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Abstract 

Background: Previous studies have reported that the tumor heterogeneity and complex oncogenic mechanisms of 
proximal and distal colon cancer (CRC) are divergent. Therefore, we aim to analyze the differences between left-sided 
CRC (L_cancer) and right-sided CRC (R_cancer), as well as constructing respective nomograms.

Methods: We enrolled 335 colon cancer patients (146 L_cancer patients and 189 R_cancer patients) from The Cancer 
Genome Atlas (TCGA) data sets, and 102 pairs of color cancer tissue and adjacent normal tissue (51 L_cancer patients 
and 51 R_cancer patients) from our hospital. Firstly, we analyzed the differences between the L_cancer patients and 
R_cancer patients, and then established the L_cancer and R_cancer prognostic models using LASSO Cox.

Results: R_cancer patients had lower survival than L_cancer patients. R_cancer patients had higher ESTIMATE and 
immune scores and lower tumor purity. These patterns of expression of immune checkpoint-related genes and TMB 
level were higher in R_cancer than in L_cancer patients. Finally, we using Lasso Cox regression analyses established 
a prognostic model for L_cancer patients and a prognostic model for R_cancer patients. The AUC values of the risk 
score for OS in L_cancer were 0.862 in the training set and 0.914 in the testing set, while those in R_cancer were 0.835 
in the training set and 0.857 in the testing set. The AUC values in fivefold cross-validation were between 0.727 and 
0.978, proving that the two prognostic models have great stability. The nomogram of L_cancer included prognostic 
genes, age, pathological M, pathological stage, and gender, the AUC values of which were 0.800 in the training set 
and 0.905 in the testing set. Meanwhile, the nomogram of R_cancer comprised prognostic genes, pathological N, 
pathological T, and age, the AUC values of which were 0.836 in the training set and 0.850 in the testing set. In the 
R_cancer patients, high-risk patients had a lower proportion of ‘B cells memory’, ‘Dendritic cells resting’, immune score, 
ESTIMATE score, immune checkpoint-related genes, and HLA-family genes, and a higher proportion of ‘T cells follicular 
helper’, ‘Dendritic cells activated’, and ‘Mast cells activated’.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†Mengye Niu and Chengyang Chen contributed equally to this work and 
should be considered co-first authors

*Correspondence:  zhaozengren@hebmu.edu.cn; jiangxia0925@hebmu.edu.cn

1 Department of General Surgery, The First Hospital of Hebei Medical 
University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, Hebei, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12876-022-02585-3&domain=pdf


Page 2 of 20Niu et al. BMC Gastroenterology          (2022) 22:482 

Introduction
Colon cancer (CRC) is one of the most common cancers 
and cause of cancer death globally, seriously endangering 
the health of patients [1]. In recent years, there has been a 
growing body of evidence demonstrating that the primary 
tumor location of CRC is an important prognostic factor, 
owing to distinct biological features [2–4]. Despite the fact 
that the primary tumor site is not generally considered in 
CRC management, left-sided colon cancers (L_cancer) and 
right-sided colon cancers (R_cancer) exhibit different clini-
cal and biological characteristics [5]. A meta-analysis of 66 
studies with more than 1.4 million patients with a median 
follow-up of 65 months revealed that the tumor side had a 
significant prognostic impact on overall survival, with a 20% 
percent longer life expectancy, independent of stage, race, 
adjuvant chemotherapy, year of study, number of partici-
pants, and quality of included studies. [6]. The differences 
in colon cancer by its location have been identified through 
extensive research, including survival, tumor microenviron-
ment, methylation profile, microbiota, gene expression, and 
epigenetic changes. [2, 3, 6–8]. In addition, the tumor loca-
tion also influences the outcome of adjuvant chemotherapy, 
palliative therapy, or targeted therapy. Therefore, it is of spe-
cial significance to classify CRC by its location.

Nomograms are widely used for prognosis in CRC 
patients. However, few previous studies have separately 
built predictive models to predict patient prognosis with 
respect to location. In this study, we separately build pre-
dictive models for L_cancer and R_cancer, identifying 
potential prognostic biomarkers for left and right CRC. 
Age, sex, histological classification, and so forth, are also 
important factors that can influence clinical outcomes 
and can improve the accuracy of models. Therefore, we 
also aimed to analyze the differences between L_cancer 
and R_cancer and construct respective nomograms for 
L_cancer and R_cancer, containing prognostic gene signa-
tures and clinical prognostic factors, which are expected 
to allow for more accurate predictions in the prognosis of 
CRC, facilitating accurate diagnosis and treatment.

Material and methods
Data sets
The transcriptome data, somatic mutation data, and clin-
ical information of CRC patients were downloaded from 

The Cancer Genome Atlas (TCGA, https:// portal. gdc. 
cancer. gov/), which includes transcriptome data for 332 
CRC patients (146 L_cancer patients and 189 R_cancer 
patients) and somatic mutation data for 329 CRC patients 
(142 L_cancer patients and 187 R_cancer patients).

L_cancer patients were divided into L_cancer train-
ing and L_cancer internal validation sets at a ratio of 7:3. 
The L_cancer external validation set contained those who 
operated in our hospital, including 51 L_cancer patients.

R_cancer patients were also divided into R_cancer 
training set and R_cancer internal validation sets at a 
ratio of 7:3. The R_cancer external validation set con-
tained those who operated in our hospital, including 51 
R_cancer patients.

