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Abstract 

Background:  Esophageal carcinoma (ESCA) is a common malignancy with a poor prognosis. Previous research has 
suggested that necroptosis is involved in anti-tumor immunity and promotes oncogenesis and cancer metastasis, 
which in turn affects tumor prognosis. However, the role of necroptosis in ESCA is unclear. This study aimed to investi‑
gate the relationships between necroptosis-related genes (NRGs) and ESCA.

Methods and results:  The clinical data and gene expression profiles of ESCA patients were extracted from The Can‑
cer Genome Atlas (TCGA), and 159 NRGs were screened from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database. We then identified 52 differentially expressed NRGs associated with ESCA and used them for further analy‑
sis. Gene ontology (GO) and KEGG functional enrichment analyses showed that these NRGs were mostly associated 
with the regulation of necroptosis, Influenza A, apoptosis, NOD-like receptor, and NF-Kappa B signaling pathway. Next, 
univariate and multivariate Cox regression and LASSO analysis were used to identify the correlation between NRGs 
and the prognosis of ESCA. We constructed a prognostic model to predict the prognosis of ESCA based on SLC25A5, 
PPIA, and TNFRSF10B; the model classified patients into high- and low-risk subgroups based on the patient’s risk score. 
Furthermore, the receiver operating characteristic (ROC) curve was plotted, and the model was affirmed to perform 
moderately well for prognostic predictions. In addition, Gene Expression Omnibus (GEO) datasets were selected to 
validate the applicability and prognostic value of our predictive model. Based on different clinical variables, we com‑
pared the risk scores between the subgroups of different clinical features. We also analyzed the predictive value of this 
model for drug sensitivity. Moreover, Immunohistochemical (IHC) validation experiments explored that these three 
NRGs were expressed significantly higher in ESCA tissues than in adjacent non-tumor tissues. In addition, a significant 
correlation was observed between the three NRGs and immune-cell infiltration and immune checkpoints in ESCA.
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Introduction
An estimated 604,100 new cases of esophageal cancers 
(ESCA) were diagnosed, and 544,076 related deaths were 
observed worldwide in 2020; furthermore, ESCA ranks 
seventh most commonly diagnosed cancer and sixth in 
cancer-related mortality [1]. Despite great curative pro-
gress in surgical treatment, chemoradiotherapy and sys-
temic treatment, which has largely improved the survival 
rate of tumor patients, the prognosis of ESCA remains 
poor [2]. This to a large extent is because the condition is 
mostly diagnosed at an advanced stage and symptoms are 
non-specific in the early stages, with the 5-year survival 
rate being lower than 15% [3]. Thus, there is a need to 
identify more predictive and diagnostic tumor biomark-
ers to achieve a good outcome in ESCA patients. There-
fore, finding more marker-related genes predicting the 
prognosis of patients could be an important strategy for 
the treatment of ESCA.

Currently, most anticancer drugs mainly trigger can-
cer cell death by induction of apoptosis [4]. However, 
apoptosis resistance makes cancer cells drug-resistant 
and limits the efficacy of therapies. With the in-depth 
study of the mechanism of cell death, more cell death 
forms are being continuously discovered. Necroptosis, a 
newly recognized mechanism of programmed necrosis, 
has similar characteristics to both necrosis and apopto-
sis [5]. Morphological features of necroptosis include cell 
and organelle swelling, plasma membrane rupture, and 
organelle breakdown, leading to the leakage of intracel-
lular contents and subsequently inducing an inflamma-
tory response [6]. Necroptosis is triggered through the 
activation of cellular receptors, mainly including tumor 
necrosis receptor (TNFR1), death receptors (Fas/FasL), 
Toll-like receptors (TLRs), and cytosolic nucleic acid 
sensors [7]. Necroptosis generally relies on the kinase 
activity of receptor interacting proteins (RIPs) [8]. Fur-
thermore, the RIPK1/RIPK3/MLKL pathway appears to 
be a key pathway mediating necroptosis.

There exists a complex relationship between necropto-
sis and cancer. Necroptosis affects tumorigenesis, infiltra-
tion, and metastasis, thereby affecting cancer prognosis. 
Accumulating evidence suggested that necroptosis not 
only mediates physiological regulation but also results 
in inflammatory pathologies and various cancers such 
as gastric cancer, colorectal cancer, cholangiocarcinoma, 
pancreatic cancer, and hepatocellular carcinoma [9–13]. 

ZENG et al. [14] confirmed that RIPK1 expression level 
was significantly upregulated in colorectal adenocarci-
noma samples, while that of RIPK3 and p-MLKL were 
downregulated, suggesting that these cancer cells escape 
necroptosis for their survival. In cholangiocarcinoma, 
matrine induces necroptosis by enhancing RIP3 expres-
sion, producing reactive oxygen species (ROS), and 
activating the downstream RIP3/MLKL/ROS signaling 
pathway [15]. Furthermore, apoptosis-resistant tumors 
have been shown to be regressed by inducing necropto-
sis [16]. Necroptosis, especially necroptosis-related genes 
(NRGs), plays an important role in cancer. However, to 
date, the role of NRGs in ESCA remains unclear. This 
study, therefore, investigates the relationship between 
NRGs and ESCA to contribute to the diagnosis and prog-
nosis of the disease.

