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Abstract 

Background:  The anti-inflammatory effect of exclusive enteral nutrition on the gut of children with Crohn’s disease is 
rapidly lost after food reintroduction. This study assessed disease dietary triggers following successful treatment with 
exclusive enteral nutrition.

Methods:  Nutrient intake, dietary patterns and dietary biomarkers in faeces (gluten immunogenic peptides, undi-
gestible starch, short chain fatty acids) were assessed in 14 children with Crohn’s disease during early food reintroduc-
tion, following exclusive enteral nutrition. Groups above (Group A) and below (Group B) the median levels of faecal 
calprotectin after food reintroduction were assigned for comparative analysis.

Results:  Intakes of fibre, gluten-containing cereals and red and processed meat were significantly higher in Group 
A than Group B; (median [Q1, Q3], g/day; Fibre: 12.1 [11.2, 19.9] vs. 9.9 [7.6, 12.1], p = 0.03; Red and processed meat: 
151 [66.7, 190] vs. 63.3 [21.7, 67], p = 0.02; gluten-containing cereals: 289 [207, 402] vs. 203 [61, 232], p = 0.035). A diet 
consisting of cereals and meat products was predictive (92% accuracy) of higher faecal calprotectin levels after food 
reintroduction. In faeces, butyrate levels, expressed as absolute concentration and relative abundance, were higher 
in Group A than Group B by 28.4 µmol/g (p = 0.015) and 6.4% (p = 0.008), respectively. Levels of gluten immunogenic 
peptide and starch in faeces did not differ between the two groups.

Conclusions:  This pilot study identified potential dietary triggers of gut inflammation in children with Crohn’s dis-
ease after food reintroduction following treatment with exclusive enteral nutrition.

Trial registration: Clinical trials.gov registration number: NCT02341248; Clinical trials.gov URL: https://​clini​caltr​ials.​gov/​
ct2/​show/​NCT02​341248 (retrospectively registered).

Keywords:  Crohn’s disease, Food reintroduction, Dietary triggers, Faecal calprotectin, Gluten, Fibre, Meat, Short chain 
fatty acids
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Introduction
The increasing incidence of Crohn’s disease (CD) in soci-
eties in economic transition, suggests that environmental 
factors, including a Western diet are major contributors 
to the disease pathogenesis [1]. In nutritional epidemi-
ology, adherence to the principles of the Mediterranean 
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diet has protected against development of CD [2, 3] 
whereas food additives have been implicated in the devel-
opment of intestinal inflammation in animal models [4].

Exclusive enteral nutrition (EEN) is the only estab-
lished dietary treatment for active CD in children [5, 6]. 
In addition to symptom improvement, EEN reduces fae-
cal calprotectin (FC) levels by a mean of 50% by the end 
of treatment [7]. However, we have recently observed 
a rapid increase in FC within the first 17  days of food 
reintroduction, following treatment with EEN; an effect 
which preceded any noticeable changes in clinical dis-
ease activity [8]. This intriguing observation suggests 
that reintroduction of certain dietary components, after 
return to habitual diet, provokes recurrence of intestinal 
inflammation.

In the current study, we performed detailed assess-
ment of the diet of children with CD during this early 
phase of food reintroduction, following successful EEN, 
and explored relationships with FC. We concentrated our 
efforts on this critical food reintroduction period, which 
provided us with a unique timeframe to explore dietary 
disease triggers in a population with homogeneous char-
acteristics of disease activity, type, and duration of pre-
ceding EEN treatment at study enrolment.

Methods
Patients
Children (aged 3–17 years) with a new diagnosis of CD 
or with disease in relapse, who initiated an 8-week course 
of EEN were recruited from the Royal Hospital for Chil-
dren, Glasgow and neighbouring hospitals, as described 
previously [9]. A faecal sample per patient was collected 
during early food reintroduction, between 15 and 30 days 
after EEN completion or at the earliest most convenient 
time for the patients.

Disease activity was assessed with the weighted Pae-
diatric Crohn’s Disease Activity Index (wPCDAI) [10]. 
In the current study, we included a subset of patients 
recruited in the study by Logan et al. [9], who achieved 
both clinical remission at EEN completion (wPC-
DAI < 12.5) and experienced a clinically significant drop 
in FC, defined by a decrease of ≥ 50% or ≥ 500  mg/kg 
from levels at EEN initiation (Additional file 1: Fig. S1). 
Patients who did not enter clinical remission or did not 
provide a faecal sample or dietary records were excluded. 
Information about disease phenotype (Paris classifica-
tion) [11] and concomitant treatment was collected from 
medical notes.