A total of 102 pairs of colon cancer and adjacent nor-
mal control samples were stored at − 80  °C. Patients 
were followed up by telephone interviews. As of the final 
data cutoff, December 30, 2021, the median duration of 
follow-up in the study was 4.5 years and the criterion to 
proceed with the final OS analysis was met.

The term "R_cancer" refers to any (histologically con-
firmed) adenocarcinoma arising from the caecum, 
ascending colon, or hepatic flexure. Any tumor that arises 
in the splenic flexure, descending colon or sigmoid colon 
was referred to as L_cancer.

Survival analysis
Using Kaplan–Meier survival analysis, we evaluated 
the differences in survival between patients with differ-
ent clinicopathological characteristics, between high-
risk and low-risk groups and between the L_cancer and 
R_cancer groups in the data sets mentioned above. The 
‘survival’ package in R was used to perform a two‐sided 
log‐rank test and univariate and multivariate Cox regres-
sion analyses [9].

Differential gene analysis and functional annotation
By using the "edgeR" package in R, we identified differ-
entially expressed genes (DEGs) between L_cancer and 
R_cancer, L_cancer and L_normal, R_cancer and R_nor-
mal based on differential expression analysis. To screen 
for DEGs, |log2 FC (fold-change)|> 1 and P < 0.05 were 
set as thresholds. To investigate the possible biological 

Conclusions: We found significant differences between L_cancer and R_cancer patients and established a clinical 
predictive nomogram for L_cancer patients and a nomogram for R_cancer patients. Additionally, R_cancer patients in 
low-risk groups may be more beneficial from immunotherapy.

Keywords: Left-sided colon cancer, Right-sided colon cancer, Biomarkers, Nomogram, Immune microenvironment, 
Tumor mutation burden, Immune checkpoint
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processes, cellular components, and molecular functions 
of DEGs, GO enrichment and KEGG pathway analyses 
were performed by using the R software package “cluster-
Profiler” [10–12].

Gene set variation analysis (GSVA)
By using the "GSVA" package in R, we evaluated the 
t-scores and assigned pathway activity conditions to L_
cancer and R_cancer patients to reveal pathway enrich-
ment. The "limma" package in R was also used to show 
differences in pathway activation between L_cancer 
and R_cancer patients [13–15].

The proportion of immune cell infiltration 
and the calculation of tumor purity
In each cancer sample, the relative proportions of 22 
immune cell types were calculated using the CIBER-
SORT software [16]. A file called "LM22.txt", contain-
ing 547 gene signatures (https:// ciber sort. stanf ord. edu/ 
downl oad. php), is also needed in R. ESTIMATE was used 
to calculate immune, stromal, and ESTIMATE scores, as 
well as tumor purity, based on Yoshihara et al. [17].

Profiles of tumor mutation burden (TMB) and correlation 
analysis
The TMB was defined as: TMB = (total count of vari-
ants)/(the whole length of exons). In a waterfall plot, 
the mutation profiles of two groups were compared 
using the maftools package [18]. Afterward, the differ-
ence in mutation frequencies between the two groups 
was measured with the chi-square test. TMB was 
derived for each patient, calculated using Pearson cor-
relation analysis with estimated P-values.

LASSO cox regression analysis
LASSO Cox regression analysis with the R package glm-
net was then used to identify hub genes associated with 
the prognosis of L_cancer or R_cancer, and a Risk Score 
was calculated for each sample using the screened hub 
genes following the following formula [19]:

where N represents the number of signature genes, Expi 
is the gene expression levels, and Coef is the estimated 
regression coefficient value from the Cox proportional-
hazards analysis. Based on this optimal cutoff value, the 
R survival package "survminer" was used to divide patient 
groups into Low- and High-Risk groups. Moreover, 
model predictive power was evaluated by calculating the 
AUC of 1-, 3-, 5-, 7-year, and all time-dependent ROC 
curves, using the “survivalROC” package.

Riskscore =

N

i=1

Expi × Coef

Building and validating a predictive nomogram
To construct the nomograms, we used univariate and 
multivariate Cox regression analyses. Forest plots were 
used to display the P-value, HR, and 95% CI for each 
variable, using R’s ’forest plot’ package. Based on inde-
pendent prognostic factors, the nomograms were gen-
erated in R using the rms, nomogramEx, and ggDCA 
packages. In the next step, Using calibration curves, we 
determined whether the predicted survival outcome 
matched the actual outcome. Moreover, training set 
decision curve analysis (DCA) and internal validation 
set DCA, which is a statistical method for assessing and 
comparing predictive models, was used to determine 
the clinical suitability of our established nomograms.

RNA isolation and quantitative reverse transcription PCR 
assay
For total RNA isolation, the TRIzol reagent by Invitrogen 
was used, and for complementary DNA synthesis, the 
PrimeScript RT reagent kit by Takara was used. RT-PCR 
was carried out using SYBR Premix Ex Taq I. GAPDH 
served as an internal control. Relative RNA abundances 
were calculated by using the standard 2-ΔCt method.

Statistical analysis
A two-sided significance level of 0.05 was used to 
determine statistical significance in all analyses using 
R software (version 3.6.3). All significance levels were 
two-sided.

