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Abstract 

Background  Dengue is a mosquito-borne disease that causes over 300 million infections worldwide each year 
with no specific treatment available. Effective surveillance systems are needed for outbreak detection and resource 
allocation. Spatial cluster detection methods are commonly used, but no general guidance exists on the most 
appropriate method for dengue surveillance. Therefore, a comprehensive study is needed to assess different methods 
and provide guidance for dengue surveillance programs.

Methods  To evaluate the effectiveness of different cluster detection methods for dengue surveillance, we selected 
and assessed commonly used methods: Getis Ord G∗

i
 , Local Moran, SaTScan, and Bayesian modeling. We conducted 

a simulation study to compare their performance in detecting clusters, and applied all methods to a case study 
of dengue surveillance in Thailand in 2019 to further evaluate their practical utility.

Results  In the simulation study, Getis Ord G∗

i
 and Local Moran had similar performance, with most misdetec-

tions occurring at cluster boundaries and isolated hotspots. SaTScan showed better precision but was less effec-
tive at detecting inner outliers, although it performed well on large outbreaks. Bayesian convolution modeling had 
the highest overall precision in the simulation study. In the dengue case study in Thailand, Getis Ord G∗

i
 and Local 

Moran missed most disease clusters, while SaTScan was mostly able to detect a large cluster. Bayesian disease map-
ping seemed to be the most effective, with adaptive detection of irregularly shaped disease anomalies.

Conclusions  Bayesian modeling showed to be the most effective method, demonstrating the best accuracy in adap-
tively identifying irregularly shaped disease anomalies. In contrast, SaTScan excelled in detecting large outbreaks 
and regular forms. This study provides empirical evidence for the selection of appropriate tools for dengue surveil-
lance in Thailand, with potential applicability to other disease control programs in similar settings.
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Background
Dengue is one of the most prevalent mosquito-borne 
diseases in humans with an approximate global burden 
of 390 million annual infections, of which 96 million are 
symptomatic [1]. The infection is caused by dengue virus 
mainly transmitted by Aedes mosquitoes which are com-
monly found in tropical and sub-tropical regions and 
having four serotypes, DENV-1 to 4. Dengue particu-
larly prevalent in South-East Asia with the reported inci-
dence in Thailand being among the highest in the world 
[2]. Dengue poses a substantial burden for the healthcare 
system and financially impacts households of Thailand [3, 
4] with approximately 100,000 annual cases reported to 
the Thai Ministry of Public Health [5]. It is endemic and 
causes epidemics every few years [6].

The two available vaccines for dengue have around 
80% short-term efficacy preventing symptomatic dis-
ease. Dengvaxia can only be administered to people who 
have previously been infected, requiring pre-vaccination 
antibody screening, [7] whereas Qdenga can be given 
regardless of prior exposure but efficacy is lower against 
serotypes DENV-1 and 3 [8]. With a lack of specific 
treatment, public health interventions targeted against 
mosquitoes have remained a focus of dengue control to 
interrupt the transmission. Rapid detection of outbreaks 
is an important goal to effectively allocate prevention and 
control resources. Efficient and reliable surveillance sys-
tems are then crucial especially for endemic countries. 
Spatial cluster detection can identify areas of elevated 
risk and can facilitate policy decision making and budget 
allocation of limited public health resources in Thailand.

Different methods have been proposed to locate and 
identify disease clusters dependent on whether the loca-
tions of the clusters are known (focused) or unknown 
(non-focused). Models for focused clusters are designed 
for detecting preconceived patterns linked to objects or 
putative sources [9, 10]. Models for non-focused clusters, 
on the other hand, are designed to estimate the relative 
risk for each area within the study area. Typically, these 
models accommodate extra spatial variability in different 
ways (for example [11–15]). Simulation studies have been 
used to evaluate and compare spatial detection methods 
due to the ability to understand the behavior of statisti-
cal methods as parameters of interest can be set to be 
known values from the process of generating the data 
[16]. Thus, this process allows us to investigate and bet-
ter understand properties of methods using ground-truth 
scenarios.

In recent decades a range of computing approaches 
have been introduced and utilized extensively to exam-
ine dengue clusters (see examples [17–21]). They usu-
ally aim to determine whether a disease count exceeds an 
expected value obtained based on an overall population. 

Clustering tests are distinguished according to whether 
they are global (aiming to assess the general existence of 
clusters) or local (aiming to identify individual clusters). 
For disease surveillance, local cluster detection however 
might be more useful for disease control activities and 
planning as it helps to identify and prioritize high-risk 
areas. Despite the wide range of applications, there is 
no general guidance as to which is the most appropriate 
cluster detection method for dengue spatial surveillance. 
The patterns or shapes of disease clusters may vary due to 
various risk factors, and it is likely that some methods are 
more suited to detect specific cluster morphologies than 
others. Therefore, there is a need to conduct a compre-
hensive study to compare local spatial cluster detection 
methods to better understand their operating character-
istics and provide a general guide for dengue surveillance 
programs.

Hence, the purpose of this article is to evaluate the 
performance of widely used methods for dengue cluster 
detection. Four methods were selected for different types 
of spatial cluster detection methods based on previous 
reviews [20, 21]. The aim was to extensively study each 
method’s behavior for different disease characteristics 
including cluster shape, risk level between high-risk and 
normal risk areas, and testing performance measures 
of spatial clusters. A simulation study was conducted 
to examine those methods which differ in the way they 
detect clusters. To thoroughly investigate the cluster 
detection in practice, all four methods were further 
applied to a case study of dengue surveillance in Thailand 
in 2019 to explore their performance in a real setting. 
Thus, our comprehensive comparison study can be a use-
ful guide for choosing appropriate spatial anomaly detec-
tion methods to identify and target clusters and increase 
efficiency of dengue control programs.