Dietary assessment
Participants recorded their diet for three days prior 
to faecal sample collection, including intake of enteral 
nutrition as maintenance treatment (MEN), with 3-day 

food diaries, estimating weight of consumed foods using 
household measures. MEN was prescribed to provide 
20–25% of daily energy requirements. No specific food 
reintroduction guidance was provided to patients after 
EEN cessation. Dietary records were analysed using the 
WinDiets software (WinDiets version 10, Robert Gordon 
University, Aberdeen, UK) for calculation of energy and 
nutrient intake.

Dietary patterns were assessed by classification of indi-
vidual foods in groups based on the grouping applied in 
the UK National Dietary and Nutrition Survey (NDNS) 
[12]. Individual foods were assigned to the subsidiary 
NDNS food groups (level 3, e.g., rice) and the subsidiary 
groups were combined to form the main NDNS groups 
(level 2, e.g., pasta, rice, and other cereals), which then 
formed the larger level food groups (e.g., cereal and cereal 
products) (level 1) (Additional file  2: Fig. S2). Cereal 
products were divided to gluten and non-gluten contain-
ing cereal products. Meat subtypes were also grouped 
under the categories: ‘red meat’ and ‘processed meat’ sep-
arately, and also in a combined ‘red and processed meat’ 
category based on the World Cancer Research Fund 
definitions [13], since the consumption of both types of 
meat has been implicated in the pathogenesis of Inflam-
matory bowel diseases (IBD) [14, 15]. Nutrient intake 
was expressed in absolute mass (grams). Energy intake 
was further expressed as percentage of estimated aver-
age requirements (EAR), macronutrients as percentages 
of total energy intake, and protein and micronutrients as 
percentages of reference nutrient intakes (RNI) [16]. Die-
tary fibre was defined as non-starch polysaccharides, in 
accordance with the Englyst method.

Faecal sample collection and faecal calprotectin
The entire bowel movement was collected within 4 h of 
defecation and was transferred to the laboratory on ice 
under anaerobic conditions (Oxoid AnaeroGen Sachet; 
ThermoFisher Scientific)[9]. Samples were homogenised 
and aliquots were stored in – 80  °C. Faecal calprotec-
tin was measured using the CALP0170 kit (CalproLab, 
Lysaker, Norway) [17].

Faecal biomarkers of food intake
Short and branched chain fatty acids (SCFA, BCFA) were 
measured using gas chromatography (Agilent 7890A) 
[18], and were used as proxy biomarkers of ferment-
able dietary fibre and protein intake, respectively. Starch 
(Megazyme, Ireland) and gluten immunogenic peptides 
(GIP, Biomedal, S.L., Spain) were measured in faeces, as 
biomarkers of non-fermented resistant starch and gluten 
intake, respectively [19], according to the manufactur-
ers’ instructions. For the measurement of faecal starch, 
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samples were initially lyophilised and homogenised thor-
oughly using a pestle and mortar.

Statistical considerations
Statistical analysis was performed using Minitab, Version 
18 (Minitab Ltd, Coventry, UK) and R (version 3.5.3). 
Patients were divided into two equally numbered groups 
based on their FC levels during food reintroduction. 
Patients with an FC above the median concentration after 
food reintroduction were assigned to Group A (Above) 
and patients with an FC below the median concentration 
to Group B (Below). Continuous data were expressed 
as medians with interquartile ranges (Q1, Q3) and cat-
egorical data as counts with frequencies (n [%]), unless 
otherwise stated. Comparisons of continuous variables 
between different groups were performed on Box-Cox 
transformed data using general linear models and Fish-
er’s least significance difference post-hoc test. Compari-
sons of dietary intake and biomarker levels between the 
two groups were adjusted for FC levels at EEN comple-
tion (p-adj). Relationships between dietary components 
and FC levels were explored with Pearson and Spearman 
rank correlations.