Results
Differences between L_cancer and R_cancer patients
Differences in demographic characteristics between L_cancer 
and R_cancer patients
An overview of the steps is presented as a flow chart in 
Fig.  1. The demographic characteristics of patients are 
summarized in Table  1. The L_cancer patients found a 
significant difference between R_cancer patients regard-
ing age, stage N, and survival rate (P < 0.05). It is notewor-
thy that we observed lower survival after R_cancer versus 
L_cancer (Fig. 2A).

Moreover, there is no difference between the training 
set and the verification set except T stage. The difference 
in the T stage may due to the poor stage of patients from 
our hospital, but it does not affect the internal validation.

Differential expressed genes and functional annotation 
between L_cancer and R_cancer patients
By comparing the transcriptome data, we identified 540 
significantly up-regulated DEGs in the L_cancer group 
and 1507 significantly up-regulated DEGs in the R_can-
cer group (Fig. 2B). The heatmap was shown the top 40 
DEGs with the greatest variation (Fig. 2C).

https://cibersort.stanford.edu/download.php
https://cibersort.stanford.edu/download.php
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Further, we applied the DEGs for functional enrichment 
analysis. L_cancer up-regulated DEGs were enriched in 
38 GO terms and 3 KEGG pathways (FDR < 0.5, Fig. 2D), 
while R_cancer up-regulated DEGs were enriched in 129 
GO terms and 2 KEGG pathways (FDR < 0.5, Fig. 2E).

In addition, GSVA revealed that MIS vs. MSS, 20Q11 
anplicon chr20q11, chr20q13, reactome digestion of die-
tary lipids, DNA methylation involved in gamete genera-
tion and so on were different in L_cancer and R_cancer 
patients (|log2FC|> 0.2, all P < 0.05; Fig. 2F).

Differential immune microenvironment between L_cancer 
and R_cancer patients
By comparing the immune microenvironments between 
L_cancer and R_cancer patients, significant differences 
were observed between the two groups with regard to 
immune infiltration components.

In the R_cancer patients, the proportions of ‘T cell 
CD8’, ‘T cells CD4 naïve’, ‘T cells follicular helper’, ‘Mast 
cells resting’ were significantly higher and ‘B cells mem-
ory’, ‘macrophages M0’ were lower than in L_cancer 
patients (Wilcoxon test, all P < 0.05; Fig. 3A).

Comparing the Stromal score, ESTIMATE score, 
immune score, and tumor purity of L_cancer and R_can-
cer patients, we found that the R_cancer patients had a 
lower tumor purity and higher ESTIMATE and immune 

scores (Wilcoxon test, P < 0.05; Fig.  3B) than L_cancer 
patients.

We also analyzed the immune checkpoint-related 
genes (PD-1, PD-L1, CTLA4, CD86, LAG3, HAVCR2, 
TIGIT) and HLA family-related genes levels, which 
are considered biomarkers for predicting the efficacy 
of immunotherapy, between L_cancer and R_cancer 
patients and found that the expression levels of immune 
checkpoint-related genes and HLA family-related genes 
were significantly higher in R_cancer patients (Wil-
coxon test, all P < 0.05; Fig. 3C, D).

Differential TMB landscape between L_cancer and R_cancer
The mutation prevalence varied dramatically within 
CRC in different locations. The mutation frequency 
in R_cancer patients was relatively higher than that in 
L_cancer patients (Fig.  4A). Moreover, the L_cancer 
and R_cancer groups contained different mutant genes. 
Waterfall plots (Fig. 4B, C) show the first 30 gene muta-
tion rates in each location. A major discrepancy can be 
seen, as TP53 presented a higher mutation rate in L_
cancer (L_cancer, 68%; R_cancer, 48%), while PIK3CA 
(L_cancer, 18%; R_cancer, 33%) and KRAS (L_cancer, 
36%; R_cancer, 46%) showed higher yield mutation 
rates in R_cancer.

Fig. 1 The flow diagram shows that: 1 the difference between L_cancer and R_cancer; 2 Nomograms were established to predict the prognosis of 
L_cancer and R_cancer, respectively. (L_cancer, left-side colon cancer; R_cancer, right-side colon cancer)
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We analyzed microsatellite instability (MSI)-related 
genes’ mutation in each group, which showed that the 
L_cancer patient had MSI (Fig. 4D, E).

Identifying DEGs and functional annotation in tumor 
and normal patients
By comparing the transcriptome data of L_cancer and 
L_normal groups, we identified 4788 up-regulated 
DEGs and 4062 down-regulated DEGs (Fig.  5A). The 
top 20 up-regulated and down-regulated genes were dis-
played by heatmap (Fig. 5C). Further, we analyzed these 
DEGs between L_cancer and L_normal groups for func-
tional enrichment analysis. This evaluation revealed the 
enrichment of 1139 GO terms and 65 KEGG pathways 
(FDR < 0.05). We chose to show the top 10 GO terms and 
15 KEGG pathways in Fig. 5E, G.

Likewise, the DEGs between R_cancer and R_normal 
identified 6261 up-regulated DEGs and 4501 down-regu-
lated DEGs (Fig. 5B). The top 20 up-regulated and down-
regulated genes were displayed by heatmap (Fig.  5D). 
These DEGs between R_cancer and R_normal groups 
be analyzed for functional enrichment analysis. A total 
of 1072 GO terms and 61 KEGG pathways had been 
enriched (FDR < 0.05). We chose to show the top 10 GO 
terms and 15 KEGG pathways in Fig. 5F, H.

