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Abstract

Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is
increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore
effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and
molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study
the relationship between a diseased stroma and promotion of carcinogenesis, as 90 % of HCCs arise in a cirrhotic liver.
Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via
secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and
molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which
HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress
in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially
amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to
target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing
tailored, cell-specific therapy for HCC.

Introduction
Hepatocellular carcinoma (HCC) represents the second
most common cause of death from cancer worldwide,
and was responsible for nearly 746 000 deaths in 2012
[1–3]. In patients with cirrhosis, HCC is the most com-
mon cause of death. Worldwide, chronic hepatitis B
virus infection remains the major risk factor, with 80 %
of cases occurring in eastern Asia and sub-Saharan
Africa. In most countries, the mortality rate of HCC
approximates the incidence, which is increasing [4–6].
This is partly due to the rising prevalence of advanced
fatty liver disease and chronic hepatitis C, alongside
other risk factors such as hepatitis B infection and
alcohol-related cirrhosis. Some progress has been made
with prevention, for example emerging antiviral agents
and vaccination for hepatitis B. However, the vast major-
ity of HCC cases are associated with fibrosis, and 90 %
of tumours develop in cirrhotic livers [4, 5, 7–10]. Fur-
thermore, liver disease severity markers correlate with
tumour formation [4–6, 9, 11–14]. Currently there are

no effective anti-fibrotic therapies available to halt the
fibrosis-cirrhosis-HCC continuum. Patients who present
with early disease may benefit from resection, trans-
plantation or loco-regional therapy, however many are
unsuitable for curative treatment due to advanced malig-
nancy, or the severity of co-existing liver disease. The
multi-tyrosine kinase inhibitor sorafenib is the only
available systemic chemotherapy agent with survival
benefit for advanced stage HCC, however its use is lim-
ited to those with well-preserved liver function [11].
Whilst there is scope to optimize our use of existing
treatments, for example by targeting tumours earlier and
combining local and systemic approaches, efforts to
broaden our chemotherapy armamentarium have been
disappointing. Numerous molecular therapies with ro-
bust preclinical evidence for efficacy have failed to show
benefit in clinical trials. This may in part reflect the
abnormal tumour microenvironment, which acts to
support the persistence and growth of cancer cells, and
has resulted in the peri-tumoural stroma and its cellular
inhabitants becoming an intense area of study in the
search for efficacious therapies for HCC.
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In this review we focus on the complex interplay
between hepatic stellate cell (HSC) biology and hepa-
tocarcinogenesis. The mechanisms by which HSC may
facilitate HCC development and progression are likely to
involve diverse biological processes including regulation
of extracellular matrix (ECM) turnover, growth factor
and cytokine signalling, promotion of tumour angiogen-
esis and immunomodulation. We will discuss how this
burgeoning area of research may yield exciting new ther-
apies for patients with HCC.

Role of the stroma in hepatocarcinogenesis
The stroma is a central component of both hepatic
fibrosis and carcinogenesis, and is a key player in the
cellular and molecular mechanisms linking these pro-
cesses. It is still unclear, however, whether liver fibrosis
specifically promotes HCC, or if it is merely a wound-
healing by-product of chronic hepatic injury and inflam-
mation, with no direct impact on liver cancer formation
[8, 13–15]. Evidence would suggest the former; the iden-
tification of gene signatures from non-tumoural tissue
correlating with late recurrence of HCC, supports the
concept of a ‘field effect’ in cancer development [9, 11,
13, 14, 16–25].
Following liver injury, quiescent HSC become acti-

vated to matrix-secreting myofibroblasts and are the
major source of ECM proteins during liver fibrogenesis
[8, 13, 26]. As master regulators of the fibrotic matrix,
HSC may therefore directly influence HCC formation
via effects on the tumour stroma. Furthermore, it is well
established in other systems that complex intercellular
signalling networks exist between tumours and cancer-
associated fibroblasts, contributing to cancer initiation,
growth and progression [8, 13, 16–19, 21–26]. Tumour
secretion of cytokines such as transforming growth
factor-β (TGF-β), stimulate myofibroblast activation
leading to profound changes in ECM composition and
organization. Therefore, HSC or HSC-secreted products
may be either permissive or necessary for oncogenesis
and HCC persistence. In other cancers, the identification
of pathways that the tumour depends upon for growth
and proliferation, so-called “oncogenic addiction loops”
has led to revolutionary therapeutic approaches. The
landmark discovery of the protein kinase oncogene
BCR-ABL and subsequent development of imatinib,
allowed curative treatment of chronic myeloid leukae-
mia, and has paved the way for targeted therapies in
other malignancies [27, 28]. Despite extensive genomic
profiling of HCC, targeting other non-kinase oncogenes
such as RAS and MYC has proven more challenging.
The identification of promising candidate pathways tar-
geting inhibition of a driving molecular alteration, which
is also applicable in a significant proportion of patients,
remains an elusive yet alluring goal [29]. Furthermore,