For dietary pattern analysis, subset regression analysis 
was performed by testing all possible food group combi-
nations. The best predictive model was selected accord-
ing to recommendations given in Kassambara, 2018 [20], 
and was used to predict the FC group of each patient 
based on dietary patterns consisting of multiple food 
groups. In-house R scripts incorporating the leaps [21] 
and caret packages [22], were used. Specifically, we used 
the relative contribution of each individual food group 
intake to the cumulative food group intake. Food groups 
consumed by fewer than two patients were excluded 
from the analysis. After the various models were created, 
random forest analysis, using the randomForest pack-
age [23] was employed to select the best model based on 
the lowest assignment error (out-of-bag error). The rela-
tive importance of each food group intake to the predic-
tive ability of each model was assessed by calculating the 
mean reduction in Gini impurity index on inclusion.

Results
Anthropometric and clinical disease characteristics
Fourteen out of 23 (61%) paediatric patients, who had 
maintained  symptom-free clinical remission at the 
time of the sample collection, provided a faecal sam-
ple and completed dietary records within (median [Q1, 
Q3]): 21 [15, 51] days of food reintroduction. None 
had commenced or were receiving another induction 
therapy. The median [Q1, Q3] FC for all 14 patients 
after food reintroduction was 900  mg/kg [341, 1243]. 
In Group A, median [Q1, Q3] FC levels were 1,181 

[1024, 1781] mg/kg and in Group B 411 [130, 651] mg/
kg (Additional file 3: Fig. S3). No significant differences 
were observed in demographics, anthropometry, or 
disease characteristics between the two groups (Addi-
tional file  4: Table  S1). There were no significant dif-
ferences in immunomodulator use, energy intake from 
MEN, and the time elapsed between the end of EEN 
and sample collection after food reintroduction. Like-
wise, no significant correlation was observed between 
FC levels and the time elapsed between the end of 
EEN and sample collection after food reintroduction 
(p = 0.899).

Nutrient intake
Group A reported a significantly higher intake of fibre 
compared to Group B, expressed both as an abso-
lute amount (median [Q1, Q3], grams; Group A: 12.1 
[11.2, 19.9] vs. Group B: 9.9 [7.6, 12.1], p = 0.030, p-
adj = 0.068) and as percentage of RNI (median [Q1, 
Q3], %RNI; Group A: 55 [46, 99.5] versus Group B: 44.8 
[30.3, 48.5], p = 0.023, p-adj = 0.071) (Table  1). Intakes 
of protein and phosphorus, expressed as %RNI, were 
also significantly higher in Group A than Group B 
(median [Q1, Q3], %RNI; Protein; Group A: 262 [195, 
291] versus Group B: 211 [88.4, 215], p = 0.026, p-
adj = 0.069; Phosphorus; Group A: 241 [171, 290] ver-
sus Group B: 177 [130, 191], p = 0.040, p-adj = 0.174) 
(Table 1).

Food group intake
Although the intake of red meat and processed meat, 
when assessed separately, did not differ between the two 
groups (p = 0.225, p = 0.125 respectively), their cumula-
tive intake in Group A was significantly higher compared 
to Group B by a median difference of 87.7 g/day (median 
[Q1, Q3], grams; Group A: 151 [66.7, 190] vs. Group B: 
63.3 [21.7, 67], p = 0.030, p-adj = 0.065) (Fig.  1). Con-
sumption of cereals and cereal products was higher in 
Group A, although the difference did not reach statisti-
cal significance (p = 0.08, p-adj = 0.067). Nonetheless, the 
intake of gluten containing cereal products was higher 
in Group A than Group B, and in reverse, the consump-
tion of non-gluten containing cereal products was higher 
in Group B (median [Q1, Q3], grams; gluten containing 
cereal products, Group A: 289 [207, 402] vs. Group B: 
203 [61, 231], p = 0.035, p-adj = 0.042; non-gluten con-
taining cereal products: Group A: 0 [0, 20] vs. Group B: 
43 [33, 77], p = 0.031, p-adj = 0.083). The food groups 
‘alcoholic beverages’, ‘commercial toddlers’ foods and 
drinks’ and ‘nuts and seeds’ were not consumed by any of 
the patients and were therefore excluded from analysis.
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Table 1  Comparison of nutrient intake between patients in the two groups