Construction of prognostic gene model
To identify prognosis-related genes, we first screened 
genes using the Kaplan–Meier method in DEGs with 
P < 0.05, in order to screen survival-related DEGs as can-
didate genes affecting prognosis. Then, to avoid model 
overfitting, we performed a multivariate Cox regression 

Fig. 2 Differentially expressed genes and functional annotation between L_cancer and R_cancer patients. A Survival rates difference between 
L_cancer patients and R_cancer patients. B Volcano plot for differentially expressed genes (DEGs) of L_cancer patients and R_cancer patients. C 
Heatmap plot for top 40 DEGs of the two groups. D, E GO enrichment analysis and KEGG analysis of the up-regulated DEGs in D L_cancer and E 
R_cancer. F Heatmap demonstrated the top 10 different gene set enrichment analysis (GSVA) pathways of the two groups
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analysis with the LASSO penalty algorithm to solve the 
multi-collinearity problem. Finally, we obtained 10 genes 
associated with the prognosis of L_cancer patients and 10 
genes associated with the prognosis of R_cancer patients. 
These genes have a significant impact on the survival of 
patients (Additional file 1: Fig. S1).

The L_cancer patient prognosis features and 
risk score were calculated as: KNG1 × 0.621  
+  CYP11A1  ×  0.60 0 +  SMP D1 ×  1. 370 +  D AND5 ×  
0.859 + NKPD1  × 0. 721  +  R P11-59D 5 _B. 2 × 0. 5 68 + CT 

D -21 84C 24.2  × 0.51 4  +  RP1 1-680F8.3 × 0.517 − RP11-
51F16.9 × 0.731 + CTD-2012K14.8 × 0.765 (Fig.  6A, B). 
The cutoff of risk score is 7.801, which had a great impact 
on OS (Fig.  6C). Scores lower than 7.801 have been 
defined as low-risk L_cancer patients, while scores higher 
than 7.801 have been defined as high-risk L_cancer 
patients. The AUC values of the risk score in the train-
ing set for 1-year, 3-year, 5-year, 7-year, and all-time OS 
were 0.554, 0.582, 0.593, 0.597, and 0.862, respectively 
(Fig. 6D).

Fig. 3 Differential immune microenvironment between L_cancer and R_cancer patients. A The comparison of immune infiltration levels between 
L_cancer and R_cancer patients, based on CIBERSORT. B The Stromal Score difference, Immune Score difference, ESTIMATE Score difference, and 
tumor purity difference between L_cancer and R_cancer patients. C The immune checkpoint-related gene expression levels in L_cancer and R_
cancer patients. D HLA-related gene expression level in L_cancer and R_cancer patients. Notes: ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001
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The R_cancer prognosis features and risk score 
were calculated as: MOCS1 × 1.100 − PTGS2 × 0
.722 +  P LEK HA8 P 1 ×  0.4 09 −  ZC3H 12C ×  0 .571  
+  LPO × 0.575 +  M ETTL11B   ×  0 .29 4 +  RP11-27 8 
A23 .1  ×  0 . 508 +  R P 11- 452 K12 . 7 ×  0.4 0 5 − RP 11- 7 
42B18.1 × 0.360 + RP11-626H12.2 × 0.787 (Fig. 7A, B). 
The cutoff of risk score is 11.981, which had a great 
impact on OS (Fig. 7C). Scores lower than 1.981 have 
been defined as low-risk R_cancer patients, while 
scores higher than 1.981 have been defined as high-risk 
R_cancer patients. The AUC values of the risk score in 
the training set for 1-year, 3-year, 5-year, 7-year, and 

all-time OS were 0.557, 0.610, 0.626, 0.692, and 0.835, 
respectively (Fig. 7D).

Internal validation of the prognosis genes model 
and stratified analysis by clinical factors
The efficacy of the prognostic signature was validated 
using a testing set of TCGA patients. Five-fold cross-vali-
dation was used to assess the stability of the model.

Among the L_cancer patients, the area under the curve 
(AUC) values of risk scores predicted in the testing set for 
1-year, 3-year, 5-year, 7-year, and all-time OS were 0.597, 
0.696, 0.722, 0.723, and 0.914, respectively (Fig. 6E). The 

Fig. 4 Differential TMB landscape between L_cancer and R_cancer patients. A The tumor mutation burden difference between L_cancer and 
R_cancer patients. B, C waterfall lot demonstrated the top 30 frequently mutated genes in B L_cancer and C R_cancer patients. D, E The mutation 
of microsatellite instability(MSI)-related genes in L_cancer and R_cancer patients. Notes: ***P < 0.001

(See figure on next page.)
Fig. 5 Identifying DEGs and Functional Annotation in Tumor and Normal Patients. A Volcano plot for DEGs between L_cancer and L_normal 
patients. B Volcano plot for DEGs between R_cancer and R_narmal patients. C Heatmap of the top 40 DEGs between L_cancer and L_normal 
patients. D Heatmap of the top 40 DEGs between R_cancer and R_narmal patients. E GO enrichment analysis of the DEG between L_cancer and 
L_normal patients. F GO enrichment analysis of the DEG between R_cancer and R_narmal patients. G Top 15 KEGG analysis of the DEG between 
L_cancer and L_normal patients. H Top 15 KEGG analysis of the DEG between R_cancer and R_narmal patients
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Fig. 5 (See legend on previous page.)
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AUC values of fivefold cross-validation were 0.860, 0.792, 
0.908, 0.854, and 0.978, respectively, and the integrated 
AUC value was 0.863 (Fig. 6F). The results revealed that 
the AUC values of fivefold cross-validation were high and 
similar, indicating that the model had good predictability 
and stability. Based on the obtained sample clinical char-
acteristics, patients were stratified into age < 65 years and 
age ≥ 65 years sub-groups (Fig. 6G, H), female and male 
sub-groups (Fig. 6I, J), and pathological tumor Stage I/II 
and Stage III/IV sub-groups (Fig. 6K, L). The overall sur-
vival analysis was performed in each sub-group, based on 
the level of risk score, and all results showed statistical 
differences.