In this study, we used the TCGA database to explore the 
relevance of NRGs in predicting the prognosis of ESCA. 
We thus constructed a necroptosis risk-scoring prognosis 
signature based on the screened prognostic NRGs. Sub-
sequently, the applicability and prognostic value of the 
predictive model were validated using a GEO ESCA data-
base. We also investigated the expression levels of the 
candidate NRGs in 20 ESCA tissues and matched adja-
cent normal tissues by immunohistochemistry (IHC). In 
addition, we examined the relationship between NRGs 
and the immune microenvironment in ESCA. This study 
may provide additional information regarding diagnosis 
and prognostic biomarkers for ESCA.

Results
Expression levels of NRGs in ESCA
We acquired 6000 differentially expressed genes (DEGs) 
between 162 ESCA and 1456 normal tissues obtained 
from the UCSC Xena database and drew a heat map 
based on the expression level of each gene (Fig. 1A). Of 
these 6000 DEGs, 4820 were upregulated and 1180 were 
downregulated, as revealed by a volcano plot (Fig.  1B). 
The Gene ontology (GO) functional enrichment and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were summarized to clarify the biologi-
cal significance of DEGs (Fig.  1C, D). The cut-off crite-
ria for DEG were |Log2-fold change |> 1 and adjusted 
P-values < 0.05. We retrieved 159 NRGs from KEGG 
(Additional file  1: Table  S1), which were further ana-
lyzed. Of these 159, 52 NRGs were identified among 

Conclusions:  In summary, we successfully constructed and validated a novel necroptosis-related signature contain‑
ing three genes (SLC25A5, PPIA, and TNFRSF10B) for predicting prognosis in patients with ESCA; these three genes 
might also play a crucial role in the progression and immune microenvironment of ESCA.
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Fig. 1  Differentially expressed NRGs in ESCA. A Heatmap of the 6000 differentially expressed DEGs in EC. B volcano plot of 6000 differentially 
expressed DEGs in ESCA. C, D Enriched Gene Ontology terms and KEGG pathways associated with the 6000 DEGs in ESCA. DEGs, differentially 
expressed genes; ESCA, Esophageal carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO: Gene ontology
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the 6000 DEGs (Additional file  2: Table  S2, Fig.  2A, B). 
More specifically, of the 52 NRGs that were differentially 
expressed, 45 were upregulated and 7 were downregu-
lated in ESCA samples compared with their expression in 
normal samples (Fig. 2C–E).

Genetic variation and expression of NRGs
To evaluate the role of NRGs in tumorigenesis, we sum-
marized the mutation frequency and variant classifi-
cation of the 52 NRGs screened in ESCA samples. As 
shown in Fig.  2F, G, genetic mutations of NRGs were 

Fig. 2  Landscape of NRGs expression and mutation. A Venn diagram of the intersection of NRGs and DEGs. B A total of 52 NRGs among the DEGs 
between ESCA and normal samples. C, D, E The expression of 52 NRGs in ESCA and normal samples, Normal, red; Tumor, blue. F, G The mutation 
frequency and classification of 52 NRGs in ESCA. DEGs, differentially expressed genes; NRGs, necroptosis-related genes; ESCA, Esophageal carcinoma
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observed in 19.02% (35 / 184) of the ESCA samples. The 
most common of all mutations were missense mutations 
(Fig. 2F). SNPs were the most common type of variation, 
and C > T ranked as the highest SNV class. Among the 52 
NRGs, GLUD2, PYGM, JAK3, and STAT1 were the genes 
with the highest mutation frequency (Fig. 2F, G).

Functional enrichment analysis of NRGs
The GO functional enrichment and KEGG pathway anal-
yses were performed to clarify the biological significance 
of NRGs. The enrichment analysis results of 52 NRGs are 
summarized in Figs. 3 and 4. GO terms are grouped into 
three major categories: biological processes (BP), cellu-
lar component (CC), and molecular function (MF). We 
found that the most significantly enriched BP terms were 
regulation of response to cytokine stimulus, regulation of 
cytokine-mediated signaling pathway, l-kappaB kinase/
NF-kappaB signaling, cysteine-type endopeptidase activ-
ity, apoptotic process, and necrotic cell death; enriched 
CC terms were membrane region, membrane raft, 
membrane microdomain, cytosolic part, and ESCRT III 
complex; and enriched MF terms were cytokine recep-
tor binding, ubiquitin-like protein ligase binding, tumor 
necrosis factor receptor superfamily binding, tumor 
necrosis factor receptor binding, cytokine receptor bind-
ing, and cysteine-type endopeptidase regulator activity 
involved in the apoptotic process (Fig.  3A). In terms of 
KEGG pathway analysis, these NRGs were mainly asso-
ciated with pathways related to necroptosis, influenza A, 
NOD-like receptor signaling pathways, apoptosis, and 
Measles (Fig. 4A). Moreover, a network diagram of NRGs 

was plotted to represent the relationship between items 
and molecules (Figs.  3B, 4B). We then drew a circle of 
enriched GO and KEGG terms and combined them with 
Z-Score to predict the function of 52 NRGs in these path-
ways (Figs. 3C–E, 4C–E).

Establishment of a necroptosis‑related prognostic gene 
model for ESCA
To establish a prognostic risk signature, we performed 
a univariate Cox regression analysis of the 52 screened 
NRGs. As a result, three NRGs, namely SLC25A5, PPIA, 
and TNFRSF10B, were identified as genes with signifi-
cant prognostic value in ESCA (Fig.  5A–C, Additional 
file 3: Fig. S1). The results of the Kaplan–Meier survival 
(KM) analysis (Fig.  5) suggested that high expression of 
SLC25A5 was correlated with worse prognosis in ESCA 
patients (overall survival (OS), p = 0.002; progression-free 
survival (PFS), p = 0.014; disease-specific survival (DSS), 
p = 0.007) (Fig.  5D–F). Moreover, PPIA high expression 
was also associated with poor prognosis in ESCA patients 
(OS, p = 0.045; DSS, p = 0.048) (Fig. 5H, I). However, high 
TNFRSF10B expression resulted in a better prognosis in 
ESCA (OS, p = 0.042) (Fig. 5G). Furthermore, correlation 
analyses showed that PPIA was positively correlated with 
SLC25A5 (Fig. 5J). The effect of interaction between PPIA 
and SLC25A5 may be worthy of further study.