Group A (n = 7) Group B (n = 7) p value p value adj

Total energy (kcal) 2057 (1916, 2305) 1906 (1473, 2252) 0.365 0.217

Total energy (% EAR) 97.2 (89.2, 118) 85.7 (69.3, 105) 0.08 0.177

Fat (g) 71.6 (65.7, 82.5) 75.3 (63, 83.6) 0.764 0.719

Fat (% kcal) 32.3 (28.4, 35.5) 33.8 (30.6, 35.6) 0.418 0.317

SFA (g) 25.0 (24.3, 33.1) 29.0 (24.8, 37.4) 0.602 0.533

SFA (% kcal) 11.7 (10.5, 13.9) 13.1 (10.9, 15.2) 0.381 0.269

MUFA (g) 27.1 (20.9, 27.7) 21.8 (17.5, 24.5) 0.237 0.315

MUFA (% kcal) 10.9 (9.8, 12.0) 10.5 (9.7, 11.5) 0.463 0.78

PUFA (g) 11.5 (9.8, 12.9) 9.4 (6.9, 10.8) 0.082 0.236

PUFA (% kcal) 4.8 (3.8, 6.5) 4.3 (4.1, 5.1) 0.336 0.887

Carbohydrates (g) 267 (239, 303) 246 (225, 284) 0.415 0.19

Carbohydrates (% kcal) 52.5 (48.5, 56.0) 51.6 (49, 56.9) 0.831 0.807

Sugars (g) 97.4 (84.1, 105) 93.3 (89.1, 118) 0.636 0.393

Sugars (% kcal) 18.9 (16.2, 22) 21.4 (20.9, 24.2) 0.175 0.393

Dietary fibre (g) 12.1 (11.2, 19.9) 9.9 (7.6, 12.1) 0.03 0.068

Dietary fibre (% RNI) 55 (46, 99.5) 44.8 (30.3, 48.5) 0.023 0.071

Starch (g) 146 (105, 154) 126 (120, 144) 0.366 0.216

Protein (g) 82.2 (73.7, 90.2) 65.4 (37.2, 89.5) 0.179 0.159

Protein (% kcal) 16.8 (13.8, 17.3) 14.9 (10.7, 15.9) 0.135 0.196

Protein (% RNI) 262 (195, 291) 211 (88.4, 215) 0.026 0.069

Vitamin A (µg) 485 (451, 762) 695 (485, 1000) 0.709 0.464

Vitamin A (% RNI) 80.8 (75.2, 153) 139 (80.8, 167) 0.948 0.617

Vitamin D (µg) 1.2 (0.9, 1.6) 0.9 (0.6, 1.2) 0.536 0.844

Vitamin C (mg) 115 (62.1, 127) 102 (77.6, 117) 0.909 0.871

Vitamin C (% RNI) 362 (207, 401) 291 (194, 389) 0.821 0.743

Thiamine (mg) 1.8 (1.2, 2.2) 1.4 (0.8, 1.9) 0.297 0.483

Thiamine (% RNI) 251 (171, 310) 159 (101, 212) 0.068 0.214

Vitamin B2 (mg) 1.3 (1.1, 1.7) 1.4 (1, 1.8) 0.608 0.352

Vitamin B2 (% RNI) 141 (112, 174) 129 (103, 153) 0.343 0.404

Vitamin B6 (mg) 2.3 (1.6, 2.8) 2.2 (1.7, 3.2) 0.938 0.548

Vitamin B6 (% RNI) 234 (141, 276) 184 (145, 267) 0.63 0.772

Niacin (mg) 34.3 (26.8, 42.5) 32.3 (25.8, 37.3) 0.338 0.323

Niacin (% RNI) 283 (224, 354) 231 (172, 249) 0.104 0.143

Folic acid (µg) 215 (163, 306) 211 (172, 294) 0.784 0.71

Folic acid (% RNI) 139 (81.5, 204) 106 (86, 147) 0.374 0.859

Vitamin B12 (µg) 3.4 (2.9, 4.9) 3.6 (2.8, 4.9) 0.89 0.472

Vitamin B12 (% RNI) 337 (195, 412) 324 (187, 414) 0.828 0.567

Pantothenic acid (mg) 4.8 (4.2, 5.7) 4.2 (3.2, 6.6) 0.454 0.708

Biotin (µg) 24 (22.1, 27) 22.1 (16.2, 39) 0.893 0.357

Vitamin E (mg) 6.4 (3.6, 7.6) 6.1 (4.5, 6.5) 0.816 0.717

Sodium (mg) 2084 (1977, 2834) 2073 (1399, 2682) 0.528 0.365

Sodium (% RNI) 130 (124, 177) 130 (87.4, 168) 0.528 0.365

Chloride (mg) 3307 (2368, 4315) 3647 (2180, 3756) 0.484 0.49

Chloride (% RNI) 167 (94.7, 238) 146 (121, 150) 0.244 0.362

Potassium (mg) 2293 (1930, 3068) 2326 (1807, 2617) 0.468 0.651

Potassium (% RNI) 115 (99, 223) 84.4 (72.4, 96) 0.127 0.4

Calcium (mg) 1068 (718, 1323) 1103 (645, 1470) 0.942 0.951

Calcium (% RNI) 128 (93.3, 157.2) 102 (79.6, 115) 0.142 0.571