the microenvironment may modulate susceptibility to in-
hibition of specific oncogenic pathways. Straussman et al.
developed a co-culture system to test the ability of 23
stromal cell types to influence the susceptibility of 45
different cancer cell lines to 35 therapeutic agents [7].
They demonstrated that stroma-mediated resistance to
anti-cancer drugs (especially targeted agents) is com-
mon. In particular, although melanomas expressing mu-
tant BRAF respond to vemurafenib, hepatocyte growth
factor (HGF) secretion by peri-tumoural stromal cells
correlated with resistance to vemurafenib-induced cell
death [7, 30, 31]. This illustrates the importance of
stroma-derived resistance to chemotherapy, in many
different organs and disease settings. Therefore, in the
search for key driver mutations in HCC, the effect of the
microenvironment cannot be underestimated. This may
necessitate combinations of chemotherapeutic agents, to
neutralize specific stromal interactions, resulting in greater
overall clinical efficacy.

HSC in HCC
It is well-known that activated HSC infiltrate HCC stroma
and peri-tumoural tissue, and are localised around tumour
sinusoids, fibrous septae and the tumour capsule [32–34].
Activated HSC have also been identified around the
periphery of dysplastic nodules within the liver [35].
Following activation to the myofibroblast phenotype, HSC
secrete substantial amounts of ECM proteins into the
stroma. Fibrotic matrix deposition and degradation by
HSC is tightly regulated in the liver. For example, tissue
inhibitors of metalloproteinases 1 (TIMP-1) secretion
favours scar deposition by inhibiting the endogenous
matrix-degrading activities of various matrix metallopro-
teinases (MMPs). However, the balance of TIMPs and
MMPs is complex; activated HSC are also a major source
of MMP-2 in vitro, elevation of which has been correlated
with increased tumoural collagen I, extracellular remodel-
ing, and HCC progression [12, 36, 37]. Interestingly, the
biomechanics of the ECM are also relevant. Differentiation
of primary hepatocytes is inhibited by culture on a stiff
collagen gel, with accompanying promotion of prolifera-
tion [38, 39]. In vitro increasing matrix stiffness has also
been shown to directly stimulate growth of the HCC cell
lines, HuH-7 and HepG2, and reduce chemotherapy-
induced apoptosis [40]. Integrin β1 signalling was an inte-
gral driver of this response, via Fak, Erk, Pkb/Akt and
Stat3 pathways [40]. Furthermore, stromal stiffness is self-
perpetuating, causing stellate cell activation, and therefore
further fibrosis [15, 41, 42]. Data in humans support these
experimental findings. Ultrasound elastography has dem-
onstrated that measurements of liver stiffness predict
HCC development [43–46]. Similarly, established HCC
demonstrates further increases in matrix stiffness, more so
than the peri-tumoural hepatic parenchyma [47]. The
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mechanical tension provided by an altered ECM is likely
to act on HCC development and progression via outside-
in signalling, for example by integrins, (discussed below)
to support tumour growth and progression. This has also
been observed in other malignancies, such as a mouse
model of breast cancer [48]. Hepatocarcinogenesis in the
context of cirrhosis, however, is a unique model of dis-
eased ECM, and an ideal setting to further characterise
and potentially target stromal drivers.

Integrins as mediators of HSC/HCC crosstalk
Consisting of an α- and β-subunit, integrins form a fam-
ily of transmembrane receptors that ‘integrate’ the extra-
cellular and intracellular environments through binding
ECM and the cytoskeleton [49]. Via transduction of sig-
nals between the internal and external cellular domains,
integrins regulate cell adhesion, spreading, migration,
proliferation and differentiation as well as ECM depos-
ition and remodelling [50].
In activated HSC downstream integrin signalling, via the

focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase
(PI3K)-Akt signaling pathway, promotes ECM deposition
[51]. Increased ECM stiffness in vitro enhances integrin
expression and activity and focal adhesion formation, [48]
with subsequent activation of downstream integrin signal-
ling within the hepatocyte that may nurture the growth
and survival of precancerous cells. Matrix stiffness has
been reported to dictate differentiation and chemothera-
peutic resistance of human HCC cell lines, with softer
matrices abrogating hepatoma proliferation and stiffer
platforms promoting proliferation [40, 52]. In an elegant
in vivo study, cells from the HCC cell line McA-RH7777
were implanted into rats treated with carbon tetrachloride
(CCl4) for varying lengths of time, thereby modelling
tumourigenesis on different liver stiffness backgrounds.
Microarray analysis of the tumours demonstrated a posi-
tive correlation between matrix rigidity and tumour angio-
genesis [52]. Correlations between collagen expression,
integrin expression and tumourigenicity have also been
reported in human HCC and murine HCC models
[53, 54]. Characterisation of integrin expression in
hepatoma cell lines has revealed a high degree of
heterogeneity in integrin expression [55]. Comparing
two clinically relevant mouse models of HCC, platelet-
derived growth factor (PDGF)-C overexpressing and
PTEN null mice, Lai et al. demonstrated that each
model had a specific pattern of integrin gene expres-
sion, further indicating HCC heterogeneity [54].
The β1 integrin subfamily has been extensively studied

in the context of HCC, and hepatocarcinogenesis is associ-
ated with the enhanced expression of integrins α1β1, α2β1
and α3β1 and the acquisition of a migratory phenotype by
hepatocytes [56–58]. Further, assessment of integrin β1
expression in human HCC tissues demonstrated a positive

correlation with ECM stiffness, pathological grade and
metastasis [59]. Blockade of integrin β1 in vitro signifi-
cantly abrogates migration and invasion of HCC cell lines
induced by TGF-β1 and epidermal growth factor (EGF)
[58, 60]. Conversely, overexpression of integrin β1 has
been reported to enhance HepG2 cell migration [61].
More recently it has been reported that integrin β1 is
involved in the transduction of ECM signalling into
HCC cells, resulting in the downstream activation of
angiogenic signalling [52]. Utilising a high-stiffness gel
to culture HCC cell lines Dong et al. found that vascular
endothelial growth factor (VEGF) expression is sup-
pressed by treatment with an integrin β1-specific anti-
body [52]. SERPINA5 (Protein C inhibitor), a member
of the serine protease inhibitor superfamily know to
have anti-metastatic and anti-angiogenic effects, [62] is
down-regulated in human HCC tissues and further
assessment of it’s anti-tumourigenic activity demon-
strated that this was mediated by effects on the
fibronectin-integrin β1 signalling pathway [63]. The re-
lationship between integrin β1 and ECM stiffness in
HCC is further highlighted in a study where resistance
of the HCC cell line, Hep3B, to sorafenib was found to
be mediated by integrin β1 and its downstream effector
JNK [64].
Other integrin subunits, in addition to β1, have been

reported to have key roles in HCC progression. Fan et
al. have reported integrin α6 expression to strongly cor-
relate with HCC metastasis in humans [65]. Integrin α6
overexpression in HCC cell lines (utilising a viral short
hairpin RNA-mediated strategy) revealed that integrin
α6 can form a complex with CD151, a tetraspanin pro-
tein also associated with HCC invasion [65]. Further in-
vestigation in vivo indicates that the CD151/α6 complex
stimulates the PI3K-Akt signalling pathway leading to
enhanced epithelial-mesenchymal-transition (EMT) of
HCC cell lines [65].
Crosstalk between integrins and TGF-β signalling has

also been studied in hepatocarcinogenesis. TGF-β recep-
tor I (TGF-β RI) activation has been reported to pro-
mote HCC cell invasiveness through phosphorylation of
the intracellular portion of the β1 subunit of the α5β1
integrin via Smad-2 and Smad-3, leading to an inside-
out conformational change and stimulating vascular in-
vasion [66]. Up-regulation of other integrins including
α3β1 and α6β1 by TGF-β1 has also been reported, leading
to increased tumour invasiveness into surrounding tissues
[67]. Furthermore specific crosstalk between fibronectin-
binding integrins and TGF-β1 can promote cell cycle pro-
gression in HCC cells through activation of c-Src [68].
Crosstalk between integrins, growth factor receptors and
ECM proteins including collagen, have further been
shown to alter downstream signal transduction pathways
such as Smad, promoting both hepatocyte proliferation
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and sustaining HSC activation [69, 70]. TGF-β1 has
also been reported to modulate α5β1 expression and
synergistically enhance integrin-mediated FAK phos-
phorylation and cell adhesion in the HCC cell line
SMMC-7721 [71]. Therefore, integrins (via modulation
of TGF-β signalling) may render hepatocytes less sensi-
tive to pro-apoptotic signals in early HCC stages, and
more sensitive to tumourigenic differentiation and
metastasis formation in advanced HCC.