Methods
The four spatial cluster detection methods used in the 
comparison were Getis Ord G∗

i  , Moran’s I, SaTScan and 
Bayesian disease mapping via exceedance probability. The 
first three techniques are testing-based methods whereas 
Bayesian disease mapping is a model-based procedure. 
These are described in detail below. After that, the setting 
of the simulation study is explained including the data 
generation mechanism and the parameter specification 
is described and performance evaluation metrics used for 
the comparison in this study are provided.

Cluster detection methods
Getis Ord G∗

i

The first method considered in this study was Getis Ord 
G∗

i  [22]. This approach can be used to indicate potential 
clusters by looking at each spatial unit within the context 
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of neighboring areas. To be a statistically significant 
hot spot, an area needs to have a high value and be sur-
rounded by other areas with high values. The local sum 
for a unit and its neighbors is compared proportionally 
to the sum of all features; when the local sum is very dif-
ferent from the expected local sum, and when that dif-
ference is too large to be the result of random chance, a 
statistically significant z-score results.

Let D be the study area (map) and yi ∈ D represents 
values at node or spatial unit i in the study area D . The 
standardized form of Getis Ord G∗

i  at spatial unit i can be 
expressed as

where

N denotes the number of areas in the map D . S is standard 
deviation of all values yi in map D . wij ∈ W  represents spa-
tial weight in the spatial matrix W  , and Y  indicates average 
of all values yi in space D . The spatial units with significantly 
high G∗

i  values are identified as a hotspot cluster or high-
value group whereas units with low values of G∗

i  can be con-
versely defined as a cold spot cluster. This calculation relies 
on hypothesis testing under the null hypothesis of spatial 
independence for which significance can be detected using 
the z-scores and p-values from a permutation distribution.

Anselin local Moran’s I (Local Moran)
Another widely used cluster detection technique is the 
Anselin local Moran’s I which is a localized analogy of the 
global Moran’s I [23]. The Anselin local Moran’s I statistic 
Ii for area i can be written as

with

where yi and yj stand for values of node i and j respec-
tively in the study area (map) D and Y  represents the 
global average of node values in the map.
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A positive value for I indicates that a feature has simi-
lar neighboring values which can be a high or low cluster. 
A negative value for I indicates that a feature has neigh-
boring features with dissimilar values, called an outlier. 
Thus, this method classifies each significant spatial unit 
into 4 types according to quadrant plots: 1) higher unit 
values with higher spatial lags (denoted as cluster HH), 
2) lower node values with higher lags (denoted as out-
lier LH), 3) lower unit values with lower lags (denoted as 
cluster LL), and 4) higher node values with lower spatial 
lag values (denoted as outlier HL). However, in any case, 
the p-value for the feature must be small enough for the 
cluster or outlier to be considered statistically significant. 
Note that this overall calculation is also called Local Indi-
cator of Spatial Association or LISA.

Spatial scan statistics (SaTScan)
Spatial scan statistics is a popular method that has been 
used in spatial analysis [24, 25]. The step of discrete spa-
tial scan in the SaTScan procedure which was adapted in 
this study starts from defining centroids of every aggre-
gated area, which were used as representative of location 
at node i . After that, circle zones were applied at every 
node in spatial space, then a likelihood ratio statistic was 
computed depending on the numbers of observed and 
expected values within and outside the circles and com-
pared likelihood function under the null hypothesis. On 
the contrary, an alternative hypothesis was served under 
a Poisson distribution. For a specific scanning window, 
the likelihood function is proportional to

with

γ and E(γ ) respectively denote the observed number and 
expected value of cases within the specific circular win-
dow. C represents the total number of cases occurring 
in the study D , and I(γ ,E(γ )) is the indicator function 
which equals 1 if the observed number is larger than the 
expected and equal to 0 otherwise. The point estimates 
are usually calculated at which the likelihood function 
is maximized over all circle locations and sizes. In this 
study, the p-value was approximated by Monte Carlo 
hypothesis testing which compared the rank of the maxi-
mum likelihood between the data in the original and sim-
ulated spaces. Significant hotspots were then identified 
as all centroids within significant point estimates in the 
scanning window.

(3)
(

γ

E(γ )

)γ( C − γ

C − E(γ )

)C−γ

I(γ ,E(γ ))

I(γ ,E(γ )) =

{

1; γ > E(γ )
0; otherwise.
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Bayesian disease mapping via exceedance probability
The fundamental feature of Bayesian disease mapping is 
the use of probability for measuring uncertainty in sta-
tistical inference. The major appeal of this approach is in 
considering uncertainty in the predictions or estimates 
and the straightforward incorporation of spatial struc-
ture as prior distributions which is very useful especially 
in spatial epidemiology [26]. There are two main spatial 
models in areal Bayesian disease mapping: Besag and 
Besag-York- Molliè (BYM) models. These specifications 
are widely used in hierarchical Bayesian models operated 
using random effects with unstructured and spatially 
structured heterogeneity [27]. For the i th area under 
spatial space D , the Bayesian model for the number of 
cases yi is usually assumed to follow a Poisson likelihood 
as [28, 29]

where ei denotes the expected value while θi represents 
the incidence ratio relative to that expected at area i . The 
model disintegrates logarithmic incidence ratio into sum-
mation of unstructured and structured random effects. 
In the BYM model, the random effects are linked to the 
relative ratio as

On the other hand, the Besag model, which contains 
less parameters than BYM, is defined as

b0 is the overall intercept. ui and vi respectively represent 
the spatially structured and unstructured error terms. 
The model for spatial effect is often defined using an 
intrinsic conditional autoregressive model (iCAR) prior 
distribution on the set of neighborhoods of the i th node, 
δi , as

where s2i  represents its variance parameter. The over-
all intercept,b0 , and unstructured random effect,vi , is 
usually assumed to be a zero-mean normal distribution 
[30, 31]. All precision parameters were set as the default 
distribution as Log-Gamma (1, 0.00005). The statisti-
cal inference in Bayesian settings is traditionally based 
on sampling procedures, for example, the Markov Chain 
Monte Carlo (MCMC). Unfortunately, the posterior 
function from Bayesian methods is often committed to a 
high-dimensional integration form which is not typically 
tractable in a closed-form [32]. In addition, the MCMC 
procedure can be too computationally intensive and slow 

(7)yi ∼ Poisson(eiθi)

(8)log(θi) = b0 + ui + vi.