After incorporating the result of the LASSO regression 
analysis, the corresponding three genes were selected 
for the signature; the model fitted the data well, and the 
penalty coefficient was three (Fig.  6A, B). Subsequently, 
we performed multivariate Cox regression analysis of 

Fig. 3  GO analysis of differentially expressed NRGs in ESCA. A The significant terms of GO function enrichment. B Network diagram of NRGs, blue 
nodes represent items, red nodes represent molecules, and the lines represent the relationship between items and molecules. C The GO circle 
shows scatter map of the specified gene’s logFC. D Enrichment string diagrams of NRGs. E Enrichment analysis network diagram, description 
of pathways. GO, Gene ontology; BP, biological process; CC cellular component; MF, molecular function; NRGs, necroptosis-related genes; ESCA, 
Esophageal carcinoma
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Fig. 4  KEGG analysis of differentially expressed NRGs in ESCA. A The significant terms of KEGG analysis. B Network diagram of NRGs, blue nodes 
represent items, red nodes represent molecules, and the lines represent the relationship between items and molecules C KEGG circle shows scatter 
map of the specified gene’s logFC. D Enrichment string diagrams of NRGs. E Enrichment analysis network diagram, description of pathways. KEGG, 
Kyoto Encyclopedia of Genes and Genomes; NRGs, necroptosis-related genes; ESCA, Esophageal carcinoma
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the three NRGs. The results showed that these three 
NRGs could act as prognostic predictors when coupled 
with the beta value of the multivariate Cox regression. 
The risk score was calculated as, risk score = (0.3481) * 
SLC25A5 + (− 0.0405) * PPIA + (− 0.0948) * TNFRSF10B. 
Based on the risk score, ESCA patients were classified 
into a high-risk group and a low-risk group. Compared 
to the low-risk group, the high-risk group had higher 
mortality and worse prognosis (Fig.  6C). As shown in 
Fig. 6D, ESCA patients belonging to the high-risk group 

had a higher probability of death than those belonging to 
the low-risk group (median time = 1.5 years vs. 3.8 years, 
p = 0.0000198). The AUCs of the risk assessment model 
for the three NRGs were 0.568, 0.743, and 0.877 at 1-year, 
3-year, and 5-year, respectively (Fig.  6E). The model 
exhibited good accuracy of prediction.

Building and validation of the predictive nomogram
Based on the three NRGs and the clinical factors (TNM 
stage, age, and gender), we constructed a nomogram to 

Fig. 5  The prognostic value of NRGs in ESCA. A–C The overall survival curve, progression free survival, disease special survival of NRGs in ESCA. 
D–F The OS, PFS and DSS curve of SLC25A5 in ESCA. G The OS curve of TNFRSF10B in ESCA. H, I The DSS and OS curve of PPIA in ESCA patients. 
J Correlation analysis between three NRGs. ESCA, Esophageal carcinoma; OS, overall survival; PFS, progression-free survival; DSS, disease- specific 
Survival
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predict the survival probability of ESCA patients. Univar-
iate analysis showed that N1-3, M1, and the expression 
of SLC25A5 and TNFRSF10B were associated with the 
prognosis of ESCA patients (Additional file 4: Table S3). 
Multivariate Cox analysis indicated that N1-3 and M1 
were independent predictors of prognosis (Additional 
file 4: Table S3). Based on the Cox regression algorithm, 
we produced a nomogram to predict the 1-year, 2-year, 
and 5-year OS rates (Fig.  7A). The calibration plots 

showed that the nomogram had the best prediction accu-
racy for 1- year and 3-year OS rates in the entire cohort 
(Fig. 7B).

Validation of the predictive model
To verify the applicability and prognostic value of our 
predictive model, we randomly divided the ESCA data 
set from TCGA into two equal groups (named random 
set1 and random set2). We used the TCGA set, random 

Fig. 6  Establishment of a prognostic NRG model. A LASSO coefficient profiles of three NRGs. B Plots of the ten-fold cross-validation error rates. 
C Distribution of riskscore, survival status, and the expression of three prognostic NRGs in NRGs. D Overall survival curves for ESCA patients in the 
high-/low-risk group. E The ROC curve of measuring the predictive value. NRGs, necroptosis-related genes; ESCA, Esophageal carcinoma; LASSO, 
least absolute shrinkage and selection operator; ROC, receiver operating characteristic
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set1, random set2, and the external dataset GSE53624 
for assessing the predictive ability of our model. Con-
sidering the median risk score as the cutoff value, 
ESCA patients were classified into a high-risk group 
and a low-risk group. Figure 8A–H shows the distribu-
tion of risk scores and OS status of the four sets. The 
heat map indicated the association between the three 
NRGs and the risk scores (Fig.  8I–L). The expression 
of the three genes differed between the tissues of high-
risk and low-risk groups. Furthermore, the receiver 
operating characteristic (ROC) curve proved the high 
prediction accuracy of the model for 1-, 3-, and 5-year 
survival in the four datasets (AUC values were > 0.5 for 
all). It is noteworthy that the AUC values of the model 
in the whole set, random set1, and random set2 for pre-
dicting 5-year survival were greater than 0.75 (Fig.  8). 
The prediction performance of the model in the exter-
nal dataset GSE53624 was also better (Fig. 8). In addi-
tion, the results of the Kaplan–Meier plot revealed that 
the high-risk group had a worse OS compared with 
that of the low-risk group in the whole set (p = 0.0096) 
(Fig. 8Q) and random set1 (p = 0.0044) (Fig. 8R). More-
over, the assessment of the correlation between prog-
nosis and the clinical factors (T stage, N stage, stage, 
age, gender, and risk score) by univariate Cox and mul-
tivariate Cox regression analysis revealed that stage I 
and different risk scores were associated with prognosis 
of ESCA patients (p < 0.05) in the whole set and random 
set1 (Fig. 8U, V). However, these findings were not the 
same as the results obtained for the random set2 and 
GSE53624 dataset (p > 0.05) (Fig.  8W, X). Overall, the 
model had a good predictive effect.

