients and 119 paired adjacent normal samples 
while GSE53622 dataset incorporates 60 ESCC patients 
and 60 paired adjacent normal samples. In each dataset, 
patients lacking complete follow-up information and 
without survival days were excluded. All samples were 
divided into training and validation sets in a ratio of 75 
to 25%. The aforementioned datasets were generated 
with Agilent-038314 (GPL18109). We gained the expres-
sion values of lncRNAs from ESCC cohorts through re-
annotating microarray probes [21–23]. We also used the 
“sva” R package to batch and normalize lncRNA expres-
sion profiles. Then, expression levels of lncRNAs in 
tumor and paired adjacent normal groups were analyzed 
by the limma package, respectively, with the same param-
eters (|logFC|> 1, FDR < 0.05), and 736 DElncRNAs were 
identified. 64 chemokine genes, defined as chemokines or 
chemokine receptors, were gathered from previous liter-
ature [24–27] (Table S1). Based on these 64 chemokines, 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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we screened chemokine-related DElncRNAs by intersect-
ing them with differentially expressed lncRNAs (DElncR-
NAs). By co-expression analysis, the threshold was set to 
the correlation coefficient > 0.3 and P-value < 0.001, and 
677 chemokine-related DElncRNAs were identified. Sub-
sequently, univariate analysis was performed to deter-
mine prognosis-related chemokine-related DElncRNAs. 
A total of 39 prognostic chemokine-related DElncRNAs 
were identified.

Establishment and validation of the risk model
In brief, the training set was used to construct the risk 
model while the validation set was used for the validation 
of the risk model. Firstly, the least absolute shrinkage and 
selection operator machine learning algorithm (LASSO) 
regression analysis [28] and multivariate cox regression 
were utilized to construct the lncRNA risk model. Finally, 
6 chemokine-related lncRNAs were used to establish the 
risk model. The calculation formula of the risk score can 
be seen as follows:

In this formula, Coefi represents the coefficient 
whereas Expi represents the expression value of 
chemokine-related lncRNA, respectively. The median 
value of risk score was used as a cut-off value to separate 
the samples into high or low expression groups. Kaplan–
Meier survival analysis was used to determine the over 
survival (OS) difference between these two groups. A 
time-dependent receiver operating characteristic (ROC) 
curve was plotted to detect the predictive ability of the 
risk model. Then, heatmap was used to visualize the 
expression of the chemokine-related lncRNAs in the 
model. The predictive power of risk scores in age, gender, 
and TNM stage sub-groups was validated by stratified 
survival analysis. All analyses were further performed in 
the validation set. R package of “survivalROC”,“survival”, 
“survminer” and “pheatmap” were used in the validation 
of the risk model.

Prognostic value of the risk model
Univariate analysis and multivariate analysis were used 
to detect the independent prognostic value of the risk 
model. Kaplan–Meier survival analysis was used to deter-
mine the over survival (OS) difference among patients 
with different clinical characteristics. The ROC and cali-
bration curve were performed to validate the predictive 
ability of the risk model. To facilitate the prediction of 1-, 
3-, and 5- year overall survival (OS) probability in ESCC 
patients, a nomogram was then developed using the “sur-
vival” and “regplot” R packages. The calibration curve 

Risk score (patients) =

n

i=1

Coefi ∗ Expi

was acquired to assess the accuracy of the nomogram by 
using “rms” package of R.

Functional enrichment analysis
Gene set enrichment analyses (GSEA) were performed 
to define the lncRNAs signatures in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [29–31]. Sub-
sequently, we obtained and evaluated the difference in 
immune-related pathways between the high-risk group 
and low-risk group through the single-sample gene set 
enrichment analysis (ssGSEA) [32]. In ssGSEA analysis, 
the R packages of “limma”, “GSVA”, “GSEABase”, “ggpubr”, 
“reshape2” were used.