(9)log(θi) = b0 + ui.

(10)ui|u−i ∼ Normal
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for infectious disease surveillance focusing on timeliness 
[33, 34]. The Integrated Nested Laplace Approximation 
(INLA) which requires less computing resources can be 
an alternative [35]. Thus, the posterior estimates in this 
study were computed using INLA. An anomaly can be 
identified using the exceedance probabilities as Pr(θi > q) 
where q is the threshold. When q = 1, the expected rate 
or baseline was used as the threshold. In this study, a 
hotspot was defined as a location with Pr(θi > q) greater 
than a cut-off point, i.e. Pr(θi > q) > 1− α where α was 
the pre-specified level of significance.

Simulation study
Simulated scenarios and data generation
The map of all 77 provinces in Thailand was used as the 
base map in our simulation study. The geographic coordi-
nates of the province centroids and province boundaries 
were from the GEO package file in the database of Global 
Administrative Areas, a high-resolution database of 
country administrative areas. In each replication k = 1, …, 
K, the number of dengue cases in province i was gener-
ated from a Poisson distribution as yik ∼ Poisson(eikθik) 
where eik , and θik were respectively expected rate and rel-
ative risk. The provincial expected rate was set as 
ei =

∑

i yi
∑

i popi
× popi where, here, yi and popi were the 

number of dengue cases and population for each prov-
ince in 2019, collated from the surveillance reporting sys-
tem, Bureau of Epidemiology, Department of Disease 
Control, Ministry of Public Health (MOPH). All the cases 
were aggregated and notified in 2019 at provincial level. 
The relative risk, θik , was assumed to be the designated 
value of 2 representing hotspot clusters, double the 
expected rate (red areas in Fig. 1), while the rest were set 
to 1 as the baseline level (blue areas in Fig. 1).

To comprehensively address various surveillance and 
control situations, seven distinct scenarios were formu-
lated, as depicted in Fig.  1. Scenario case 1 served as a 
null scenario, replicating a situation devoid of any out-
breaks. Scenario case 2 represented an uncontrollable 
outbreak characterized by a large disease cluster, while 
case 3 mirrored scenario case 2, but with specific areas 
intentionally left under-controlled to assess the adapt-
ability of cluster detection methods. In contrast to the 
large outbreak, scenario cases 4 and 5 were crafted to 
feature isolated disease hotspots, with case 5 exhibiting a 
more widespread disease distribution across the map. To 
further assess disease anomalies with diverse conditions 
and shapes, scenarios 6 and 7 were created by combin-
ing elements from other cases, providing a comprehen-
sive representation of various disease anomaly scenarios. 
These scenarios aimed to replicate a wide range of situa-
tions encountered in disease surveillance, encompassing 
varying spatial shapes and conditions.
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Method and model specification
Based on the cluster detection procedures that were 
described in the previous section, it was necessary to 
specify a spatial weight matrix. There are a number of 
contiguity matrices, however the first order neighbor-
hood structure was appropriate for Thai provincial-level 
[11] and was used as the base map in our simulation and 
case studies. More details about the spatial contiguity 
matrix are provided in section S1 in the supplementary 
document. The Database of Global Administrative Areas 
(GADM) was managed using GeoPandas 0.10.2 for file 
loading [36] and libpysal 4.6.2 for weight calculation [37]. 
For the simulated iteration k , Getis Ord Gi* and Local 
Moran’s I were performed on the standardized morbidity 
ratio (SMR) for ith province as SMRi = yi/ei using library 
esda 2.4.1 within Python version 3.10.4 [37]. Outputs of 
Local Moran’s I for same iteration k were classified into 
2 versions, only HH labels as hotspots (further annotated 
the procedure in the results as “Local Moran1”, and ver-
sion of hotspots including HH and diamond-outlier HL, 
named as “Local Moran2”).

The cluster detection of SaTScan was computed using 
command-line interface version 10.0.2 combined with 
rsatscan library version 0.3.9200 [38]. SaTScan was 
applied using the Poisson model with circular window 
including the limitation of circle size in population at 
risk, and size in max circle of population that did not 
exceed 50%. Centroid nodes within the significant win-
dows were interpreted as hotspots. For Bayesian disease 
mapping, the Besag and BYM models were implemented 
using R-INLA library version 22.05.07 [39]. SaTScan 
and Bayesian models were implemented in R version 
4.2. The clusters from Bayesian modeling were defined 
using exceedance probability as Pr(θi > θ∗) > 1− α . The 
threshold θ∗ is usually defined as a baseline or endemicity 
[40]; here the threshold θ∗ was chosen to be 1 to repre-
sent the null situation. The significance level was speci-
fied as α = 0.05 in this study.