Subgroups analysis of clinical features in the predictive 
model
Next, we compared the risk scores among the subgroups 
of different clinical features (T stage, N stage, M stage, 
tumor stage, gender, and survival). Clinical features and 
risks for each patient are summarized in the heat map 
(Fig. 9A). Unfortunately, no difference between the risker 
score assessment between the subgroups was observed 
(p > 0.05) (Fig.  9B–G). Meanwhile, we found that the 
model exhibited good OS predictive ability in the male 
subgroup and stage I–II subgroup (p < 0.05) (Fig. 9H–Q).

Correlation between prognostic model and drug 
sensitivity
A combination of targeted drugs and chemotherapy 
is commonly used in the treatment of advanced ESCA. 
Consequently, we assessed the difference in efficacy of 
targeted drugs and chemotherapy drugs between the 
high-risk group and low-risk group. We predicted the 
efficacy of five chemotherapeutic drugs (Cisplatin, Pacli-
taxel, Docetaxel, Gemcitabine, and Methotrexate) and 
BIBW2992 against ESCA. The results indicated that 
the low-risk group was more sensitive to Paclitaxel and 
BIBW2992 than the high-risk group (p < 0.05) (Fig. 9R).

Protein expression analysis of the three NRGs in ESCA
We employed IHC to validate the expression of the pro-
teins of the three NRGs in 20 pairs of ESCA tumor tissues 
and corresponding adjacent normal tissues. According to 
IHC staining analysis, the protein products of the three 
NRGs were located primarily in the cytoplasm, mem-
brane, and mitochondria of cancer cells, with brown 

Fig. 7  Construction of a predictive nomogram. A Nomogram to predict the 1-year, 3-year, and 5-year overall survival rate of ESCA patients. 
B Calibration curve for the overall survival nomogram model in the 1-year, 2- year,3-year group. A dashed diagonal line represents the ideal 
nomogram. ESCA, Esophageal carcinoma
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Fig. 8  The results of various methods to verify the performance of the model based on the whole set, random set1, random set2 and GSE53624 
datasets. A–H Risk score and survival time plots. I–L Expression heat map of three NRGs. M–P 1-, 3-, and 5-year ROC plot. Q–T Kaplan–Meier survival 
plot. U–X Forest plots for univariate Cox regression. NRGs, Necroptosis-related gene; ROC, receiver operating characteristic
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Fig. 9  Detailed analyses of clinical data. A The distribution of clinical characteristics and risk for each data sample. B–G Differences in risk scores 
of patients with different clinical characteristics. H–Q Kaplan–Meier survival plots for different groups by clinical feature. R The sensitivity of six 
chemotherapy and target drugs in the high- and low-risk groups
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staining reflecting positive staining (Fig. 10A, C, E, G, I, 
K). In normal tissues, the proteins of three NRGs were 
only weakly expressed or not expressed (Fig.  10B, D, F, 
H, J, L). Based on statistical analysis, these three NRGs 
were expressed significantly higher in ESCA tissues than 
in adjacent non-tumor tissues (P < 0.001) (Fig. 10M–O).

NRGs are associated with tumor immune infiltration 
and immune checkpoints in ESCA
Tumor-infiltrating lymphocyte levels are an independ-
ent predictor of survival in cancers. Here, we proved 
that the expression of prognostic NRGs (PPIA, SLC25A5, 
and TNFRSF10B) correlated with immune infiltration in 
ESCA using the TCGA dataset. According to the CIB-
ERSORT algorithm, we found that PPIA expression was 
significantly negatively associated with resting memory 
CD4 + T cell, activated mast cell, and memory B cell 
(p < 0.05), whereas it was significantly positively corre-
lated with resting mast cell and macrophage M0 (p < 0.05) 
(Fig.  11A). SLC25A5 expression was significantly posi-
tively correlated with resting myeloid dendritic cell and 
activated mast cell (p < 0.05) (Fig.  11A). Meanwhile, 
TNFRSF10B expression was significantly positively cor-
related with resting memory CD4 + T cell, activated 
memory CD4 + T cell, neutrophil, and resting NK cell, 
and was significantly negatively correlated with rest-
ing myeloid dendritic cell and macrophage M2 (p < 0.05) 
(Fig. 11A).