Likewise, in R_cancer patients, the AUC values of risk 
scores predicted in the test set for 1-year, 3-year, 5-year, 
7-year, and all-time OS were 0.679, 0.725, 0.771, 0.801, 
and 0.857, respectively (Fig.  7E). The AUC values of 
fivefold cross-validation were 0.838, 0.727, 0.796, 0.793, 
and 0.826, respectively, and the integrated AUC value 
was 0.792 (Fig. 7F). The results revealed that the AUC 
values of fivefold cross-validation were high and simi-
lar, indicating the model had good predictability and 
stability. Patients were also stratified into age < 65 years 
and age ≥ 65 years sub-groups (Fig. 7G, H), female and 
male sub-groups (Fig.  7I, J), and pathological tumor 
Stage I/II and Stage III/IV sub-groups (Fig.  7K, L). 

Fig. 6 Construction and validation of the prognostic model in L_cancer group. A LASSO coefficient profiles of DEGs. B Selection of the optimal 
parameter (lambda) in the LASSO model. C Differences in overall survival between high-risk and low-risk groups based on the risk scores in 
L_cancer patients. D Time-dependent ROC curves in the training set at 1-year, 2-year, 3-year, 5-year, 7-year and all-year in L_cancer patients. E 
Time-dependent ROC curves in the testing set at 1-year, 2-year, 3-year, 5-year, 7-year and all-year in L_cancer patients. F The ROC curves of Five-fold 
cross-validation in L_cancer patients. G–L Comparison of survival rates of high-risk and low-risk groups in different clinical subtypes in L_cancer 
patients. Survival analysis of different clinical characteristics including G Age < 65, H Age ≥ 65, I Female, J Male, K Stage I-II, L Stage III-IV



Page 11 of 20Niu et al. BMC Gastroenterology          (2022) 22:482  

Overall survival analysis was also performed in each 
sub-group, based on the level of risk score, and all the 
results showed statistical differences.

Incorporating clinical factors to develop individualized 
nomograms
Clinical characteristics, including Age, Gender, T, 
N, M, Stage, and risk score, were utilized to perform 
univariate analyses in the training sets of L_cancer 
(Fig. 8A) and R_cancer (Fig. 9A), respectively. After sta-
tistical adjustment for other variables with multivariate 

Cox regression analysis, we found that the Risk, patho-
logical M, pathological stage, gender, and age were the 
only six independent prognostic factors that could be 
used to predict the survival rate in L_cancer (Fig. 8B), 
while the Risk, pathological N, pathological T, and age 
were the only four independent prognostic factors that 
could be used to predict the survival rate in R_cancer. 
(Fig.  9B). L_cancer patients’ nomogram (Fig.  8C) and 
R_cancer patients’ nomogram (Fig.  9C) were devel-
oped using the above prognostic features, with the total 
points calculated by adding the points of individual 
prognostic features.

Fig. 7 Construction and validation of the prognostic model in R_cancer group. A LASSO coefficient profiles of DEGs. B Selection of the optimal 
parameter (lambda) in the LASSO model. C Differences in overall survival between high-risk and low-risk groups based on the risk scores 
in R_cancer patients. D Time-dependent ROC curves in the train set at 1-year, 2-year, 3-year, 5-year, 7-year, and all-year in R_cancer patients. E 
Time-dependent ROC curves in the test set at 1-year, 2-year, 3-year, 5-year, 7-year, and all-year in R_cancer patients. F The ROC curves of Five-fold 
cross-validation in R_cancer patients. G–L Comparison of survival rates of high-risk and low-risk groups in different clinical subtypes in R_cancer 
patients. Survival analysis of different clinical characteristics including G Age < 65, H Age ≥ 65, I Female, J Male, K Stage I-II, L Stage III-IV
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Fig. 8 Validation of the nomogram in predicting the overall survival of L_cancer in the TCGA dataset. A, B Univariate and multivariate Cox 
regression analysis of L_cancer prognostic signatures and clinical characteristics. C Developed incorporating clinical factors nomogram of L_cancer 
patients. D Calibration curve of the nomogram in the train set and test set of L_cancer patients. E Decision curve analysis of the nomogram in 
the train set and test set of L_cancer patients. F Time-dependent ROC curves in the train set at 1-year, 2-year, 3-year, 5-year, 7-year, and all-year in 
L_cancer patients. G Time-dependent ROC curves in the test set at 1-year, 2-year, 3-year, 5-year, 7-year, and all-year in L_cancer patients
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Fig. 9 Validation of the nomogram in predicting overall survival of R_cancer in the TCGA dataset. A, B Univariate and multivariate Cox regression 
analysis of R_cancer prognostic signatures and clinical characteristics. C Developed incorporating clinical factors nomogram of R_cancer patients. D 
Calibration curve of the nomogram in the train set and test set of R_cancer patients. E Decision curve analysis of the nomogram in the train set and 
test set of R_cancer patients. F Time-dependent ROC curves in the train set at 1-year, 2-year, 3-year, 5-year, 7-year, and all-year in R_cancer patients. 
G Time-dependent ROC curves in the test set at 1-year, 2-year, 3-year, 5-year, 7-year, and all-year in R_cancer patients
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Predictive performance of the established nomogram
Among L_cancer patients, the calibration curve and deci-
sion curve analysis for predicting median survival time 
OS in the training and testing sets indicated that the 
nomogram-predicted survival similarly corresponded 
with actual survival outcomes (Fig.  8D, E). The AUC of 
the nomogram was 0.8 in the training set and 0.905 in the 
testing set (Fig. 8F, G).