Phosphorus (mg) 1241 (1005, 1323) 1103 (814, 1470) 0.527 0.821
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Relationships between nutrients, food groups, dietary 
patterns, and levels of FC
To explore linear relationships, as a proxy of dose–
response associations between dietary intake param-
eters and FC levels, we performed correlation analysis 

(Fig. 2, Additional file 4: Tables S2 and S3). Protein intake 
(% RNI) (r = 0.54, p = 0.047), thiamine (mg) (Pearson 
r = 0.57, p = 0.033) and niacin (%RNI) (r = 0.61, p = 0.02) 
had a moderate-strong positive correlation with FC 
(Fig. 2).

Group A: patients with faecal calprotectin levels above the median levels at food reintroduction, Group B: patients with faecal calprotectin values below the median 
levels at food reintroduction. p value adj: p value adjusted for faecal calprotectin levels at the end of EEN. Values are presented as medians (Q1, Q3). EAR: Estimated 
average requirement, MUFA: Monounsaturated fatty acids, PUFA: Polyunsaturated fatty acids, RNI: Reference nutrient intake, SFA: Saturated fatty acids

Table 1  (continued)

Group A (n = 7) Group B (n = 7) p value p value adj

Phosphorus (% RNI) 241 (171, 290) 177 (130, 191) 0.04 0.174

Magnesium (mg) 262 (187, 285) 207 (179, 270) 0.53 0.981

Magnesium (% RNI) 101 (66.8, 142) 82.3 (68.8, 90.1) 0.218 0.692

Iron (mg) 10.9 (7.9, 14.1) 8.9 (8.2, 12.7) 0.414 0.979

Iron (% RNI) 114 (69.6, 148) 76.4 (73.5, 112) 0.257 0.886

Zinc (mg) 11.4 (6.70, 13.8) 7.8 (6.35, 10.2) 0.393 0.745

Zinc (% RNI) 153 (95.7, 164) 106 (86.7, 117) 0.179 0.474

Copper (mg) 0.99 (0.95, 1.55) 1.07 (0.76, 1.26) 0.443 0.857

Copper (% RNI) 136 (95, 221) 111 (95.4, 134) 0.268 0.964

Iodine (µg) 91.7 (80, 117) 117 (90.3, 162) 0.468 0.322

Iodine (% RNI) 77.4 (70.5, 106) 102 (64.5, 124) 0.811 0.46

Selenium (µg) 42 (31, 49.3) 30 (24, 54.7) 0.382 0.762

Selenium (% RNI) 110 (67.4, 153) 73.3 (44.4, 121) 0.159 0.531

Cholesterol (mg) 208 (160, 286) 203 (73, 268) 0.464 0.506

Carotene (ug) 1561 (325, 3497) 950 (179, 1939) 0.370 0.415

Fig. 1  Comparison of food group intake between the two groups in children with Crohn’s Disease during food reintroduction. Group A: patients 
with faecal calprotectin levels above the median levels at food reintroduction, Group B: patients with faecal calprotectin values below the median 
levels at food reintroduction * Intake of non-alcoholic beverages has been divided by 10 for both groups for better visualisation. Red diamond 
indicates significant differences between Group A and B (p = 0.03)
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Moderate-strong significant positive correlations with 
FC levels were also observed between the intakes of red 
and processed meat (Spearman’s rho = 0.62, p = 0.019), 
meat and meat products (Spearman’s rho = 0.57, 
p = 0.034) and the intake of non-alcoholic beverages 
which included juices, and fizzy drinks (Pearson r = 0.73, 
p = 0.003) (Fig. 2).