To further confirm the results, we investigated the cor-
relation between these three NRGs and immune infiltra-
tion cells in ESCA via the TIMER database. The results 
revealed a negative correlation between PPIA expres-
sion and the infiltration of B cells (p = 0.0284), CD8 + T 
cells (p = 0.0364), macrophages (p = 0.0118), and neu-
trophils (p = 0.0000982), whereas there was no corre-
lation with tumor purity, CD4 + T cells, and dendritic 
cells (Fig.  11B). Furthermore, there was a negative cor-
relation between SLC25A5 expression and the immune 
infiltration level of dendritic cells (Fig. 11B, p = 0.00989). 
However, SLC25A5 expression was not associated with 
B cells, CD4 + T cells, CD8 + T cells, neutrophils, and 
macrophages. Moreover, TNFRSF10B expression was 
positively associated with the infiltration of CD8 + T 
cells (Fig.  11B, p = 0.000435), while there was no asso-
ciation between TNFRSF10B levels and tumor purity, B 
cell, CD4 + T cell, macrophages, neutrophils, and den-
dritic cells (Fig. 11B). We further analyzed the correlation 
between the risk score of NRGs and immune infiltration 
in ESCA. As expected, the risk score of NRGs was sig-
nificantly negatively correlated with the abundance of 
CD8 + T cells (p = 3.99e−4), neutrophils (p = 3.07e− 4), 
and myeloid dendritic cells (p = 1.141e −4) (Fig. 12A).

SIGLEC15, PDCD1LG2(PD-L2), TIGIT, 
PDCD1(PD-1), CD274(PD-L1), CTLA4, LAG3, and 
HAVCR2(TIM3) are immunological checkpoints that 
perform a vital function in tumor immune evasion. Con-
sidering that these three NRGs might be the predictive 
biomarkers in ESCA, the relationship of these NRGs with 
the above-mentioned checkpoints was assessed. Notably, 
the expression of TNFRSF10B was positively correlated 
with that of CTLA4 and SIGLEC15 (p < 0.05), while PPIA 
expression was negatively correlated with that of CD274, 
CTLA4, PDCD1, SIGLEC15, and TIGIT in ESCA 
(p < 0.05) (Fig. 12B).

Discussion
Necroptosis is a newly discovered mechanism of pro-
grammed necrosis that plays an essential function in vari-
ous cancers. Necroptosis is also the cell death mechanism 
in tumor cells resistant to apoptosis and is triggered by a 
multitude of different stimuli. The classical necroptosis 
pathway mediated by kinase-dependent RIPs is triggered 
when pro-apoptotic molecules fail to stimulate apoptotic 
bodies [17]. Tumor multi-drug resistance characterized 
by apoptosis limits the clinical application of apoptosis 
inducers. Therefore, targeting necroptosis may be a novel 
strategy to bypass apoptotic resistance and eliminate can-
cer cells [18]. Furthermore, the role of inflammation and 
immunity in necroptosis cannot be ignored. Biomark-
ers of necroptosis are significantly associated with the 
immunological profile in ESCA [19]. It has been reported 
that necroptosis induced by chemotherapy can stimu-
late inflammatory responses and elicit immunogenic and 
anticancer effects [20]. Necrotic tumor cells can hinder 
anti-tumor immunity; these cells, which are cleared by 
monocytes, neutrophils, and macrophages, can induce 
the release of inflammatory factors and ultimately trig-
ger an adaptive immune response [21]. The critical role of 
NRGs in the pathogenesis of cancer makes them a poten-
tial prognostic and therapeutic target in cancer. However, 
the clinical significance of NRGs in ESCA has not been 
elucidated to date and further study is still needed.

Thus, to investigate the role of NRGs in ESCA, we used 
the TCGA database to analyze the expression of 52 NRGs 
in ESCA and normal esophageal tissues. GO and KEGG 
functional enrichment analyses showed that these NRGs 
were mostly associated with the regulation of necropto-
sis, Influenza A, apoptosis, NOD-like receptor signaling 
pathway, and NF-Kappa B signaling pathway. In addition, 
immune-related functions were also enriched, such as 
cytokine-cytokine receptor interaction, T cell activation, 
and positive regulation of cell adhesion. As expected, 
the enriched functions were associated with the tumor 
immune microenvironment, carcinogenesis, progres-
sion, and necroptosis in ESCA. Preliminary research has 
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Fig. 10  Three NGRs protein expression analysis. A PPIA protein expression in ESCA tumor tissue (×200 magnification); B PPIA protein expression in 
normal esophageal tissue (×200 magnification); C PPIA protein expression in ESCA tumor tissue (×400 magnification); D PPIA protein expression 
in normal esophageal tissue (×400 magnification); E SLC25A5 protein expression in ESCA tumor tissue (×200 magnification); F SLC25A5 protein 
expression in normal esophageal tissue (×200 magnification); G SLC25A5 protein expression in ESCA tumor tissue (×400 magnification); H 
SLC25A5 protein expression in normal esophageal tissue (×400 magnification); I TNFRSF10B protein expression in ESCA tumor tissue (×200 
magnification); J TNFRSF10B protein expression in normal esophageal tissue (×200 magnification); K TNFRSF10B protein expression in ESCA tumor 
tissue (×400 magnification); L TNFRSF10B protein expression in normal esophageal tissue (×400 magnification); M Quantification of immunostains 
for PPIA by IOD analysis; N Quantification of immunostains for SLC25A5 by IOD analysis;  O Quantification of immunostains for TNFRSF10B by IOD 
analysis.***p < 0.001. ESCA, Esophageal carcinoma
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indicated that NOD-like receptor signaling pathways are 
possible predictors of esophageal adenocarcinoma [22].