Evaluation of spatial clustering procedures
Surveillance systems for infectious diseases have to bal-
ance the outbreak detection accuracy against disease 
control resources. So, the concepts of optimal criteria, 
accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV), are useful to 
compare and assess validity of cluster detection methods. 
These five evaluation metrics were adopted for method 
comparison and performance evaluation in this simula-
tion study. The notation used in calculation was as fol-
lows. TP = true positive, FP = false positive, FN  = false 
negative, and TN  = true negative. Accuracy, summa-
tion of true positive and true negative over total counts, 
was calculated as TP+TN

TP+FP+FN+TN  . Sensitivity, the prob-
ability of a positive test given the existence of hotspots, 
was defined as TP

TP+FN  while specificity, the proportion of 
negative tests among the non-hotspots, was computed as 
TN

FP+TN  . Sensitivity and specificity are normally applied to 
evaluate the ability of a test to detect or to rule out cor-
rectly with the ground truth condition [41]. On the other 
hand, PPV and NPV yield the probability for appearance 
(or inapparency) of hotspots based on test results [42]. 
PPV was calculated as TP

TP+FP while NPV was computed as 
TN

FN+TN  . These indicators were spatially visualized at pro-
vincial level to compare and discuss the performance of 
the models thereafter.

Results
Simulation study
To demonstrate empirical evidence of the detection 
method comparison, a simulation study with different 
ground-truth scenarios was conducted. Due to limited 
space in the main text, map results of scenario cases 1–5 
are provided in the supplementary document S2 as Fig-
ures S1-S5. Based on 200 simulated datasets (K = 200), 
all methods performed fairly well in the first scenario as 
the null situation for the whole map while Getis Ord G∗

i  
had the lowest accuracy of 0.95 in this scenario (Figure 
S1). The results of case scenario 2 are shown in Figure 

Fig. 1  Seven designed scenarios of the simulation study. The hotspot areas are red while blue areas represent non-cluster areas
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S2 representing a large outbreak cluster in the northeast. 
The methods with the lowest accuracy were Getis Ord 
G∗

i  and Local Moran with the worst sensitivity and PPV 
along the outbreak boundary. SaTScan had the highest 
accuracy, slightly better than Bayesian mapping with a 
lower specificity. The third case scenario was similar to 
the second except for two non-cluster provinces in the 
middle representing effective public health interventions. 
Interestingly, only local Moran’s I could detect the iso-
lated hotspots in the middle of a large outbreak as seen 
in the specificity map in Figure S3. The Getis Ord G∗

i  had 
the overall worst performance for this scenario while 
SaTScan and Bayesian mapping yielded a false alarm over 
the two non-cluster provinces. Nonetheless, there was a 
boundary issue with Getis Ord G∗

i  and Local Moran as 
seen in low sensitivity and PPV for those methods in Fig-
ure S3 and Table 1. Overall SaTScan and Bayesian map-
ping were the best in this case scenario.

Case scenarios 4 and 5 represented the situation with 
isolated hotspots (no large clusters) representing well-
controlled or rare diseases. For these simulation sce-
narios, only SaTScan and Bayesian mapping could detect 
the hotspots with high accuracy, sensitivity and PPV in 
both cases as shown in Figures S4 and S5. In case sce-
nario 4, Bayesian BYM mapping performed with 100% 
sensitivity, followed by SaTScan and Besag with 98.47% 
and 91.01% sensitivity respectively. For specificity, Bayes-
ian BYM, SaTScan and Local Moran1 had the highest 
scores of more than 95%. For overall accuracy, Getis Ord 
G∗

i  had the lowest at 89.46% while SaTScan and Bayesian 
BYM yielded the highest with 98.47% and 98.18% respec-
tively. In case scenario 5, Bayesian models had the best 
sensitivity while all methods yielded similar specificity. 
SaTScan had the best PPV whereas Bayesian models per-
formed best on NPV. Getis Ord G∗

i  and Local Moran had 
the lowest sensitivity and PPV. Overall in this scenario 
case, SaTScan and Bayesian mapping had the best overall 
accuracy whereas Getis Ord G∗

i  performed worst.
In case scenarios 6 and 7, the simulated clusters 

were combinations of scenarios 2–5 with different 
sizes and locations of spatial anomalies. These con-
ditions should closely characterize real situations of 
various infectious diseases. Mapping results of case 
scenario 6 are depicted in Fig. 2. The Bayesian models 
still had the best sensitivity while SaTScan performed 
slightly worse. Interestingly, Getis Ord G∗

i  and Local 
Moran had much lower sensitivities, dropping to less 
than 40%, with their NPVs decreasing to less than 75%. 
Bayesian BYM had the best accuracy of 95.91% fol-
lowed by SaTScan and Besag while the accuracies for 
Getis Ord G∗

i  and Local Moran were less than 80%. For 
case scenario 7, results are shown in Fig.  3. Bayesian 

mapping had the best sensitivity and NPV while Local 
Moran1 had the best specificity and PPV. Getis Ord G∗

i  
and Local Moran still performed worst on sensitivity 
and NPV. The Bayesian BYM and Besag yielded the 
best accuracies of 96.07% and 95.42% respectively fol-
lowed by SaTScan with 81.83% whereas Getis Ord G∗

i  
and Local Moran poorly performed with overall accu-
racies of around 50%.

Application to national dengue surveillance in Thailand
Dengue presents a significant public health challenge 
in Southeast Asia, especially in regions burdened by 
high disease incidence and limited per capita health-
care resources. Thailand, as depicted in Fig.  4, grapples 
with a high number of annual dengue cases and recur-
rent outbreaks. This figure features a monthly observed 
total dengue case plot at the top and yearly provincial 
dengue SMR maps at the bottom, with expected rates 
computed using case data for each year from 2015 to 
2019. This context highlights the nation’s critical need for 
efficient resource allocation in disease control. Cluster 
detection methods play a pivotal role in facilitating deci-
sion-making by identifying high-risk areas for targeted 
interventions. While our simulation study shed light on 
cluster detection technique performance under various 
simulated scenarios, we now delve into a case study using 
real 2019 national dengue surveillance data from Thai-
land, aiming for a more comprehensive assessment of 
these methods. Within this case study, we explored dif-
ferent model specifications for Bayesian mapping, Local 
Moran’s I, Getis Ord G∗

i  and SaTScan, seeking to assess 
their practical behavior and effectiveness in a real-world 
context.