The contribution of dietary patterns in the prediction of 
FC levels was assessed using food-group models (Fig. 3). 
Cereals and meat products showed a positive association 
with the assignment of patients in Group A, whilst for 
eggs, fruits and fruit products, the association was nega-
tive. Random forest analysis showed that the model with 
the lowest ‘out-of-bag’ error included cereal, meat and 
their products, and could predict the correct classifica-
tion of patients to their respective FC group with a high 
accuracy of over 92% (error rate: 7.7%, Model 2, Fig. 3). 
The contribution of meat and meat products to the pre-
dictive ability of Model 2 was 62%, and that of cereals 
38%, suggesting that a dietary pattern high in cereals 
and meat products was associated with higher levels of 
FC after food reintroduction. The model with the second 
lowest error rate included in addition fruits and eggs, 

which showed a negative (i.e., a protective) association 
with faecal calprotectin levels (error rate: 15.4%, Model 
3, Fig. 3).

Diet‑related biomarkers in faeces
Butyrate levels, expressed either as absolute concentra-
tion (µmol/g) or as relative proportion (%), were signifi-
cantly higher in patients with higher FC levels (Group A), 
compared to patients with lower FC levels (Group B) by 
a median difference of 28.4 µmol/g and 6.4% respectively 
(median [Q1, Q3], µmol/g: Group A: 62.5 [41.8, 114] vs. 
Group B: 34.1 [29.2, 49.6], p = 0.016, p-adj = 0.015; %; 
Group A: 15.1 [11.2, 17.8] vs. Group B: 8.7 [8.6, 9.12], 
p = 0.008, p-adj = 0.016), Table  2. The concentration of 
acetate, propionate and of BCFA did not differ between 
the two groups. Faecal GIP levels did not significantly 
differ between the two groups (median [Q1, Q3], ng/
µg; Group A: 1,250 [1,250, 1,250] vs. Group B: 1,250 [78, 
1,250], p = 0.121, p-adj = 0.211), although most patients 
in Group A had GIP measurements above the upper 
detection limit of the assay, suggesting high gluten intake. 

Fig. 2  Correlations between nutrient and food intake with faecal calprotectin levels in children with Crohn’s Disease after food reintroduction
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There was no difference in faecal starch output between the two groups (median [Q1, Q3], g/100  g; Group A: 
0.2 [0.1, 0.8] vs. Group B: 1.10 [0.10, 1.40], p = 0.141, 
p-adj = 0.573).

Fig. 3  Results from subset regression analysis showing food-group models predicting classification of patients in the two FC groups. Food groups 
coloured with red indicate positive association (i.e., harmful) and with blue negative (i.e., beneficial) association with assignment of patients in the 
group with higher FC levels during food reintroduction (Group A) (higher FC levels during food reintroduction). OOB error: Out of bag error rate, 
showing percentage of misclassification of patients to their respective FC groups (Group A/B) for each different food-group model identified from 
random forest analysis. Fish and fish-related products were removed from analysis, as they were consumed by one patient

Table 2  Comparison of concentration of SCFA in faeces between patients in the two groups

Group A: patients with faecal calprotectin levels above the median levels at food reintroduction, Group B: patients with faecal calprotectin values below the median 
levels at food reintroduction. Values are presented as medians (Q1, Q3). p value adj: p value adjusted for faecal calprotectin levels at the end of EEN. %: proportional 
ratio of each SCFA to total SCFA; SCFA: Short chain fatty acids