HSC growth factor signalling
HSC have been shown to favour HCC tumourigenicity,
potentially as a result of a change in their secretory
phenotype upon activation. In vitro studies, using condi-
tioned media from activated HSC, have consistently
reported increased proliferation, migration and invasion
of tumour cells [72–74]. Isolation and subsequent co-
culture of human intratumoural HSC with hepatoma cell
lines enhanced their viability and migratory capacity
[72]. Furthermore, co-transplantation with HCC cells
into nude mice promoted tumour formation and growth
[75]. Utilising both co-culture and conditioned media
from primary human HSC Giannelli and colleagues de-
termined Laminin-5 to be a mediator of HSC-induced
HCC migration via its activation of the MEK/ERK path-
way [76]. This is supported by in vivo experiments, in
which co-transplantation of murine activated HSC with
murine HCC cells (H22 line) into immunocompetent
mice resulted in significantly larger tumour volumes
[73]. Furthermore, implantation of human HCC cell
lines (PLC and Hep3B) into nude mice did not form
tumours unless activated HSC were concurrently im-
planted [72]. HepG2 cells did form tumours when im-
planted alone, however tumour growth was more rapid
when co-transplanted with activated HSC [72]. Activated
HSC secrete a broad range of growth factors including
HGF, TGF-β, fibroblast growth factor (FGF), EGF, VEGF
and insulin-like growth factor (IGF). The following
sections discuss how these growth factors are involved
in HCC pathogenesis.

Hepatocyte Growth Factor
HGF is expressed by HSC and myofibroblasts, [77, 78]
and is a highly potent hepatocyte growth factor regulating
cell proliferation, migration, survival and angiogenesis
[79–82]. As such it is widely regarded as a key factor for
tumour cell invasion and metastasis [83]. HGF binding to
its receptor, c-MET, induces receptor homodimerization
and a subsequent phosphorylation cascade. A transmem-
brane receptor tyrosine kinase, c-MET is found in 20-48 %
of HCCs, [84–86] and has been shown to be expressed by
multiple HCC cell lines [72]. Correlations between in-
creased c-MET and HCC tumour size or invasiveness of
HCC have been reported in some studies [87, 88]. c-MET

overexpression is also associated with a reduced five-year
HCC survival, and a c-MET-regulated expression signa-
ture has been reported to define a subset of patients with
poor prognosis and an aggressive phenotype [89, 90].
Within HCC tumours, activated HSC have been found to
initiate signalling pathways downstream of c-MET, includ-
ing NF-κB and ERK leading to tumour proliferation and
migration [72, 91].
The pro-tumourigenic activity of fibroblast-secreted

HGF has also been reported in vitro. Conditioned media
from isolated and activated HSC, pre-incubated with
anti-HGF antibodies, was found to abrogate the prolifer-
ative and migration-inducing effects on HCC cell lines,
seen in non-treated conditioned media [72]. This has also
been demonstrated in cancer-associated fibroblasts (CAF)
isolated from HCC, where treatment of CAF-conditioned
media with an anti-HGF antibody significantly reduced
HCC proliferation in Hep3B and MHCC97L cell lines
[74]. Moreover, a HGF/c-MET specific antagonist, NK4,
has been found to inhibit markedly the fibroblast-induced
invasion of cancer cells, both in vitro and in vivo, [92–94]
although this has yet to be translated into the clinical set-
ting. A murine model of HCC with similarities to the hu-
man disease was recently developed, in which progressive
fibrosis and cirrhosis, initiated by ectopic expression of
PDGF-C, precedes hepatocyte dysplasia and eventual
HCC development [95]. Analysis of these PDGF-C trans-
genic mice demonstrated that expression of hepatic HGF
and its receptor were elevated at the time point at which
dysplastic foci are present, further suggesting a pro-
tumourigenic role for HGF. Activation of HGF/c-MET
signalling has also been shown to enhance HCC chemore-
sistance. Conditioned media from the activated HSC cell
line LX-2 enhanced resistance of the HCC cell line Hep3B
to the chemotherapeutic agent cisplatin, an effect medi-
ated by HGF [96]. Tumour cells may also potentiate pro-
metastatic c-MET signalling via an autocrine mechanism
involving TIMP-1, leading to downstream expression of
metastasis-promoting genes [97, 98].
However, HGF signalling is not unidirectional. A high