Figure 5 shows the map of provincial dengue SMRs in 
2019 in the left panel compared with cluster detection 
results from different cluster detection methods. The sig-
nificant hotspots from each method are labelled in red. A 
clustered hotspot was identified in the central area using 
Besag and BYM while the others could not. Next, only 
some provinces in the east and lower part in the north 
east were declared as hotspots using Getis Ord G∗

i  and 
Local Moran while SaTScan recognized the whole east-
ern region and most of the northeast as a large cluster. 
Bayesian models with the cut-off threshold equal to the 
expected rate (q = 1) detected only parts of the east and 
northeast as hotspots. Furthermore, isolated anomalies 
were notified by Bayesian methods while SaTScan mostly 
missed low-valued hotspots and only partly detected 
some in the north and south. For different threshold lev-
els used in Bayesian models, clusters with SMR greater 
than the baseline were mostly declared as hotspots. In 
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Table 1  Evaluation measures of the all cluster detection methods under different scenarios

Scenario Detection method Evaluation metric

Accuracy Sensitivity Specificity PPV NPV

1 Getis Ord G∗
i

0.95039 - 0.95039 - 1

Local Moran1 0.976169 - 0.976169 - 1

Local Moran2 0.951429 - 0.951429 - 1

SaTScan 0.992727 - 0.992727 - 1

BESAG (q = 1) 0.970584 - 0.970584 - 0.995

BYM (q = 1) 0.996429 - 0.996429 - 1

2 Getis Ord G∗
i

0.970519 0.891905 1 1 0.96111

Local Moran1 0.97013 0.890476 1 1 0.960633

Local Moran2 0.967662 0.890476 0.996607 0.990401 0.9605

SaTScan 0.999351 0.997857 0.999911 0.999773 0.999211

BESAG (q = 1) 0.962792 1 0.948839 0.885957 1

BYM (q = 1) 0.964091 1 0.950625 0.889646 1

3 Getis Ord G∗
i

0.911234 0.745789 0.965431 0.875372 0.920933

Local Moran1 0.936753 0.745789 0.99931 0.997508 0.923417

Local Moran2 0.933831 0.745789 0.995431 0.982776 0.923133

SaTScan 0.973766 0.998947 0.965517 0.904667 0.999649

BESAG (q = 1) 0.945065 1 0.927069 0.821923 1

BYM (q = 1) 0.950714 0.999737 0.934655 0.838143 0.999909

4 Getis Ord G∗
i

0.894675 0.0425 0.9174 0.013774 0.972912

Local Moran1 0.942532 0 0.967667 0 0.97317

Local Moran2 0.926818 0.06 0.949933 0.043964 0.974267

SaTScan 0.98474 0.9525 0.9856 0.701778 0.99875

BESAG (q = 1) 0.91013 0.875 0.911067 0.337468 0.99675

BYM (q = 1) 0.981883 1 0.9814 0.672857 1

5 Getis Ord G∗
i

0.876948 0.035 0.961143 0.070917 0.908764

Local Moran1 0.901364 0 0.9915 0 0.908372

Local Moran2 0.903052 0.086429 0.984714 0.320417 0.915155

SaTScan 0.990519 0.905714 0.999 0.990853 0.990706

BESAG (q = 1) 0.953052 0.987143 0.949643 0.681104 0.998668

BYM (q = 1) 0.95961 0.994286 0.956143 0.71302 0.999411

6 Getis Ord G∗
i

0.722013 0.341552 0.951875 0.807933 0.70567

Local Moran1 0.751558 0.340345 1 1 0.715452

Local Moran2 0.765 0.376897 0.999479 0.997831 0.726975

SaTScan 0.954481 0.961552 0.950208 0.921588 0.976534

BESAG (q = 1) 0.951104 1 0.921563 0.887697 1

BYM (q = 1) 0.959091 0.999828 0.934479 0.904844 0.999894

7 Getis Ord G∗
i

0.464416 0.161771 0.965345 0.888718 0.410539

Local Moran1 0.475584 0.15875 1 1 0.418321

Local Moran2 0.505649 0.207083 0.999828 0.9995 0.43277

SaTScan 0.818377 0.812813 0.827586 0.891381 0.752451

BESAG (q = 1) 0.954221 1 0.878448 0.932773 1

BYM (q = 1) 0.960714 1 0.89569 0.941899 1

Overall Getis Ord G∗
i

0.806634 0.369753 0.960199 0.609452 0.813321

Local Moran1 0.829654 0.355893 0.99308 0.666251 0.816561

Local Moran2 0.833669 0.394446 0.987665 0.722482 0.822133

SaTScan 0.953539 0.938231 0.954637 0.901673 0.952883

BESAG (q = 1) 0.946061 0.977024 0.922771 0.75782 0.999236

BYM (q = 1) 0.962684 0.998975 0.942165 0.826735 0.999869
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the cases specifying the threshold as 1.5 or 2 times larger 
than the expected rate (q = 1.5 and 2), only provinces with 
extreme SMRs were alarmed. Overall, Bayesian models 
appeared to be the most sensible and compatible with the 
real dengue surveillance data in this case study.