Evaluation of immune cell infiltration
To predict the proportion of infiltrating immune cells in 
tumors, we used the CIBERSORT bioinformatic com-
putational tool [33]. The reliability of the deconvolu-
tion method was used for transcriptional enrichment of 
immune cell types. and the algorithm used a default sig-
nature matrix with perm = 1000 times for analysis. The 
“corrplot” package was used to visualize the correlation 
among 22 types of tumor-infiltrating immune cells. Then, 
we evaluated the correlation between chemokine-related 
lncRNA and stromal score, immune score, estimate 
score and tumor purity using the ESTIMATE algorithm. 
The analysis was visualized by R packages of “ggpubr”, 
“ggplot2” and “data.table”.

Estimation of drug response in clinical samples
Drug sensitivity was obtained use the R package “pRRo-
phetic”, which predicted 50% inhibitory concentration 
(IC50) of common drugs for ESCC. The predictive model 
was trained on expression profiles and drug response 
data of solid cancer cell lines by default tenfold cross-val-
idation. Following that, we determined drug sensitivities 
in different risk groups, and screened for potential thera-
peutic agents that might affect patient survival.

Statistical analysis
For continuous variables, the t-test or Wilcoxon test was 
used to compare the difference between two groups, and 
one-way ANOVA or Kruskal − Wallis was used to com-
pare the.difference among more than two groups. For 
categorical variables, χ2 test was used to examine the 
differences between groups. Survival analysis was per-
formed based on Kaplan–Meier and log-rank tests. Sta-
tistical significance was considered to be at two-sided 
P < 0.05. All analyses were performed with R version 4.0.2 
(http://​www.R-​proje​ct.​org).

http://www.R-project.org
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Results
The process of data extraction, processing is shown in 
Fig.  1. First, we acquired the expression profiling data 
of 179 tumor samples and corresponding clinical infor-
mation from GEO. The human GFT file was utilized 
to annotate the gene symbols in order to acquire the 
expression data of lncRNAs. We obtained 736 DEGs 
between tumor and paired adjacent normal groups, of 
which 375 genes were upregulated and 361 genes were 
downregulated (Fig.  2). Subsequently, we obtained 64 
chemokine-related genes, including chemokines and 
chemokine receptors from previous literature. After 
Pearson’s correlation analysis (Pearson ratio > 0.3 and 
P < 0.001), a total of 677 chemokine-related DElncRNAs 
were identified, and will be used for the subsequent 
analyses.

Construction and validation of the risk model
After obtaining chemokine-related lncRNAs, we per-
formed univariate cox analysis in order to combine the 
survival status with lncRNA expression data. 39 prognos-
tic chemokine-related lncRNAs were obtained (Table 1). 
Then, the training set was used for the establishment of 
the risk model. First, LASSO regression analysis iter-
ates 500 times to reduce the dimension of data features, 
which generated 6 optimal candidates (Fig.  3A, B). For-
est plot showed the relationship between the six selected 
lncRNAs and prognosis (Fig.  3C, D). Then, multivariate 
cox analysis was performed to construct a risk model. By 
using a heatmap, we visualized the correlation between 
chemokines and 6 lncRNAs (Fig.  3E). The expression 
of lncRNAs in the paired adjacent normal and tumor 
groups is shown in Fig. 3F. According to the median risk 
score, patients were divided into a high-risk group and a 

Fig. 1  Flow chart of the study. GEO, Gene Expression Omnibus; DEG, differentially expressed gene; LASSO, least absolute shrinkage and selection 
operator; GO/KEGG, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene set enrichment analyses
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low-risk group (Fig.  4A). The expression of lncRNAs in 
the low-risk and high-risk group is shown in Fig. S1. To 
further validate the efficiency of the risk model in pre-
dicting the survival of ESCC patients, survival analy-
sis was conducted. And we found that low-risk group 
patients had a better survival outcome than high-risk 
patients (Fig. 5A). Next, we tested the predictive ability of 
the risk model by using a time-dependent receiver oper-
ating characteristic (ROC) curve, decision curve analy-
sis (DCA) and calibration curve. For example, the AUC 
values in the training set were 0.670, 0.749 and 0.757 at 
one- year, three- year and five- year (Fig.  6A), respec-
tively. In terms of discrimination and calibration, these 
results revealed that the risk model has enough efficiency 
in predicting the survival of ESCC patients (Fig. 6B, C). 
Moreover, we observed that there were more deaths in 
the high-risk group than in the low-risk group.