Furthermore, our results indicated that three differen-
tially expressed NRGs (SLC25A5, PPIA, and TNFRSF10B) 
were significantly related to the prognosis of ESCA. 
TNFRSF10B was found to be a favorable prognostic gene, 
while SLC25A5 and PPIA were related to adverse progno-
sis in ESCA. We then performed LASSO Cox regression 
to construct a prognostic signature based on the three 

prognostic NRGs. According to the risk score, ESCA 
patients were divided into two groups (high-risk and low-
risk groups), and the results revealed that the high-risk 
group had a significantly poorer OS than the low-risk 
group. Univariate analysis indicated that N1-3, M1, and 
high expression of SLC25A5 and TNFRSF10B were cor-
related with the prognosis of ESCA patients (Additional 
file 4: Table S3). Furthermore, according to Multivariate 
Cox analysis, N1-3 and M1 were independent predictors 

Fig. 11  A The correlations between three genes and the abundance of immune cells infiltration in prognostic model. Blue color represents 
positive correlation, red color represents negative correlation. B The relationship between three prognostic NRGs expression levels and immune cell 
infiltration in ESCA via TIMER database. *p < 0.05, **p < 0.01, ***p < 0.001. NRGs, necroptosis-related genes; TILs, tumor-infiltrating lymphocytes; ESCA, 
esophageal carcinoma
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of prognosis. The ROC curve confirmed the prognos-
tic signature to be an independent prognostic indicator 
by showing that it could predict the 1-year, 3-year, and 
5-year OS rates relatively well compared with an ideal 
model in the entire cohort.

To test the applicability and prognostic value of our 
model, we randomly divided the ESCA data set from 

TCGA into random set1 and random set2. We used 
random set1, random set2, and the external dataset 
GSE53624 for assessing the predictive ability of our 
model. The model exhibited a good predictive effect in all 
three datasets. Subgroups analysis of clinical features in 
the predictive model indicated that the model had good 
OS predictive ability in the male subgroup and stage I-II 

Fig. 12  A The correlation between NRGs risk score and immune cell types. B The correlation between three NRGs and checkpoint. Blue color 
represents positive correlation, red color represents negative correlation. *p < 0.05, **p < 0.01. NRGs, necroptosis-related genes
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subgroup. Correlation between the prognostic model 
and clinical treatment indicated that the low-risk group 
was more sensitive to Paclitaxel and BIBW2992 than 
the high-risk group. Subsequently, IHC staining analy-
sis showed the three NRGs were expressed significantly 
higher in ESCA tissues than in adjacent non-tumor tis-
sues. In summary, we, for the first time, constructed a 
necroptosis‑related prognostic gene signature for ESCA, 
which provides new clues for prognostic prediction in 
ESCA patients.

TNFRSF10B is a member of the TNF-receptor super-
family that is activated by TNF-related apoptosis-induc-
ing ligand (TRAIL). TNFRSF10B/DR5 delivers apoptotic 
signals to the cell and induces apoptosis in cancer cells 
[23]. The expression level of TNFRSF10B was associated 
with tumor progression and apoptosis [24]. Furthermore, 
the high expression of DR5 mediated the extrinsic apop-
totic pathway in various cancer cells [25]. However, He 
et al. showed that the low expression of TNFRSF10B was 
associated with a poor prognosis in esophageal squamous 
cell carcinoma [26, 27], which is consistent with our find-
ings. SLC25A5 (ANT2) is a by-product of nucleotide 
transferase which is specifically expressed in proliferating 
cells and participates in glycolytic metabolism. Hence, 
SLC25A5 is associated with cell growth and differen-
tiation [28]. Depletion of SLC25A5 can cause mitochon-
drial dysfunction and induce oxidative stress, leading to 
erythrocyte anemia and B-cell depletion [29]. SLC25A5 
promotes apoptosis through the regulation of bcl-2, 
caspase-3, and bax in prostate cancer [30]. Studies have 
shown that high expression of SLC25A5 in cervical can-
cer could be an independent prognostic factor [31]. PPIA 
(Cyclophilin A) is a member of the immunophilin fam-
ily and acts as an immune inflammatory mediator that 
secretes oxidative stress-induced, which promotes the 
formation of foam cells by increasing the levels of ROS 
and pro-inflammatory cytokines. Furthermore, PPIA is 
involved in biological processes such as intracellular sign-
aling, transcription, and apoptosis, therefore playing crit-
ical roles in microorganismal infections, inflammatory 
diseases, and tumor proliferation [32–34]. An increase in 
PPIA levels may lead to macrophage apoptosis through 
activation of mitochondrial death signaling pathways 
and caspase 3 cascade [35]. Studies have confirmed that 
the upregulation of PPIA is associated with a poor OS 
in diseases such as lung adenocarcinoma [36]. Some 
researchers have indicated that overexpression of PPIA 
is associated with decreased survival in esophageal squa-
mous cell carcinoma and shown it to be an independent 
prognostic factor [37, 38]. Although these studies reveal 
the relationship between the NRGs and tumor progres-
sion, none of these studies have explored the expression 
and function of the NRGs in ESCA.