Discussion
Spatial surveillance employs diverse methodologies 
for the identification and characterization of disease 
clusters. In this study, we conducted a comprehensive 
evaluation of four widely employed cluster detection 

Fig. 2  Maps of evaluation measures under simulated scenario 6
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methods: Getis Ord G∗

i  , Local Moran, SaTScan, and 
Bayesian disease mapping These methods, each char-
acterized by unique specifications, exhibited notable 
variations in their performance. Our analysis included a 

series of simulation scenarios designed to emulate vari-
ous infectious disease transmission situations, supple-
mented by empirical data from a real case study using 
national dengue surveillance.

Fig. 3  Maps of evaluation measures under simulated scenario 7
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Performance variations in simulation study
In the context of our simulation study, we observed per-
formance trends that shed light on the strengths and lim-
itations of each method. Getis Ord G∗

i  and Local Moran 
demonstrated similar overall performance, possibly due 
to their shared computation formulas. This observation 
was consistent with prior research [23, 43] and aligns 
with the findings of Laohasiriwong’s study [44]. Nev-
ertheless, despite their comparable performance, these 
methods faced challenges in accurately defining cluster 
boundaries and identifying isolated hotspots. In con-
trast, SaTScan demonstrated robust overall performance, 
albeit with difficulties in detecting inner outliers, as also 
reported in Criag’s study [45].

Scenarios featuring isolated hotspots, such as those 
in scenarios 4 and 5, posed specific challenges for Getis 
Ord G∗

i  and Local Moran, resulting in a higher rate of 
false alarms. Conversely, SaTScan excelled in identify-
ing isolated peaks. However, in scenario 6, Getis Ord G∗

i
 

and Local Moran struggled to partially detect anoma-
lies in the northeast and missed an outbreak in the 

southern border. Further challenges arose in scenario 7, 
particularly in the western region for Getis Ord G∗

i
 and 

Local Moran, though Local Moran2 effectively identi-
fied isolated peaks in the northeast. SaTScan, due to 
its window shape, faced limitations in detecting these 
isolated peaks, primarily due to its incompatibility with 
Thailand’s irregular administrative boundaries [46].

Within the Bayesian models considered, most dem-
onstrated an aptitude for detecting isolated areas. How-
ever, the Besag model exhibited slightly lower accuracy, 
likely attributable to the absence of an unstructured 
random effect. Conversely, introducing an unstructured 
random effect in the BYM model led to modest per-
formance improvements in scenarios marked by spa-
tial heterogeneity. The simulation results presented in 
Table 1 suggested the utilization of the Besag and BYM 
methods, positioning them as the preferred options. In 
contrast, Getis Ord G∗

i
 and Local Moran, despite their 

extensive utilization in epidemiological research, deliv-
ered the least promising results across the spectrum of 
simulated scenarios.

Fig. 4  Plots of monthly dengue cases (top) and yearly provincial dengue SMR maps (bottom) during 2015–2019
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Empirical dengue surveillance data validation
The validation of these methods using real data from the 
Thai national dengue control program in 2019 confirmed 
distinct hotspot identifications. Besag and BYM effec-
tively identified a clustered hotspot in the central region, 
a task unaccomplished by the other methods. Getis Ord 
G

∗

i
 and Local Moran primarily identified specific prov-

inces in the east and the lower part of the northeast as 
hotspots, while SaTScan employed a distinct approach 
by designating an extensive region encompassing most 
of the east and northeast as a large cluster. Notably, the 
choice of threshold levels within Bayesian models sig-
nificantly influenced hotspot identification, with larger 
thresholds selectively flagging provinces with extreme 
SMRs.

It is important to recognize that spatial health analy-
ses traditionally concentrate on specific administrative 
regions, but the dynamic nature of geographic phe-
nomena often transcends these predefined borders, 
introducing spatial edge effects and challenges related 
to censoring that can affect the performance of cluster 

detection methods [47]. In light of both our simulation 
study and empirical case study, Bayesian disease map-
ping, particularly through the BYM model, appeared as 
the optimal approach. This method demonstrated an 
adaptive capacity for detecting irregular disease anom-
alies and effectively addressed issues related to variance 
adjustments near boundaries. Furthermore, the flex-
ibility offered by Bayesian models in defining clusters 
at varying baseline levels presents valuable options for 
shaping disease control strategies [48, 49].

Limitations
We acknowledge certain limitations in the study. Firstly, 
SaTScan offers multiple configurations, including win-
dow shapes, circle size of the population at risk, and the 
size of the maximum population circle [38]. While we 
employed the standard default setting of SaTScan, future 
investigations should consider exploring alternative 
configurations. Additionally, since SaTScan is founded 
on the point process, its adoption should be carefully 
defined and aligned with the practicality of areal disease 

Fig. 5  Maps of Thai provincial dengue SMRs in 2019 (left) compared with cluster detection results from different cluster detection methods (right). 
The significant hotspot provinces were labelled in red
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outcomes. Secondly, the Bayesian cluster detection in 
this study was based on a 95% exceedance probability 
threshold [50]. While this threshold holds practical value 
in public health investigations, it would be beneficial to 
examine different thresholds and baseline levels to opti-
mize the method. Lastly, our study was primarily focused 
on spatial clusters, yet the interest of policy makers and 
public health professionals extends to cluster detection in 
both spatial and temporal dimensions.

Public health implications and future directions
Our study offers valuable insights into the performance 
of cluster detection methods and highlights their poten-
tial for enhancing dengue surveillance. This informa-
tion can assist public health agencies in endemic regions 
such as Thailand in responding more effectively to out-
breaks, optimizing resource allocation, and improving 
public health outcomes. Furthermore, these methods can 
be adapted and generalized to the surveillance of other 
infectious diseases with similar transmission patterns, 
offering a broader framework for strengthening public 
health systems in response to emerging health threats.