To further validate the performance of the risk model, 
we conducted comprehensive analysis in the validation 
set. First, we also further explored the median value of 
the risk score in the validation set and found that it could 
better distinguish between high-risk and low-risk groups 
(Fig. 4B). Second, we observed that in the validation set, 

as the risk scores increased, the number of patients at risk 
decreased at a higher rate (Fig. 5B). Although the P-value 
was not significant, this may be because the validation set 
had a small sample size of only 45. We also did subgroup 
analysis in different groups stratified by age, gender, and 
TNM stage and found that the most significant difference 
in survival between the high-risk and low-risk groups 
was observed in the female population (Fig. S2). To fur-
ther explore whether risk model could better predict 
survival or death, we tested the discrimination and cali-
bration ability of risk model in validation set by using a 
time-dependent ROC curve, DCA curve and calibration 
(Figs. S3, S4, S5). As expected, we observed that our risk 
model had a relatively preferable performance. For exam-
ple, the calibration curves for the 3- and 5-year survival 
rates were close to the diagonal line, indicating that the 
model had good calibration.

Prognostic value of the risk model
As shown in Table  2, no difference was observed in 
clinical characteristics between high-risk and low-risk 
patients, indicating that the baseline conditions of two 
groups were balanced and comparable. To validate the 

Fig. 2  Volcano plot for differential expressed gene analysis
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independent prognostic value of the risk model, univari-
ate analysis and multivariate analysis were performed. 
We found that the risk score could be used as an inde-
pendent prognostic variable (Fig. 6D, E). Combined with 
other clinical characteristics including age, sex and TNM 
stage, we constructed a predictive model to predict 1-, 
3-, 5- year survival in the entire set. ROC, DCA, and 

calibration curve were also conducted to evaluate the 
performance of the clinical model both in the training 
set (Figs. S6, S7, S8) and testing set (Figs. S9, S10, S11). 
In addition, nomogram was plotted to help physicians to 
estimate the probability of survival of patients (Fig. 6F).

Functional enrichment analysis
To detect the difference in KEGG enrichment between 
the low-risk and high-risk patients, gene set enrichment 
analyses (GSEAs) was performed. Pathways obviously 
enriched in the high-risk group were calcium signal-
ing, cell adhesion, DNA replication, dorso ventral axis 
formation, melanogenesis, type II diabetes, and WNT 
signaling, most of which play crucial roles in tumor 
development and migration (Fig.  7A, B). To further 
explore the enriched pathways of DEGs between high-
risk and low-risk groups, we performed KEGG enrich-
ment analysis. In total, 40 enriched Gene Ontology GO 
terms were obtained and the top 20 were shown in Fig. 
S12, including herpes simplex virus 1 infection, vascular 
smooth muscle contraction, cytokine-cytokine receptor 
interaction, signaling pathways regulating pluripotency 
of stem cell, calcium signaling pathway, WNT signaling 
pathway and so forth.

Evaluation of immune cell infiltration
Based on the above results, we hypothesized that the 
low-risk and high-risk groups have different immune 
microenvironment statuses. Thus, we used the CIBER-
SORT analysis to calculate the infiltration status. As 
demonstrated in the Fig. 8A, the infiltration pattern of 22 
immune cells differed between low-risk group and high- 
risk group. Further, we found that risk score had a corre-
lation with macrophages M2 and monocytes (Fig. 8B). In 
addition, we observed that high-risk group patients had 
a higher infiltration of macrophages M2 yet a lower infil-
tration of dendritic cells activated (Fig. 8C). These results 
suggested an immune-suppressive TME with predicted 
malignant biological behaviors of ESCC cells in high-risk 
group. Further, in the TME, the average Immune Score, 
Stromal Score, and ESTIMATES Score were markedly 
higher in the high-risk group while the Tumor Purity was 
markedly higher in the low-risk group, which predicted a 
better prognosis. (Fig. 8D).