The tumor immune microenvironment is mainly 
composed of tumor-infiltrating lymphocytes and other 
immune cells such as dendritic cells, neutrophils, and 
macrophages. Tumor-infiltrating lymphocytes can inhibit 
or promote tumor progression [39]. Our study confirmed 
that the expression levels of the three NRGs were signifi-
cantly associated with immune cell infiltration in ESCA. 
Early findings suggested that abundant CD8+ T cells and 
CD4+ T cells could be prognostic indicators for the clini-
cal outcome in cancers [40, 41]. Our results are consistent 
with the previous reports suggesting that TNFRSF10B 
expression associated with high CD8+ T cell abun-
dance may indicate better clinical outcomes. Preliminary 
research revealed that the tumor microenvironment is 
associated with tumor growth and prognosis in ESCA, 
and increasing levels of immune infiltrates reduce the 
risk of distant metastasis and death [27, 42]. Our results 
showed that the expression levels of the three prognostic 
NRGs were significantly correlated with that of immuno-
logical checkpoints in ESCA. Our research might pro-
vide more clues for immunotherapy strategies in ESCA. 
All these outcomes illustrate that tumor immune evasion 
and antitumor immunity might be implicated in the three 
prognostic NRGs-mediated carcinogenic processes in 
ESCA.

It was interesting to note that different approaches 
yielded inconsistent results regarding the relationship 
between immune cells infiltration and the three prog-
nostic NRGs. This inconsistency may be attributable to 
the following reasons. Although flow cytometry, immu-
nohistochemistry staining, or single-cell sequencing can 
be used to estimate the immune cell status in a tumor 
sample, each has limitations that prevent them from 
being widely applied. Therefore, we used computational 
methods to evaluate immune-cell composition from 
bulk RNA-sequencing data. First of all, between the the 
actual situation and computer-based algorithms, there 
were some variations. Next, the mechanisms of immune 
cell infiltration in tumors are complex, and they are 
inevitably affected by intratumorally heterogeneity and 
small sample sizes. In the end, various algorithms are 
used in these methods, and they all have advantages and 
disadvantages.

Although the prognostic model exhibited good per-
formance in the TCGA database and external datasets, 
our study still has some limitations in lacking mechanis-
tic experiment and further experimental validation are 
needed.

Conclusion
In summary, we identified three prognosis-associated 
NRGs (SLC25A5, PPIA, and TNFRSF10B) and con-
structed a novel necroptosis-related prognostic gene 
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signature. Furthermore, in this study, we demonstrated 
that SLC25A5, PPIA, and TNFRSF10B were correlated 
with tumor immune microenvironment infiltration and 
may be potential prognostic biomarkers for ESCA. The 
prognostic model exhibited good performance for the 
prediction of ESCA prognosis in TCGA database and 
external datasets. Our findings will benefit the treatment 
and diagnosis of ESCA. Nevertheless, the study results 
need to be validated in future fundamental research and 
extensive clinical trials.

Materials and methods
Datasets and data processing
The UCSC Xena database was utilized to obtain TCGA-
ESCA RNA-Seq FPKM data and clinical information and 
survival information (https://​toil-​xena-​hub.​s3.​us-​east-1.​
amazo​naws.​com/​downl​oad/​TcgaT​arget​Gtex_​rsem_​gene_​
tpm.​gz; Full metadata) [43]. One independent ESCA gene 
expression profiles (GSE53624) were downloaded from 
the Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) and processed for analysis 
[44]. There are 162 ESCA and 11 normal cases with clini-
cal data were downloaded from the database (Table  1). 
159 NRGs were downloaded from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database (Additional file 1: 
Table S1) [45–47]. All statistical analyses were carried out 
using R version v4.0.3.

NRGs differential expression analysis
A total of 52 NRGs were extracted and showed in Addi-
tional file  2: Table  S2, which was the most representa-
tive significance genes. The "limma" software packages 
were used to identify the differences in NRG expres-
sion between ESCA and normal esophageal tissues, and 
|Log2-fold change |> 1 and p-values < 0.05 were set as 
the filter conditions. Analyzing the mutation rates of 52 
NRGs in ESCA patients and mapping waterfall and fre-
quency plots of 52 NRGs in ESCA patients were gener-
ated using the "maftools" software package [48].

Functional enrichment analysis
Gene Ontology (GO) analyses, including biological pro-
cesses, molecular functions, and cellular components, 
and KEGG pathway enrichment analysis were used to 
identify characteristic biological attributes via the R 
package “ClusterProfiler [49]”. Data visualization was car-
ried out using R package "ggplot2 [50]". p < 0.05 was con-
sidered to be statistically significant.

Establishment of necroptosis risk scoring prognosis 
signature
The correlation between NRGs expression and survival 
was analyzed using univariate survival analysis. The 

Table 1  Clinical characteristics of patients with EC

Characteristic Levels Overall

n 161

T stage, n (%) T1 27 (18.6%)

T2 37 (25.5%)

T3 77 (53.1%)

T4 4 (2.8%)

N stage, n (%) N0 66 (45.8%)

N1 63 (43.8%)

N2 9 (6.2%)

N3 6 (4.2%)

M stage, n (%) M0 121 (93.8%)

M1 8 (6.2%)

Pathologic stage, n (%) Stage I 16 (11.3%)

Stage II 69 (48.6%)

Stage III 49 (34.5%)

Stage IV 8 (5.6%)

Radiation therapy, n (%) No 107 (74.8%)

Yes 36 (25.2%)

Primary therapy outcome, n (%) PD 9 (9.7%)

SD 7 (7.5%)

PR 3 (3.2%)

CR 74 (79.6%)

Gender, n (%) Female 23 (14.3%)

Male 138 (85.7%)

Race, n (%) Asian 38 (26.6%)

Black or African American 5 (3.5%)

White 100 (69.9%)

Age, n (%)  ≤ 60 82 (50.9%)

 > 60 79 (49.1%)

Weight, n (%)  ≤ 70 76 (47.8%)