level of bi-directional crosstalk between tumour cells
and stromal cells, in particular fibroblasts, has been
reported. Nakamura and colleagues have reported the
expression of HGF inducers in several carcinoma cell
lines, including squamous cell carcinoma, human epi-
dermoid carcinoma, human non-small cell lung cancer
cells, human cholangiocarcinoma cells, and SBC-3
human small cell lung carcinoma cells [99]. These HGF
inducers include interleukin (IL)-1β, FGF, PDGF and
TGF-α and were reported to up-regulate HGF expression
by stromal fibroblasts [99, 100]. Taken together, these stud-
ies highlight that HGF and aberrant c-MET signalling have
a critical role in mediating the bi-directional crosstalk be-
tween HSC and tumour cells during hepatocarcinogenesis.
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Transforming growth factor-β
The large latent TGF-β complex is secreted by most cell
types, including human HSC and hepatocytes [101, 102]
and fixed in the ECM by transglutaminase-dependent
linkage of latent TGF-β binding protein to fibronectin
and other ECM proteins, forming a reservoir of latent
TGF-β. In the context of HCC, it has been suggested that
defective TGF-β signalling promotes tumourigenesis sec-
ondary to reduced responsiveness to the anti-proliferative
effects of TGF-β signalling [103, 104]. However, TGF-β
appears to exhibit multiple roles in HCC pathogenesis.
Tumour-suppressor functions are observed in the early
stages of liver damage and regeneration, whereas during
cancer progression, TGF-β may exacerbate tumour inva-
siveness and metastatic behavior [105]. It has further been
demonstrated that TGF-β and PDGF signaling crosstalk
supports EMT and is crucial for tumour growth and the
acquisition of an invasive phenotype [106].
The survival and malignancy of HCC cell lines, includ-

ing Huh7 and HepG2, have been reported to require
autocrine TGF-β signalling, with exogenous TGF-β lead-
ing to growth inhibition of HCC cells [107]. Utilising
HCC cell lines, Meindl-Beinker et al. revealed a hetero-
geneic response to TGF-β, reflective of different stages
and mechanisms of disease. Variation between cell lines
in their endogenous TGF-β and Smad7 levels, and their
transcriptional activity of Smad3, was related to the
maintenance of TGF-β cytostatic activity. In particular,
the Hep3B, HepG2 and PLC hepatoma cell lines were
found to have low TGF-β and Smad7 levels and strong
Smad3 transcriptional activity and were thus sensitive
to TGF-β cytostatic activity, representative of the early
stages of chronic liver disease [108]. In an analysis of
TGF-β gene expression in HCC patients, Coulouarn
et al. reported that those tumours displaying an invasive
phenotype and increased recurrence were characterized
by a late TGF-β signalling signature, with transcriptional
activation of genes associated with matrix remodelling
and cell adhesion [109].
Therefore, as the role of TGF-β in HCC pathogenesis

appears to be highly context-dependent, exhibiting both
pro- and anti-tumoural activity, it is highly unlikely that
pan-TGF-β blockade will provide a useful therapeutic
avenue in HCC treatment. More selective strategies to
interfere with TGF-β signalling, perhaps even at a cell-
specific level, will likely be required to modulate this sig-
nalling pathway for therapeutic gain in the context of
HCC.

Epiregulin
The gut microbiome is increasingly recognized as a
powerful modulator of fibrosis, cirrhosis, and infectious
complications in chronic liver disease. Much interest is
currently focused on the translocation of bacterial

pathogen-associated molecular patterns (PAMPs), which
activate inflammatory responses through Toll-like recep-
tors (TLRs). Recently Dapito et al. demonstrated that
Tlr4mut mice (harbouring non-functional TLR4) that
received diethylnitrosamine (DEN) and CCl4 show
80-90 % reduction in HCC tumour size and number,
compared with mice expressing wild-type TLR4 [110].
Gut sterilisation significantly reduced this effect whereas
LPS treatment enhanced it, suggesting a role for the LPS-
TLR4 pathway in promotion of hepatocarcinogenesis.
Interestingly, alongside hepatocytes, HSC were identified
as candidates for TLR4-dependent tumour promotion in
the chronically injured liver. LPS and the gut microbiome
were found to induce HSC activation, resulting in produc-
tion of the mitogens HGF and epiregulin, which likely act
on malignant hepatocytes. Epiregulin is a member of the
EGF family, and results in EGF receptor and human
epidermal growth factor receptor 2 activation during early
stages of DEN/CCl4 carcinogenesis, whereas it reduces
hepatocyte apoptosis by NF-KB nuclear translocation dur-
ing later stages [110, 111]. This suggests that there may be
merit in evaluating whether long-term antibiotic treat-
ment confers any protection against HCC development.
This could initially be investigated by following up patients
with cirrhosis on long-term prophylaxis for spontaneous
bacterial peritonitis or encephalopathy, although identify-
ing a comparable control group may prove challenging.