Estimation of drug response in clinical samples
We used IC50 to evaluate chemotherapeutic drug 
sensitivity, including Cisplatin, Paclitaxel, Gefitinib, 
Bosutinib, Erlotinib, Lapatinib, Bicalutamide, and 
Vinorelbine. The results demonstrated that the IC50 
of Paclitaxel, Gefitinib, Bosutinib, Erlotinib, Lapatinib 
and Bicalutamide were significantly different in the 
high- and low-risk groups (Fig. 9). It can be seen that 

Table 1  Univariate analysis was performed to evaluate to 
predict chemokine-related lncRNA and OS

Symbol HR 95% CI P Value

ACTA2-AS1 1.25 (1.00, 1.55) 0.046

ADAMTS9-AS1 1.28 (1.07, 1.53) 0.006

ANKRD10-IT1 1.56 (1.23, 1.99) < 0.001

C8orf49 0.72 (0.57, 0.91) 0.007

CYP1B1-AS1 1.22 (1.03, 1.45) 0.02

DLEU7-AS1 1.21 (1.00, 1.45) 0.047

DLX6-AS1 0.74 (0.56, 0.96) 0.025

EWSAT1 0.69 (0.54, 0.88) 0.002

FENDRR 1.19 (1.03, 1.37) 0.02

FLJ40288 0.79 (0.63, 0.99) 0.036

FLJ42351 0.71 (0.54, 0.94) 0.016

HAND2-AS1 1.17 (1.05, 1.29) 0.003

HCG27 0.84 (0.72, 0.98) 0.022

HPYR1 0.79 (0.62, 0.99) 0.042

JMJD1C-AS1 1.21 (1.02, 1.44) 0.028

KCNQ1OT1 1.37 (1.06, 1.76) 0.016

LINC00515 1.23 (1.02, 1.47) 0.03

LINC00623 1.34 (1.09, 1.66) 0.006

LINC00675 0.85 (0.75, 0.95) 0.005

LINC00864 0.72 (0.53, 0.96) 0.028

LINC01266 1.18 (1.02, 1.36) 0.028

LINC01659 0.85 (0.75, 0.96) 0.007

LINC01749 0.75 (0.61, 0.91) 0.004

LINC01829 1.23 (1.03, 1.47) 0.02

LOC100128573 0.86 (0.74, 1.00) 0.048

LOC100505817 0.91 (0.86, 0.97) 0.005

LOC100507373 0.67 (0.48, 0.92) 0.013

MAMDC2-AS1 1.31 (1.05, 1.65) 0.018

MCPH1-AS1 0.75 (0.58, 0.96) 0.021

NDUFB2-AS1 0.68 (0.51, 0.92) 0.011

NUP50-AS1 0.83 (0.71, 0.98) 0.026

PRG1 0.81 (0.72, 0.91) < 0.001

ROR1-AS1 1.48 (1.20, 1.84) < 0.001

TINCR 0.78 (0.65, 0.93) 0.006

UCA1 0.83 (0.74, 0.95) 0.005

UG0898H09 1.18 (1.01, 1.38) 0.034

USP12-AS2 0.58 (0.37, 0.91) 0.017

WFDC21P 0.88 (0.79, 0.99) 0.033

WT1-AS 0.47 (0.31, 0.72) 0.001
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Fig. 3  Construction of the risk model. A, B The process and result of LASSO regression. C, D Univariate and multivariate analyses were performed to 
investigate the relationship between six chemokine-related lncRNA and OS. E The correlation between chemokines and lncRNAs in the risk model. 
F The expression of six lncRNA in the cancer group and normal group (*p < 0.05, **p < 0.01, ***p < 0.001)

Fig. 4  The survival status of the patients in high-risk and low-risk groups. A The survival status of the patients in high-risk and low-risk groups in the 
training dataset. B The survival status of the patients in high-risk and low-risk groups in the testing dataset
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these drugs were more sensitive in the low-risk group. 
Thus, these drugs were not recommended for high-
risk patients to chemotherapy.