While we consider our study a valuable addition to the 
disease mapping literature with the comparison of widely 
used cluster detection methods, we also see potential 
for broadening the scope of methods that can aid public 
health policymaking. Therefore, future research should 
expand into space–time cluster detection, entailing a 
comprehensive exploration of a wider range of clustering 
methods and more extensive investigations. This expanded 
research could encompass varying risk levels and scenar-
ios, allowing for a more comprehensive analysis.

Conclusions
Cluster detection is an important measure for infectious dis-
ease surveillance, especially within the context of the dengue 
control program in Thailand. Based on our simulations, the 
Bayesian modeling had the overall best performance for areal 
cluster detection followed by SaTScan which seemed mostly 
suitable for large clusters. The case study of dengue surveil-
lance in Thailand provided similar results showing Bayesian 
disease mapping well captured spatial anomalies of different 
shapes and sizes while other methods seemed to effectively 
detect hotspots in limited circumstances. The evidence we 
have presented can enhance outbreak responses and assist 
authorities in the efficient allocation of resources for dengue 
surveillance in Thailand. Furthermore, the insights from our 
study are adaptable and have the potential for broader appli-
cations in the surveillance of infectious diseases with similar 
settings. Ultimately, this can empower authorities to make 
more informed public health decisions.

Abbreviations
SMR	� Standardized morbidity ratio
INLA	� Integrated Nested Laplace Approximation
PPV	� Positive predictive value
NPV	� Negative predictive value
BYM	� Besag-York- Molliè model
TP	� True positive
FP	� False positive
FN	� False negative
TN	� True negative

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​023-​02135-9.

Additional file 1. 

Acknowledgements
We would like to thank Kaewklao Thavornwattana and Peerawich Armatrmon-
tree for assistance with the epidemiological data.

Authors’ contributions
CR conceptualized the study. KC managed the datasets. CR and KC completed 
analyses and visualization, and drafted the manuscript. CR, KC, ABL, PC, and 
RJM were responsible for revision and improvements of the manuscript. All 
authors have read and approved the final manuscript.

Funding
Open access funding provided by Mahidol University This research was sup-
ported in part by the ICTM grant of the Faculty of Tropical Medicine, Mahidol 
University, and the Wellcome Trust [Grant number 220211]. For the purpose of 
open access, the author has applied a CC BY public copyright license to any 
Author Accepted Manuscript version arising from this submission.

Availability of data and materials
The case study dataset analyzed during the current study are publicly avail-
able on the surveillance reporting system website, Bureau of Epidemiology, 
Department of Disease Control, Thai Ministry of Public Health.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol 
University, Bangkok, Thailand. 2 Mahidol‑Oxford Tropical Medicine Research 
Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. 3 Chu-
labhorn Learning and Research Centre, Chulabhorn Royal Academy, Bangkok, 
Thailand. 4 Department of Public Health Sciences, Medical University of South 
Carolina, Charleston, SC, USA. 5 Usher Institute, University of Edinburgh, 
Edinburgh, UK. 6 Princess Srisavangavadhana College of Medicine, Chulab-
horn Royal Academy, Bangkok, Thailand. 7 Harvard T.H. Chan School of Public 
Health, Harvard University, Cambridge, MA, USA. 8 Centre for Tropical Medicine 
and Global Health, Nuffield Department of Medicine, University of Oxford, 
Oxford, UK. 9 The Open University, Milton Keynes, UK. 

Received: 18 June 2023   Accepted: 21 December 2023

https://doi.org/10.1186/s12874-023-02135-9
https://doi.org/10.1186/s12874-023-02135-9


Page 13 of 13Rotejanaprasert et al. BMC Medical Research Methodology           (2024) 24:14 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

References
	1.	 Bhatt S, et al. The global distribution and burden of dengue. Nature. 

2013;496(7446):504–7.
	2.	 Thawillarp S, Castillo-Salgado C, Lehmann HP. Evaluation of Early Aberra-

tion Reporting System for Dengue Outbreak Detection in Thailand. OSIR 
Journal. 2018;11(4):1–6.

	3.	 Shepard DS, et al. The global economic burden of dengue: a systematic 
analysis. Lancet Infect Dis. 2016;16(8):935–41.

	4.	 Tozan Y, et al. Household costs of hospitalized dengue illness in semi-rural 
Thailand. PLoS Negl Trop Dis. 2017;11(9):e0005961.

	5.	 Srichan P, et al. Addressing challenges faced by insecticide spraying for 
the control of dengue fever in Bangkok, Thailand: a qualitative approach. 
Int Health. 2018;10(5):349–55.

	6.	 Rotejanaprasert C, et al. Bayesian spatiotemporal modeling with sliding 
windows to correct reporting delays for real-time dengue surveillance in 
Thailand. Int J Health Geogr. 2020;19(1):1–13.

	7.	 Raafat N, Blacksell SD, Maude RJ. A review of dengue diagnostics and 
implications for surveillance and control. Trans R Soc Trop Med Hyg. 
2019;113(11):653–60.

	8.	 Rivera L, et al. Three-year Efficacy and Safety of Takeda’s Dengue Vaccine 
Candidate (TAK-003). Clin Infect Dis. 2021;75(1):107–17.

	9.	 Elliott P, et al. Risk of adverse birth outcomes in populations living near 
landfill sites. BMJ. 2001;323(7309):363–8.

	10.	 Lawson A, Biggeri A, Williams F. A review of modelling approaches in 
health risk assessment around putative sources. Dis Mapp Risk Assess 
Public Health. 1999;231:245.