In R_cancer patients, the calibration curve and deci-
sion curve analysis for predicting median survival time 
OS in the training and testing sets indicated that the 
nomogram-predicted survival similarly corresponded 
with actual survival outcomes (Fig.  9D, E). The AUC of 
the nomogram was 0.836 in the training set and 0.850 in 
the testing set. (Fig. 9F, G).

External validation of the prognosis signature by qRT‑PCR
The obtained results were further validated by qRT-PCR, 
as shown in Fig. 10.

In 51 pairs of L_cancer patients, compared with adja-
cent cancer tissues, the expression of DAND5, SMPD1, 
KNG1, NKPD1, and CYP11A1 were found to be down-
regulated in cancer tissues (two-tailed paired t-test; all 
P < 0.05, Fig. 10A–E).

Moreover, in 51 pairs of R_cancer patients, compared 
with adjacent cancer tissues, the expression of LPO, 
METTL11B, and PTGS2 were found to be up-regu-
lated, and ZC3H12C and MOCS1 were down-regulated 
in cancer tissues (two-tailed paired t-test; all P < 0.05, 
Fig. 10F–J).

Differences in the immune microenvironment, 
TMB landscape, immune checkpoint‑related genes, 
and HLA‑family genes level between high‑ and low‑risk 
patients
Based on the difference in the immune microenvi-
ronment and TMB landscape between left and right 
CRC, we next analyzed the difference in these aspects 
between high- and low-risk patients based on prognos-
tic gene models.

In the R_cancer patients, high-risk patients had a 
lower proportion of ‘B cells memory’, ‘Dendritic cells 
resting’, immune score, ESTIMATE score, immune 
checkpoint-related genes, and HLA-family genes, and 
a higher proportion of ‘T cells follicular helper’, ‘Den-
dritic cells activated’, and ‘Mast cells activated’ (Wil-
coxon test, P < 0.05; Fig. 11A–E). These results indicate 
that R_cancer patients in high- and low-risk groups 
may have different responses to immunotherapy, and 
immunotherapy in R_cancer low-risk patients may be 
more beneficial.

In the L_ancer patients, there was no difference in 
these indicators between high- and low-risk patients 
(Additional file 2: Fig. S2A–E).

Correlation of hub gene and risk score 
with immune‑related score and genes
Correlation analyses were carried out for risk scores 
and hub genes with immune-related scores and genes. 
As we can see, in R_cancer patients, R_cancer risk score 
was strongly correlated with immune-related scores 

Fig. 10 A–E qRT-PCR validation of the expression of DAND5, SMPD1, KNG1, NKPD1, and CYP11A1 in 50 pairs of L_cancer patients. F–J qRT-PCR 
validation of the expression of ZC3h12c, LPO, METTL11B, PTGS2, and MOCS1 in 50 pairs of R_cancer patients. Notes: *P < 0.05, **P < 0.01, ***P < 0.001
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and genes (Fig.  12). In particular, it has a significant 
negative correlation with immune checkpoint-related 
genes, Stromal score, immune score, and ESTIMATE 
score and a positive correlation with tumor purity. 
These results prove that R_cancer patients with R_can-
cer low-risk score may benefit more from immunother-
apy. In addition, the R_cancer risk score was positively 
associated with the content of ‘B cells memory’, ‘T cells 
CD4 naïve’, ‘T cells regulatory Tregs’, ‘Macrophages M0’, 
and ‘Dendritic cells resting’ and negatively associated 
with the content of ‘T cells follicular helper’, ‘Dendritic 
cells activated’, ‘Mast cells activated’ and ‘Neutrophils’. 

In L_cancer patients, L_cancer risk score was no cor-
relation with immune-related scores and genes (Addi-
tional file 3: Fig. S3).