Discussion
Numerous studies have reported that chemokine 
modification events play an important role in tumor 

Fig. 5  Survival analysis. A Survival analysis in the training set. B Survival analysis in the testing set

Fig. 6  Performance of risk model. A ROC of risk model in the training set. B DCA of risk model in the training set. C Calibration curve in the training 
set. D ROC curves were performed to validate the superiority of the risk score in predicting patient’ survival (Univariate analysis). E ROC curves 
were performed to validate the superiority of the risk score in predicting patient’ survival (Multivariate analysis). F Nomogram was plotted for the 
prediction of overall survival time
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progression, such as, promoting cancer cell differentia-
tion, tumor formation, and metastasis [34]. Studies have 
also highlighted that chemokines are involved in a vari-
ety of biological processes, including stem cell renewal, 
immune response, drug resistance, and tumor microen-
vironment remodeling [35]. Notably, tumor cells can pro-
duce many exosomes that may contain chemokines and 
lncRNAs, which can transmit signals between tumor cells 
and promote their growth and metastasis [36]. For exam-
ple, Yura M et  al. [37] found that the increased expres-
sion level of CCR7 in ESCC cells consequently increased 
their invasive ability and malignancy, which may result 
in a worse prognosis for ESCC patients. Guo J et al. [38] 

revealed that CXCL12/CXCR7 regulates EMT and other 
malignant processes by activating the STAT3 pathway 
to accelerate the growth and metastasis of esophageal 
cancer. A novel prognostic chemokine-related lncRNA 
model may improve monitoring and management of 
malignancies including ESCC.

In this study, we first screened chemokine-related 
lncRNAs by differential analysis, Pearson correlation, and 
LASSO regression. We then constructed a risk model for 
prognostic chemokine-related lncRNAs and validated 
the validity and accuracy of this model in predicting sur-
vival in ESCC patients. Further, our analysis discovered 
that the risk model played a crucial role in predicting 
immune cell infiltration, pathway enrichment, stromal 
score, and drug sensitivity in ESCC patients. In addition, 
we further analyzed the prognostic value and expres-
sion of each lncRNA in the ESCC patient model. This 
study provided clues to the progression and treatment 
of ESCC by comprehensively analyzing the characteris-
tics of prognostic chemokine-related lncRNA associated 
with the immune environment. To further investigate 
the role and value of chemokine-related lncRNAs in the 
pathogenesis of ESCC, we used LASSO-Cox regression 
analysis to identify six chemokine-related lncRNAs and 
construct a risk model. In this study, we found that six 
prognostic chemokine-related lncRNAs were expressed 
at different levels in tumor tissues and paired adjacent 
normal tissues, including LINC00675, PRG1, ROR1-
AS1, ANKRD10-IT1, UCA1, and EWSAT1. Interest-
ingly, similar to our study, Zhong YB et al. [39] also found 
that LINC00675 expression was significantly down-reg-
ulated in both ESCC tissues and cell lines. In addition, 
LINC00675 may serve as an independent predictor of 
overall survival in ESCC. Importantly, in  vitro experi-
ments showed that LINC00675 significantly inhibited 
ESCC cell proliferation, colony formation, migration, 
invasion, and EMT, and promoted apoptosis by inhibit-
ing the Wnt/β-catenin signaling pathway. Previous stud-
ies have also found that overexpression of UCA1 played 
anticancer roles in esophageal cancer cells through 
inhibiting cell proliferation, invasion and migration, col-
ony formation, and cell cycle progression [40]. Further, 
mRNA microarray analysis of overexpressed UCA1 in 
EC109 cells revealed that abnormal expression of UCA1 
also inhibited the Wnt signaling pathway [41].These find-
ings indicated the potential of UCA1 as a biomarker and 
its effect on suppressing the pathogenesis and progres-
sion of esophageal cancer in  vitro and in  vivo. Wang X 
et  al. [42] demonstrated that N-nitrosamines (NAs)-
mediated downregulation of UCA1 promoted ESCC pro-
gression through targeting hnRNP F/FGFR2/PI3k-AKT 
axis, which provides a new chemical carcinogenic tar-
get. The above findings well explain that some lncRNAs 