HSC and angiogenesis
Angiogenesis has a critical role in HCC initiation, pro-
gression and metastasis, as reflected by the efficacy of
sorafenib, which targets this process. The rapid growth
pattern of malignant hepatocytes requires new vessel
formation, stimulated by multiple pro-angiogenic fac-
tors. This pro-angiogenic environment in turn supports
tumour progression and metastasis. The relevance of
tumour vascularity is reinforced by the observation that
VEGF expression progressively increases from low-
grade dysplasia to early-stage HCC [112]. VEGF overex-
pression is also associated with high tumour grade, and
vascular and portal vein invasion [113–117]. Further-
more, raised plasma VEGF and angiopoietin 2 (Ang-2)
are independent predictors of poor prognosis in ad-
vanced HCC [118].
HSC are known to secrete VEGF as well as other an-

giogenic factors including PDGF, MMPs, FGF, TGF-β1,
EGF, angiopoietin-1 (Ang-1) and Ang-2 [119–121].
Upon activation, HSC express multiple smooth muscle
cell markers, suggesting they may act like pericytes
during angiogenesis [122, 123]. They also express angio-
genic growth factor receptors, such as VEGF receptor,
PDGF receptor and Tie-2 [124–126]. In liver injury and
HCC, this facilitates reciprocal signalling between HSC
and endothelial cells or malignant hepatocytes and
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contributes towards a pro-angiogenic microenvironment.
VEGF secretion by HSC can be hormonally induced by
leptin, or by physical stress such as hypoxia, and is up-
regulated in HCC [120, 124, 127]. VEGF receptor upreg-
ulation also occurs during HSC activation, resulting in
increased mitogenesis in response to VEGF [13].
Conditioned media from HCC cells can activate HSC

and stimulate VEGF production. Coulouarn et al. co-
cultured LX2 cells with HepRG HCC cells, and analysis
of differential gene expression identified a gene network
linked to VEGFA and MMP9 [128]. This was shown to
promote angiogenesis, as conditioned medium from
LX2-HepaRG coculture (but not LX2 or HepaRG
medium alone) induced tubule complex formation by
primary human umbilical vein endothelial cells. A gene
signature of this cross-talk correlated with poor progno-
sis and metastasis in humans [128].
Lin et al. have also shown increased angiogenesis by

activated HSC in vitro using a murine HCC cell line
(H22) and rat colon microvascular endothelial cells
[129]. They went on to demonstrate in vivo, using an
orthotopic HCC model, that activated HSCs promote
tumour vascularisation via increased VEGF and possibly
PDGF secretion.
Of particular interest in HCC is the interaction be-

tween malignant hepatocytes, endothelial cells and acti-
vated HSC. Torimura et al. characterised expression of
Ang-1, Ang-2 and Tie2 receptors in HCC cell lines

(HLE and HuH-7) and human HCC cases [130]. They
concluded angiopoietin-Tie2 signalling in the vascular
wall may act in favour of vessel remodelling in HCC.
Ang-2 production by hepatoma cells, HSC and smooth
muscle cells binds Tie2 (on HSC, smooth muscle and
endothelial cells) and destabilises connections between
endothelial cells, perivascular support cells and ECM.
This allows exposure to VEGF, which in these relatively
hypoxic conditions, is upregulated. Proliferation of endo-
thelial cells ensues, allowing neovascularization and fur-
ther tumour growth.
Recently, it has been shown that metformin inhibits

angiogenesis in vitro, in an HCC (HepG2 line) and
HSC (LX2) co-culture system [131]. This was associ-
ated with reduced VEGF production. It was postulated
that metformin was acting via AMPK activation, and
specifically targeting HSC in this model. Indeed, inhib-
ition of AMPK on LX2 cells (but not on HepG2 cells)
using siRNA did restore VEGF levels and abrogate met-
formin’s anti-angiogenic effect. Metformin would seem
a promising candidate for human HCC treatment, but
unfortunately retrospective data would suggest a lack
of survival benefit [132]. However, considering the
well-established tolerability of metformin, its potential
HSC-mediated effect on angiogenesis merits further
investigation.
Some of the factors mediating crosstalk between HSC

and HCC are summarised in Fig. 1.