Discussion
CRC has a heterogeneous tumor composition and com-
plex oncogenic mechanisms. The development of individ-
ualized treatment strategies and the evaluation of patient 
prognoses based on tumor location are crucial. This 
study is the first to separately build predictive models 
for L_cancer and R_cancer, to the best of our knowledge. 
We presented two nomograms for CRC classified with 

Fig. 11 A The comparison of immune infiltration levels between high-risk and low-risk groups in R_cancer patients, based on CIBERSORT. B The 
Stromal Score difference, Immune Score difference, ESTIMATE Score difference, and tumor purity difference between high-risk and low-risk groups 
in R_cancer patients. C The immune checkpoint-related gene expression levels in high-risk and low-risk groups in R_cancer patients. D The tumor 
mutation burden difference between high-risk and low-risk groups in R_cancer patients. E HLA-related gene expression level between high-risk and 
low-risk groups in R_cancer patients. Notes: ns P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001



Page 16 of 20Niu et al. BMC Gastroenterology          (2022) 22:482 

Fig. 12 Show the correlation of R_cancer RiskScore and R_cancer hub genes expression with immune infiltration level in R_cancer patients
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respect to both tumor side and location based on prog-
nostic gene signatures and clinical prognostic factors can 
be used to distinguish high-risk from low-risk patients 
effectively. The L_cancer nomogram includes  prognos-
tic genes (KNG1, CYP11A1, SMPD1, DAND5, NKPD1, 
RP11-59D5_B.2, CTD-2184C24.2, RP11-680F8.3, RP11-
51F16.9, CTD-2012K14.8), pathological N, pathological 
T, and age, which can be used to predict the survival rate; 
meanwhile, the R_cancer nomogram comprises prog-
nostic genes (MOCS1, PTGS2, PLEKHA8P1, ZC3H12C, 
LPO, METTL11B, RP11-278A23.1, RP11-452K12.7, 
RP11-742B18.1, RP11-626H12.2), age, pathological M, 
pathological T, pathological stage, and gender, which can 
also be used to predict the survival rate.

Numerous studies have confirmed that the right- and 
left-sided colons are distinct due to their embryological 
origins. The right-side colon originate from the midgut, 
whereas the left-side colon originate from the hindgut. 
In this study, we confirmed that there exist significant 
differences in the TMB and immune microenvironment 
between right- and left-sided CRC patients. Further-
more, right-sided CRC tend to have worse prognosis than 
left-sided CRC patients. The difference between right- 
and left-sided CRC patients’ survival rates is might be 
caused by the higher frequency of mutations in addition 
to changes in the tumor microenvironment associated 
with tumor purity. According to recent research, muta-
tion prevalence differs depending on side and location. 
RAS mutations declined from 70% in patients with right-
sided CRC to 43% in those with left-sided CRC, while 
the number of BRAFV600 mutations increased from 10 
to 22% between the same locations. Sigmoid and rectal 
tumors with left-sided mutations were more likely to har-
bor TP53 mutations than PIK3CA, BRAF, or CTNNB1 
mutations [3]. Consistent with our results, in left-sided 
tumors, TP53 (L_cancer: 68%, R_cancer: 48%) showed a 
higher mutation rate; meanwhile, in right-sided tumors, 
PIK3CA (L_cancer: 18%, R_cancer: 33%) and KRAS 
(L_cancer: 36%, R_cancer: 46%) showed higher yield 
mutation rates. The results in our study align well with a 
recent report by Marshall et.al., who also demonstrated 
significant differences between L_cancer and R_cancer in 
mutation patterns.

The tumor microenvironment (TME) refers to the 
physical environment around a tumor, including the 
immune cells, neurons, blood vessels, extracellular 
matrix, and other cellular functions related to tumor 
progression and therapy effects. We also confirmed that 
the immune microenvironment affects the prognosis of 
patients with CRC. Aggressively growing tumors create a 
highly immunosuppressive TME that depletes antitumor 
responses and promotes tumor progression [19, 20].

Based on the Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
approach, immune score and tumor purity can reveal 
information about the tumor’s immune status. Low 
immune scores and high tumor purity have been asso-
ciated with better prognoses in several studies [21–23]. 
Based on this, we examined the differences in tumor 
immune microenvironment between right- and left-sided 
CRC patients. In our study, L_cancer patients not only 
had poor prognosis but also had high ESTIMATE and 
immune scores, as well as low tumor purity. Thus, we fur-
ther analyzed the effect of high- or low-risk on immune 
infiltration in patients in both L_cancer and R_cancer 
models. We found that, in the R_cancer model, high-risk 
patients had lower immune and ESTIMATE scores and 
higher tumor purity than low-risk patients. However, 
there was no difference between high- and low-risk in 
the L_cancer model with respect to immune infiltration. 
Besides, in the R_cancer model, high-risk patients were 
significantly different from low-risk patients in terms of 
immune infiltrating cell types, such as memory B-cells, 
dendritic, T follicular helper cells and mast cell activa-
tion. Nevertheless, in the L_cancer model, the high- and 
low-risk patients showed no difference. These results 
may be related to our different models for L_cancer and 
R_cancer. The findings of some studies were in line with 
our study, where low tumor purity result in poor prog-
nosis in glioma and CRC [21, 22]. Additionally, the pro-
portions of CD8 T-cells and T follicular helper cells were 
significantly higher in the R_cancer group, while M0 
macrophages had higher infiltration in L_cancer groups. 
A recent single-cell RNA-Seq study between right- and 
left-sided CRC patients discussed the difference in sin-
gle-cell transcriptomes between the two groups, which 
was in line with our findings. In summary, there has 
been increasing awareness of the body’s ability to fight 
tumors through various types of cells cytokines, and 
chemokines. Immune cells, especially, play a critical role 
in this. Immunotherapy has become increasingly popular 
as a treatment option for cancer patients with refractory 
malignant tumors, which can benefit significantly from 
immune checkpoint inhibitors. To determine whether 
immunotherapy is effective, TMB, TME, and immune 
checkpoint levels are considered as biomarkers [23–25]. 
A previous study has demonstrated that, in CRC patients, 
the prognostic impact of PD-L1 and PD-1 expression 
varies according to the primary tumor site. Moreover, 
the presence level of PD-L1 is an independent prognostic 
factor for right-side tumors [26]. This finding was in line 
with our study, which demonstrated that there were sig-
nificant differences in PD-1, PD-L1, and CTLA4 expres-
sion between right- and left-sided CRC patients.
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Given this, this study independently assessed the effect 
of the tumor microenvironment in L_cancer and R_can-
cer of high- and low-risk patients from two aspects (TMB 
and immune microenvironment), leading us to speculate 
that R_cancer—especially low-risk R_cancer—patients 
may benefit more from immunotherapy [27, 28]. Valida-
tion is needed, but these results could be clinically signifi-
cant as they indicate that tumor location is important to 
consider in therapeutic decisions, including eligibility for 
immunotherapy.