Table 2  Clinical characteristics of the ESCC patients from GEO 
database

Variable Low-risk 
group (N = 90)

High-risk 
group (N = 89)

P value

Age (years) 0.474

  ≤ 65 68 (75.56) 62 (69.66)

  > 65 22 (24.44) 27 (30.34)

Sex 1.000

  Female 17 (18.89) 16 (17.98)

  Male 73 (81.11) 73 (82.02)

Tobacco use 0.799

  Yes 56 (62.22) 58 (65.17)

  No 34 (37.78) 31 (34.83)

Alcohol use 0.503

  Yes 56 (62.22) 50 (56.18)

  No 34 (37.78) 39 (43.82)

Tumor grade 0.027

  Moderately 57 (63.33) 41 (46.07)

  Poorly 17 (18.89) 32 (35.96)

  Well 16 (17.78) 16 (17.98)

T stage 0.098

  T1 6 (6.67) 6 (6.74)

  T2 16 (17.78) 11 (12.36)

  T3 59 (65.56) 51 (57.30)

  T4 9 (10.00) 21 (23.60)

N stage 0.796

  N0 44 (48.89) 39 (43.82)

  N1 31 (34.44) 31 (34.83)

  N2 9 (10.00) 13 (14.61)

  N3 6 (6.67) 6 (6.74)

TNM stage 0.585

  1 6 (6.67) 4 (4.49)

  2 41 (45.56) 36 (40.45)

  3 43 (47.78) 49 (55.06)

Survival status < 0.001

  Alive 52 (57.78) 21 (23.60)

  Dead 38 (42.22) 68 (76.40)
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associated with chemokines are overexpressed in tumors 
and act as oncogenes, while others are highly expressed 
as tumor suppressor genes in paired adjacent normal tis-
sues. Also, we found that six lncRNAs were expressed 
differently in the high-risk and low-risk groups. These 

findings further suggest that lncRNAs in risk model have 
favorable research value.

Indeed, recent studies have reported that chemokine 
modifications and multiple lncRNAs can participate 
in multiple processes of tumor development [43, 44]. 

Fig. 7  Gene set enrichment analysis based on the chemokine-related lncRNAs risk model. A GSEA in the high-risk group. B GSEA in the low-risk 
group

Fig. 8  Tumor in filtrating immune cells in ESCC. A Correlation between 22 tumors in filtrating immune cells was visualized. B Correlation between 
the risk score and in filtrating level of T cells follicular helper, B cells memory, dendritic cells resting, macrophages M2, mast cells resting and 
monocytes. C Boxplots of differences in immune cell infiltration between high-risk and low-risk groups. D Difference in Stromal Score, Immune 
Score, ESTIMATE Score, and Tumor Purity between high-risk and low-risk groups
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Therefore, in order to explore whether risk models play 
a role in tumor and TME, we first performed GSEA and 
GO/KEGG enrichment analysis. We demonstrated that 
multiple cancer- and immune-related pathways were 
associated with the risk model, including calcium sign-
aling, cell adhesion, DNA replication, melanogenesis, 
type II diabetes, WNT signaling, herpes simplex virus 1 
infection, vascular smooth muscle contraction, cytokine-
cytokine receptor interaction, signaling pathways regu-
lating pluripotency of stem cell. In the future, further 
biological experiment is required to clarify these bioin-
formatics analyses. Yet these classical signaling regula-
tion pathways still imply the complexity of the ESCC 
TME ecosystem. Also, previous studies have found that 
cancer-related pathways could regulate the ESCC devel-
opment [37, 40]. For example, Fujikawa M et al. [45] indi-
cated that the interaction between stromal CCL1 and 
CCR8 on cancer cells promotes ESCC progression via 
the Akt/proline-rich Akt substrate of 40 kDa/mammalian 
target of rapamycin pathway.