HGF

TGF-β

Epiregulin

+

• HCC initiation
• HCC suppression
• HCC invasion and 
  recurrence

Angiogenesis

VEGF
PDGF
MMPs

FGF
EGF
Ang1
Ang2

+

Activated HSC

Gut

LPS

+
+

HCC

Fig. 1 Crosstalk between HSC and HCC. HSC-secreted factors such as HGF may promote hepatocarcinogenesis. Similarly, HCC signalling results in
further HGF production from activated HSC. TGF-β demonstrates both tumour-suppressive and tumour-promoting functions, depending on context.
HSC produce angiogenic cytokines, supporting new vessel growth. HCC cells contribute to angiogenic signalling, and HSC also possess receptors for
some of these factors. Gut-derived LPS induces HSC activation, resulting in epiregulin and HGF production, with mitogenic effects on HCC
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HSC and immunomodulation
Tumour immune evasion is now regarded as a hallmark of
cancer progression and is therefore a very active area of re-
search. One mechanism by which tumours evade the im-
mune response is through the augmentation of the
numbers and activity of immunosuppressive cells, at both
the tumour site and within lymphoid organs [133]. Such
cells include regulatory T-cells (Tregs) and myeloid-
derived suppressor cells (MDSC). Increased levels of Tregs
within peripheral blood and tumours have been reported
in human HCC cases, and have further been shown to
suppress anti-tumour immune responses in addition to
promoting angiogenic remodeling [134–136]. Further,
intratumoural Treg accumulation has been reported to
correlate with disease progression and poor prognosis
[137]. MDSC are defined by the markers CD11b and Ly6-
C/G and have been found in the tumour, lymph nodes and
blood, suppressing cellular responses to cancer cells [138].
The immunosuppressive activities of HSC have only

recently been recognised with studies demonstrating,
both in vitro and in vivo, that activated HSC are able to
strongly suppress T-cell responses. Investigation into the
divergent immunomodulatory activity of quiescent and
intratumoural HSC has revealed that, in vitro, intra-
tumoural HSC induce T-cell hyporesponsiveness, an
effect not seen with quiescent HSC [139]. Moreover, in
an orthotopic rat model of HCC, intratumoural HSC
number strongly correlated with T-cell apoptosis and
lung metastatic nodules [140]. Although a direct inter-
action was not reported, this does suggest an additional
role for HSC in HCC metastasis via an immunosuppres-
sive mechanism.

Co-transplantation of HCC cells and HSC into im-
munocompetent mice promoted HCC proliferation and
enhanced tumour angiogenesis, in association with in-
hibition of lymphocyte infiltration and apoptosis of infil-
trating monocytes [73]. In an orthotopic model of HCC,
activated HSC in tumour-bearing mice significantly in-
crease Treg and MDSC populations in the spleen and
tumour stroma [141]. An increase in tumour vascular
and lymphatic vessel density was also reported in those
tumours co-transplanted with HSC.
Investigation into the mechanisms underlying HSC

immunomodulatory effects in HCC has demonstrated
that this may be mediated via upregulation of human
B7 homolog 1 (B7-H1; programmed death ligand 1
(PDL-1)) on tumoural HSC [142–144]. B7-H1 can act
as both receptor and ligand and has immunosuppres-
sive functions such as promoting activated T-cell apop-
tosis and inhibiting T-cell-mediated tumour cell
apoptosis [1, 145, 146]. Its counter-receptor, PD-1, is
expressed on activated, but not resting, T-cells, B-cells
and monocytes [2]. B7-H1/PD-1 signaling has been re-
ported to promote Treg cell induction and immuno-
suppressive function through the down-regulation of
mTOR and AKT phosphorylation [147, 148]. In vitro
experiments involving incubation of T-cells with anti-
B7-H1 monoclonal antibody resulted in a significant
reduction in HSC immunomodulatory activity and
HCC migration and invasion [139].
Three monoclonal antibodies against PD-1, and one

against B7-H1 have been developed and promising Phase
1 data has been reported [149]. In one study, varying
degrees of tumour regression were found in colon, renal

Treg

activated
T-cell

PD-1

B7-H1
INDUCTION

ECM

HCC 
APOPTOSIS

+
iHSC

T-CELL
APOPTOSIS

IMMUNOSUPPRESSIVE
ACTIVITY

LIGATION

Fig. 2 Immunomodulatory effects of HSC in HCC. Intratumoural HSC (iHSC) promote HCC progression through i) an increase in Treg cell
induction and immunosuppressive function and ii) upregulation of B7-H1 on iHSC resulting in increased ligation of its receptor (PD-1) on activated
T-cells, leading to increased apoptosis of activated T cells with subsequent inhibition of T-cell-mediated tumour cell apoptosis. This results in
HCC immunotolerance and a permissive environment for tumour growth. PD-1, programmed death ligand; B7-H1 human B7 homolog 1; ECM,
extracellular matrix
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and lung cancers and melanoma and a significant increase
in tumour lymphocyte infiltration was noted [150]. This
has been extended to a second clinical trial where re-
sponses were seen in 16 out of 39 patients with advanced
melanoma [151]. These early clinical studies further dem-
onstrated encouraging safety data. In the context of HCC,
a Phase 1, dose escalation study investigating the effects of
anti-PD-1 therapy is currently underway in patients with
advanced HCC (NCT01658878), however results have yet
to be reported. Some of the immunomodulatory effects of
HSC in HCC are summarised in Fig. 2.