 > 70 83 (52.2%)

Height, n (%)  < 170 47 (30.9%)

 ≥ 170 105 (69.1%)

BMI, n (%)  ≤ 25 84 (55.3%)

 > 25 68 (44.7%)

Histological type, n (%) Adenocarcinoma 80 (49.7%)

Squamous cell carcinoma 81 (50.3%)

Histologic grade, n (%) G1 16 (12.7%)

G2 66 (52.4%)

G3 44 (34.9%)

Residual tumor, n (%) R0 121 (90.3%)

R1 11 (8.2%)

R2 2 (1.5%)

Smoker, n (%) No 47 (32.9%)

Yes 96 (67.1%)

Alcohol history, n (%) No 46 (29.1%)

Yes 112 (70.9%)

OS event, n (%) Alive 97 (60.2%)

Dead 64 (39.8%)

DSS event, n (%) Alive 115 (71.9%)

https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TcgaTargetGtex_rsem_gene_tpm.gz
https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TcgaTargetGtex_rsem_gene_tpm.gz
https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TcgaTargetGtex_rsem_gene_tpm.gz
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Kaplan–Meier [51] was used to compare the survival 
rates of different NRGs expression. The risk score was 
calculated from the formula of the regression coeffi-
cients in the multiple Cox regression model. Thereafter 
we established the prognostic model for three prognostic 
NRGs by LASSO Cox regression analysis [52]. Accord-
ing to the median risk score, ESCA patients were divided 
into two subgroups (high-risk and low-risk), then we 
compared OS between two subgroups by KM analysis. 
Time ROC analysis was employed to predict accuracy of 
the risk score. Based on the clinical characteristics (TNM 
stage, gender, age and three NRGs), we constructed a 
nomogram to quantitatively predict 1-, 3-, and 5-year 
OS. Each variable such as p-value, HR and 95% CI were 
visualized by a forest by R package "forestplot".

Validation of predictive model
We used TCGA ESCA database with external ESCA 
dataset GSE53624 to assess and verify the predictive abil-
ity of our prognostic model [53, 54]. The Clinical and 
survival information of the whole set was derived from 
the TCGA dataset, and the external dataset GSE53624 
was obtained from the GEO database through the GEO 
query R package. TCGA was equally divided into two 
groups by random sampling, named Random set1, 2. 
Time ROC analysis was employed to predict accuracy of 
1-, 3-, and 5-year survival. The correlation between risk 
score and survival time was examined via KM survival 
analysis. Prognostic and predictive value of Risk score 
was validated by Univariate Cox analysis. All analytical 
analyses were performed using the R packages "ggplot2", 
"coxph function", "pheatmap", "timeROC", "survival", and 
"survminer".

Correlation between prognostic model and drug 
sensitivity
We used the R package “pRRophetic” to predict drug 
sensitivity and the results were visualized by the expres-
sion matrix.

Immunohistochemical staining
In order to further validate the expression of the three 
NRGs between ESCA and adjacent normal tissues, 20 
paired ESCA tissues from Liuzhou People’s Hospital 

were collected for immunohistochemical staining. The 
study was approved by the Ethics Committee of Liuzhou 
People’s Hospital (Reference No. KY2021-026-01) and 
conducted according to the Declaration of Helsinki. For-
malin fixed paraffin-embedded tissue were analyzed by 
Immunohistochemistry with PPIA antibody (1:100; Pro-
teintech, China), SLC25A5(1:100; Proteintech, China), 
and TNFRSF10B (1:150; OriGene China) and horserad-
ish peroxidase conjugated secondary antibodies (Maxim, 
China). For IHC quantification, the integrated optical 
density (IOD) for each slice was calculated using the 
Image-ProPlus6.0 software (Media Cybernetics, USA).

Tumor microenvironment estimation
We used CIBERSORT algorithm to confirm the asso-
ciation between three NRGs and the abundance of 22 
infiltrating immune cells. Then we used spearman corre-
lation analysis to further confirm the association between 
the risk scores and those NRGs expression. This study 
also explored the correlation between three NRGs and 
8 immune checkpoint molecules. All statistical analyses 
information mentioned were visualized via R version 
4.0.3.

Tumor immune estimation resource (TIMER) database
TIMER (https://​cistr​ome.​shiny​apps.​io/​timer/) dataset 
comprise six tumor-infiltrating immune subsets. Cal-
culated the levels of six subgroups for 10,897 tumors in 
32 cancers using the TCGA. Based on the database, gene 
expression and tumor immune infiltration (B cells, CD4+ 
T cells, CD8+ T cells, Dendritic cells, Macrophages, and 
Neutrophils) were analyzed in several cancer types. Using 
the TIMER dataset, we examined the mRNA expression 
of these prognostic NRGs in patients with ESCA.

Statistical analysis
All Statistical analysis analyzed were conducted by the 
Log-rank test, such as fold-change (FC), HR, and p-val-
ues. The correlation between particular variables was 
validated using the Spearman’s correlation analysis or 
Pearson correlation analysis. p-value or Log-rank p-value 
of < 0.05 was considered as having statistical significance.
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Table 1  (continued)

Characteristic Levels Overall

Dead 45 (28.1%)

PFI event, n (%) Alive 83 (51.6%)

Dead 78 (48.4%)

Age, median (IQR) 60 (53, 72)

https://cistrome.shinyapps.io/timer/
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Molecular function; PFS: Progression-free surviva; DSS: Disease-specific 
survival; AUCs: Area under the curves; NK cell: Natural killer cell.
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