The hub genes in the signature have previously 
been shown to be potential biomarkers. Relevant 
research has reported that PTGS2-driven inflam-
matory responses can induce tumor expression of 
microRNA-21, which can increase the level of the 
inflammatory mediator prostaglandin E2 (PGE2) by 
down-regulating PGE2-metabolizing enzymes, con-
tributing to colorectal cancer development [28–32]. 
PLEKHA8P1 expression has been associated with the 
development and progression of many malignancies in 
humans, such as CRC and renal cancer [33]; moreo-
ver, research has shown that its dysregulated expres-
sion affects 5-Fluorouracil-induced chemoresistance 
in the human hepatocellular carcinoma cell line FT3-7 
[34]. Prior studies found ZC3H12A has links with 
immune homeostasis and post-transcriptional regu-
lation which can stimulate tumor progression in lung 
and colon cancer [35–37]. LPO can collaborate with 
activated Wnt signaling to induce intestinal neopla-
sia [38]. METTL11B expression has been associated 
with poor prognosis in colorectal cancer and is higher 
in cancer tissues than in neighboring normal tissues 
[39]. NKPD1 has been predicted to be linked with 
the de novo synthesis of sphingolipids [40]. Increased 
DAND5 level is an independent risk factor for both 
colorectal and breast cancers and the prediction of 
poor prognoses [41, 42]. SMPD1 encodes lysosomal 
acid sphingomyelinase, which converts sphingomyelin 
to ceramide. Prior studies have found that the func-
tional inhibition of acid sphingomyelinase contributes 
to tumor cell death by overactivation of hypoxia stress-
response pathways [43]. Another study has shown 
that down-regulation of SMPD1 is linked with resist-
ance to chemotherapy regimens including 5-Fluoro-
uracil [44]. Studies have shown CYP11A1, which can 
hydroxylate the side-chain of vitamin D3 at carbons 
17, 20, 22, and 23, are related to susceptibility to breast 
cancer [45, 46]. KNG1 can regulate the expressions 
of VEGF, cyclinD1, ki67, and caspase-3/9, exerting 
anti-angiogenic properties and inhibiting the prolif-
eration of endothelial cells. Over-expression of KNG1 
can inhibit the activity of PI3K/Akt, decrease tumor 

growth, and promote apoptosis [47]. On the contrary, 
other researchers have found that KNG1 expres-
sion was significantly increased in colorectal cancer 
lesions [48]. At present, there has been no reported 
association between MOSC1, RP11-278A23.1, RP11-
452K12.7, RP11-742B18.1, RP11-626H12.2 RP11-
59D5_B.2, CTD-2184C24.2, RP11-680F8.3, RP11-51F16.9, 
CTD-2012K14.8, and cancer. In the end, RT-qPCR was 
performed to verify the results from the bioinformatic 
analyses of LCC and RCC. We revealed that the prog-
nostic gene expression results were consistent with the 
outcomes of our survival analysis, indicating that our 
results are reproducible and reliable. In addition, this 
further confirmed that these key genes are related to 
the occurrence and development of colon cancer.

This study had some limitations. The signatures and 
nomograms constructed in this study using vast data-
sets from TCGA and our patient database were robust, 
but the study was still a retrospective one. Second, we 
explored the TMB and immune microenvironment 
landscape between right- and left-sided CRC patients 
and between patients in different risk groups; however, 
the study lacked experimental verification. Third, as 
previously noted, obtaining risk scores requires knowl-
edge of ten genes expressed in tumor tissues, thereby 
increasing the difficulty of applying the nomograms. 
It appears that many molecular diagnostic or prog-
nostic models have the same problem. Researchers 
and clinicians need to figure out how to simplify the 
application of these models in clinical settings. In the 
future, molecular detection technology may solve this 
dilemma. The constructed nomograms may be used 
routinely.

Conclusions
We found significant differences between L_cancer and 
R_cancer patients, including clinical features, transcrip-
tome, TMB, immune microenvironment landscape, sug-
gesting that colon cancer can be classified and analyzed 
into different clinical types with respect to their differ-
ences in anatomical location and gene expression, thus 
aiding in the early diagnosis and prognosis of colon can-
cer. We established two clinical predictive nomograms in 
combination with clinical features to provide a basis for 
the personalized and precise treatment of L_cancer and 
R_cancer. These hub genes may become promising bio-
markers for the diagnosis, treatment, and prognosis of 
colon cancer. Moreover, The findings support previous 
studies suggesting that proximal and distal CRC can be 
classified differently in terms of epidemiology, pathology, 
and genetics.
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