SCFA Group A (n = 6) Group B (n = 7) p value p value adj

Faecal water content (%) 74 (70, 80.5) 73.2 (65.7, 80) 0.601 0.340

Acetate (µmol/g) 255 (238, 341) 304 (223, 385) 0.716 0.959

Propionate (µmol/g) 80.5 (70.5, 143) 72.1 (46.3, 109) 0.367 0.126

Isobutyrate (µmol/g) 10.9 (7.6, 16.7) 8.70 (6.1, 9.9) 0.121 0.174

Butyrate (µmol/g) 62.5 (41.8, 114) 34.1 (29.2, 49.6) 0.016 0.015

Isovalerate (µmol/g) 11.4 (7, 17.4) 8.6 (4.8, 11.7) 0.180 0.297

Total SCFA (µmol/g) 401 (386, 663) 395 (344, 537) 0.533 0.255

Acetate (%) 60.2 (56.7, 65.2) 71.6 (60.2, 75.4) 0.037 0.027

Propionate (%) 20.6 (18, 21.4) 18.7 (12.4, 20.9) 0.450 0.208

Isobutyrate (%) 2.2 (2.02, 3.4) 1.9 (1.4, 2.5) 0.163 0.355

Butyrate (%) 15.1 (11.2, 17.8) 8.6 (8.6, 9.1) 0.008 0.016

Isovalerate (%) 2.1 (1.9, 3.8) 1.8 (1.2, 3.1) 0.295 0.598



Page 8 of 11Gkikas et al. BMC Gastroenterology          (2021) 21:454 

Discussion
This study identified differences in the intake of certain 
nutrients, dietary patterns, and diet-related biomarkers 
in faeces between children with CD who demonstrated 
different levels of intestinal inflammation after food rein-
troduction, following successful treatment with EEN.

A higher intake of fibre and of butyrate, its proxy bio-
marker in faeces, was observed in patients with raised 
levels of FC. This observation is in contrast to the pre-
viously ascribed protective role of fibre in the develop-
ment of CD [3, 24, 25]. Likewise, the role of fibre in the 
management of IBD remains unclear. While observa-
tional research data point to a protective role of fibre in 
preventing a disease flare in CD [26], other data showed 
that a higher dietary fibre intake was positively associated 
with risk for clinical relapse [27]. Overall, the findings 
of the current study align with the lack of evidence sup-
porting the effectiveness of fibre in the management of 
the disease [28–31]. A compositional analysis of 61 EEN 
formulas used for the induction of remission in CD also 
showed that < 20% of those formulas contained fibre [32]. 
Collectively, these results demonstrate that lack of fibre 
does not have a deleterious effect on disease activity, and 
indeed may have a seemingly unexpected unfavourable 
effect.

Patients in the current study with higher FC levels 
reported a higher protein and phosphorus intake, along 
with a higher intake of red and processed meat. Although 
we did not assess separately the intake of protein from 
animal or plant sources, the presence of a moderate-to-
strong correlation between the intake of protein and meat 
products (spearman rho = 0.66, p = 0.01), but not with 
cereal products, nor vegetables indicates that protein 
from animal sources is likely to explain the negative rela-
tionship with FC we observed in the current study. High 
intake of animal protein has been associated with devel-
opment of IBD [33, 34], and in patients with ulcerative 
colitis (UC), high intake of protein, total, as well as red 
and processed meat, was positively associated with risk 
of relapse [15]. In a recent retrospective study, patients 
with IBD in clinical remission had a lower total and ani-
mal protein intake compared to patients who experi-
enced a relapse after a 2-year follow-up [35]. In contrast, 
a recent RCT showed that clinical relapse rates and FC 
levels did not differ between patients with CD who con-
sumed at least two portions of red and processed meat 
per week, and others who consumed less than one serv-
ing per month [36]. The positive associations between FC 
and phosphorus intake may indicate an increased intake 
of grains and meat products which are rich in phospho-
rus. Although the effect of phosphorus has not been 
extensively explored in human IBD, dietary phosphate 
has been shown to be pro-inflammatory in animals [37].

Using machine learning on food group-based analy-
sis, we showed that a dietary pattern consisting of cereal 
and meat-based products could successfully predict the 
assignment of 92% of patients into their respective FC 
group, with meat and cereal products showing a positive 
association with FC. On the contrary, the intake of eggs 
and fruit was associated with lower FC levels in another 
model with higher misclassification error though. In a 
recent cross-sectional study of patients with CD, princi-
pal component analysis also identified that a dietary pat-
tern rich in rice, pasta and red meat, among other foods, 
was associated with increased symptom frequency, but 
did not differentiate patients with active disease from 
those in remission [38]. In another study which assessed 
dietary patterns, a “Western-type” eating pattern consist-
ing of mainly grains, red and processed meat and high-
sugar foods was positively associated with a higher risk 
for clinical relapse [35]. Of note, most novel dietary ther-
apies for management of disease activity and intestinal 
inflammation in patients with CD often exclude or limit 
the intake of grains/gluten and red and processed meat 
[39]. In the current study, patients with higher FC levels 
also reported a higher consumption of gluten containing 
cereal products, which points to gluten-containing foods 
as potential driver of intestinal inflammation.