Therapeutic approaches to targeting HSC and HSC signalling
HSC represent a small percentage of cells within the
liver, and specific therapeutic targeting of HSC remains
challenging. Recently, transgenic mice have been devel-
oped that allow reliable fluorescent labeling or genetic
manipulation in HSC and myofibroblasts [152, 153].

These transgenic mice will hopefully prove useful not
only in elucidating the molecular mechanisms in HSC
that regulate the stroma-HCC interface, but also in fa-
cilitating the identification of rational, new therapeutic
targets in hepatocarcinogenesis.
If a targetable, HSC-dependent pathway driving hepa-

tocarcinogenesis is identified, cell-specific therapy is
conceivable, albeit not entirely straightforward. ECM
homeostasis is a key physiological process and modifying
HSC functions may impair this, with potential for severe
adverse effects. Practically, delivering drugs to HSC is
hindered by a lack of multiple transport receptors and
endocytic capacity. Furthermore, candidate compounds
may include siRNA and cytokines, which have a short
half-life in plasma following systemic administration,
hindering therapeutic efficacy [154].
To overcome these problems, a number of groups have

explored active targeting of HSC to deliver therapeutic
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Fig. 3 Therapeutic approaches to targeting HSC. HSC have been targeted by coupling a compound to a carrier possessing either a HSC-specific
receptor-binding ligand or an antibody. Carriers utilised include: a monoclonal human single chain antibody (scAb) fragment to synaptophysin [155]; a
sugar moiety that binds the mannose-6-phosphate (M6P) insulin-like growth factor receptor [157]; a liposome specific to the vitamin A (retinol-binding
protein) receptor [156]; PDGFβ-peptide [160]; PDGFβ receptor recognising peptide (PPB) [164]; an RGD peptide bound to a liposome or coupled to
human serum albumin (HSA) [159, 162] scAb Fv, single chain antibody variable fragment; PEG, polyethylene glycol; pCVI, 10 cyclic peptide moieties that
recognise collagen type VI receptors
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compounds. This involves coupling the selected com-
pound to a carrier possessing a specific receptor-binding
ligand, or an antibody.
Carriers recently employed have included an antibody to

the synaptophysin receptor on HSC, and a liposome spe-
cific to the vitamin A receptor on HSC [155, 156]. Fur-
thermore Poelstra et al. have used proteins substituted
with a sugar moiety that binds the mannose-6-phosphate-
IGFII receptor [157]. They have also utilised a peptide that
binds the PDGF receptor-β, [158] to deliver a protein or
an adenovirus to HSC [159, 160]. An RGD-peptide which
binds to RGD-binding integrins has also been used to cre-
ate a carrier that accumulates in HSC [161, 162]. Of note,
the carrier molecules used must fit strict criteria such as
low immunogenicity, and high stability, biocompatibility
and selectivity, if they are to translate into clinical practice.
Moreover, the target receptors on HSC should be se-
lectively expressed and ideally upregulated during
disease activity. A further challenge is the requirement
for endocytosis of the construct following target recep-
tor binding. This can be particularly problematic in the
case of biological therapeutics, which usually fail to
withstand the endosomal degradation process.
With these challenges in mind, Bansal et al. subse-

quently developed a recombinant protein construct to
deliver interferon gamma (IFNγ) to HSC [163]. This ele-
gant system transported the signalling moiety of IFNγ to
the PDGF-receptor with a carrier molecule that was sim-
plified and miniaturised. They found that IFNγ could be
effectively delivered to human HSC in vitro, and to
mouse HSC in vivo. Furthermore, the targeted fusion
proteins were shown to ameliorate hepatic fibrosis in
CCl4-treated mice [163–165]. This suggests that direct-
ing a cytokine to HSC is a feasible and potentially tract-
able therapeutic approach, both in the context of
developing new treatments for patients with liver fibro-
sis, as well as HCC. Therapeutic approaches to targeting
HSC are summarised in Fig. 3.

Conclusions
Treatment options for HCC are still severely limited.
Recently, increasing evidence has suggested that HSC are
key regulators of hepatocarcinogenesis, likely through a
variety of mechanisms, including direct effects on malig-
nant hepatocytes, and indirectly via modulation of the
peri-tumoural stroma and immune response. Further elu-
cidation of the molecular mechanisms underpinning the
crosstalk between the HSC, stromal and tumoural com-
partments will hopefully allow multi-faceted and personal-
ized treatment of HCC in the future. For example, agents
with a direct anti-tumoural effect could be combined with
therapies that inhibit HSC-mediated angiogenesis and
fibrogenesis. What has become increasingly clear is that
neither the tumour nor the microenvironment can be

viewed in isolation, rather that successful HCC therapies
will need to be directed at counteracting the synergistic
components of this complex relationship.
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