The immune system plays important role in the devel-
opment of cancers, as well as immunotherapy [46]. On 
this basis, we suggested that the risk model may influence 
tumor immune processes in ESCC, including processes 
including penetration of immune cells. Our findings 
that high levels of infiltration of macrophages M2 and 
monocytes were positively correlated in high-risk group, 
which suggested that these cells are more permeable in 

high-risk patients. Previous studies have also found that 
M2 macrophages and monocytes play a tumor-promot-
ing role. On the one hand, monocytes can influence the 
tumor microenvironment through various mechanisms, 
thereby inducing angiogenesis, immune tolerance, and 
dissemination of tumor cells [47]. On the other hand, 
the massive penetration of macrophages M2 into solid 
tumors are related to EMT, tumor progression and dis-
tant metastasis, resulting in low patient survival and poor 
treatment outcomes [48]. Afterward, we revealed that 
ESCC patients in high-risk group had higher immune 
scores, stromal scores, ESTIMATE scores, and lower 
tumor purity than those in low-risk group, suggesting a 
higher degree of immune infiltration in high-risk group 
than in low-risk group. These findings are similar to pre-
vious studies in that they also found that patients with 
tumors with high immune and stromal scores had lower 
overall survival, i.e., poorer prognosis [49, 50]. It has 
also been found in the literature that more tumor-infil-
trating immune cells in high-risk group were associated 
with an increased risk of recurrence and worse survival 
[51]. Therefore, we hypothesized that unresponsiveness 
and higher immunosuppression in the TME will lead to 
worse survival in high-risk patients. These results sup-
ported this risk model as a predictor of immune status in 
ESCC patients.

In addition, risk scores were also significantly asso-
ciated with sensitivity to multiple targeted agents, 

Fig. 9  Differences in sensitivity to chemotherapeutic agents between high-risk and low-risk groups
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including the commonly used chemotherapeutic agents, 
such as, Paclitaxel, Gefitinib, Bosutinib, Erlotinib, 
Lapatinib, Bicalutamide, and some new drugs in clini-
cal practice. These data suggested that this predictive 
chemokine-related lncRNAs risk model had potential 
practical value in assessing the efficacy and sensitivity of 
various drugs.

Despite our positive findings, we recognized that there 
were still some limitations in our study. Firstly, the sam-
ple size of this study was limited, and in the next step, 
we will expand the sample size and do in-depth study of 
chemokine-related lncRNA signature for ESCC patients. 
Secondly, external validation with large sample size was 
not performed, which might cause a risk of overfitting. In 
this regard, we conducted 500 times LASSO regression 
analysis to adjust the parameters. Thirdly, the potential 
molecular mechanisms and biological functions of this 
prognostic model remained uncertain, and experimental 
studies were needed to verify these findings.

Conclusions
In conclusion, we developed a novel risk model of prog-
nostic chemokine-related lncRNAs and then validated 
the validity and accuracy of it in predicting survival for 
ESCC patients. This model also elucidated the crucial 
role of novel prognostic chemokine-related lncRNAs in 
prognosis, immune landscape, and drug therapy, thereby 
providing insights for prognosis prediction and personal-
ized treatment strategies in ESCC.
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