In addition to conventional dietary assessment, we 
measured diet-originating bacterial metabolites and die-
tary components in faeces as complementary biomarkers 
of consumption of certain foods previously implicated in 
CD pathogenesis [40]. The lack of significant differences 
in the levels of faecal starch between the two CD groups 
did not parallel the signals we observed with fibre intake. 
However, fibre encompasses an umbrella term of struc-
turally diverse carbohydrates with potentially different 
roles in CD [41]. Although the intake of gluten contain-
ing cereals was higher in Group A, faecal GIP levels did 
not differ between the two groups. However, the method 
used to quantify faecal GIP is sensitive at detecting trans-
gressions to gluten-free diet compliance rather than 
quantitatively estimating variable intakes of gluten, which 
might be more important in a dose–response relation-
ship with initiation of intestinal inflammation [19].

In the current study, double levels of faecal butyrate 
levels were observed in patients with higher FC levels 
after food reintroduction. This signal was associated with 
higher dietary fibre intake from which butyrate originates 
as an end-product of bacterial fermentation in the same 
group (Spearman’s correlation between fibre and butyrate 
levels: ρ = 0.55, p = 0.051) [42]. Higher levels of butyrate 
in the caecum have been shown to aggravate animal coli-
tis [41] and a significant reduction in butyrate levels in 
faecal samples of children responding to EEN paralleled 
with a decrease in FC [18, 43]. These data suggest that 
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high amounts of butyrate are not of crucial importance 
for maintenance of intestinal health in patients with 
CD and its role in the disease course requires further 
exploration.

Although patients in Group A reported higher pro-
tein intakes compared to those in Group B, there were 
no significant differences in BCFA levels between the 
two groups. This could potentially result from adequate 
intake of dietary fibre in those patients, which exceeds 
the threshold below which excessive protein fermenta-
tion occurs in the colon [17].

The small sample size is the main limitation of this pilot 
study. This was due to the modest number of patients 
who met our stringent inclusion criteria and few patients 
who did not return dietary records paired with faecal 
samples. However, selection of a homogenous population 
with all patients enrolled at the end of an EEN course and 
while they were still in clinical remission, without receiv-
ing other concomitant induction treatment, minimised 
variance in our measured outcomes and increased statis-
tical power. Beyond the dietary analysis presented here, 
the observed dietary signals of the current study might 
also represent biomarkers of unidentified covariates of 
other food ingredients which might be important in gut 
inflammation in CD. An indicative example could be 
baker’s yeast, which is present in bread and bakery prod-
ucts, constitutes a significant proportion of the cereal and 
cereal-based products group, and has been previously 
implicated in aggravating disease activity in CD [44]. It is 
also possible that nutrient interactions are more impor-
tant than single nutrients alone in the underlying patho-
genesis of CD [45]. Measurement of SCFA in faeces is 
the abstract of net production and absorption. However, 
as direct measurement of SCFA in the caecum would be 
almost impossible, faecal SCFA are considered suitable 
proxies of intestinal SCFA production; and by extension 
of fibre intake as has been demonstrated here by the posi-
tive associations between the amount of fibre consumed 
and levels of faecal SCFA [46, 47].

Conclusions
The current pilot study for first time in the literature 
identified that a diet higher in dietary fibre, protein, 
and red processed meat was associated with higher 
levels of intestinal inflammation after early food rein-
troduction in children with CD, post-EEN. These data 
need confirmation in larger, prospective studies to gain 
more insight into the dietary triggers of gut inflamma-
tion in CD, including the role subtypes of dietary fibre, 
and any mediating role the microbiome may have. Such 
research would help identify dietary components caus-
ing inflammation in CD and enable development of food 
reintroduction and personalised dietary regimes, leading 

potentially to improvements in CD management and 
prolonged clinical remission. A clinical trial like that is 
currently undergoing [48].
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