	11.	 Chinpong K, et al. Spatiotemporal Epidemiology of Tuberculosis in Thai-
land from 2011 to 2020. Biology. 2022;11(5):755.

	12.	 Lawson AB, Rotejanaprasert C. Childhood brain cancer in Florida: a Bayes-
ian clustering approach. Stat Public Policy. 2014;1(1):99–107.

	13.	 Rotejanaprasert C, et al. Preliminary estimation of temporal and spati-
otemporal dynamic measures of COVID-19 transmission in Thailand. PLoS 
ONE. 2020;15(9):e0239645.

	14.	 Rotejanaprasert C, et al. Spatial Bayesian surveillance for small area case 
event data. Stat Methods Med Res. 2016;25(4):1101–17.

	15.	 Rotejanaprasert C, Lawson AB, Iamsirithaworn S. Spatiotemporal multi-
disease transmission dynamic measure for emerging diseases: an applica-
tion to dengue and zika integrated surveillance in Thailand. BMC Med Res 
Methodol. 2019;19(1):1–11.

	16.	 Aamodt G, Samuelsen SO, Skrondal A. A simulation study of three meth-
ods for detecting disease clusters. Int J Health Geogr. 2006;5(1):15.

	17.	 Fuentes-Vallejo M. Space and space-time distributions of dengue in a 
hyper-endemic urban space: the case of Girardot, Colombia. BMC Infect 
Dis. 2017;17(1):512.

	18.	 Zhu G, et al. Spatiotemporal analysis of the dengue outbreak in Guang-
dong Province, China. BMC Infect Dis. 2019;19(1):493.

	19.	 Wangdi K, et al. Spatial and temporal patterns of dengue infections in 
Timor-Leste, 2005–2013. Parasit Vectors. 2018;11(1):9.

	20.	 Aswi, A., et al., Bayesian spatial and spatio-temporal approaches to mod-
elling dengue fever: a systematic review. Epidemiology & Infection, 2019. 
147.

	21.	 Louis VR, et al. Modeling tools for dengue risk mapping - a systematic 
review. Int J Health Geogr. 2014;13(1):50.

	22.	 Anselin L, Getis A. Spatial statistical analysis and geographic information 
systems. Ann Reg Sci. 1992;26(1):19–33.

	23.	 Anselin L. Local Indicators of Spatial Association—LISA. Geogr Anal. 
1995;27(2):93–115.

	24.	 Fukuda Y, et al. Variations in societal characteristics of spatial disease 
clusters: examples of colon, lung and breast cancer in Japan. Int J Health 
Geogr. 2005;4:16.

	25.	 Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods. 
1997;26(6):1481–96.

	26.	 Lawson, A.B., et al., Handbook of spatial epidemiology. 2016: CRC press.
	27.	 Goovaerts P, Gebreab S. How does Poisson kriging compare to the popu-

lar BYM model for mapping disease risks? Int J Health Geogr. 2008;7:6–6.
	28.	 Blangiardo, M. and M. Cameletti, Spatial and spatio-temporal Bayesian 

models with R-INLA. 2015: John Wiley & Sons.
	29.	 Rotejanaprasert C. Evaluation of cluster recovery for small area relative 

risk models. Stat Methods Med Res. 2014;23(6):531–51.
	30.	 Rodrigues EC, Assunção R. Bayesian spatial models with a mixture neigh-

borhood structure. J Multivar Anal. 2012;109:88–102.

	31.	 Zhang, X., et al., Chapter Two - An introduction to variational inference in 
geophysical inverse problems, in Advances in Geophysics, C. Schmelz-
bach, Editor. 2021, Elsevier. p. 73–140.

	32.	 Moraga, P., Geospatial health data: Modeling and visualization with 
R-INLA and shiny. 2019: CRC Press.

	33.	 Rotejanaprasert C, Lawson A. Bayesian prospective detection of small 
area health anomalies using Kullback-Leibler divergence. Stat Methods 
Med Res. 2018;27(4):1076–87.

	34.	 Reich NG, et al. Challenges in real-time prediction of infectious 
disease: a case study of dengue in Thailand. PLoS Negl Trop Dis. 
2016;10(6):e0004761.

	35.	 Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent 
Gaussian models by using integrated nested Laplace approximations. J 
Royal Stat Soc. 2009;71(2):319–92.

	36.	 Jordahl, K., et al., geopandas/geopandas: v0.10.2. 2021, Zenodo.
	37.	 Rey SJ, Anselin L. PySAL: A Python Library of Spatial Analytical Methods. 

Rev Reg Stud. 2007;37(1):5–27.
	38.	 Kulldorff, M., SaTScanTM User Guide for version 10.0. 2021.
	39.	 Martino, S. and H. Rue, Implementing approximate Bayesian inference 

using Integrated Nested Laplace Approximation: A manual for the inla 
program. Department of Mathematical Sciences, NTNU, Norway, 2009.

	40.	 Lawson AB. Disease cluster detection: a critique and a Bayesian proposal. 
Stat Med. 2006;25(5):897–916.

	41.	 Larner, A., The 2x2 matrix: contingency, confusion and the metrics of 
binary classification. 2021: Springer Nature.

	42.	 Altman DG, Bland JM. Statistics Notes: Diagnostic tests 2: predictive 
values. BMJ. 1994;309(6947):102.

	43.	 Ord JK, Getis A. Local Spatial Autocorrelation Statistics: Distributional 
Issues and an Application. Geogr Anal. 1995;27(4):286–306.

	44.	 Laohasiriwong, W., N. Puttanapong, and A. Luenam, A comparison of 
spatial heterogeneity with local cluster detection methods for chronic 
respiratory diseases in Thailand [version 2; peer review: 2 approved]. 
F1000Research, 2018;6(1819) 1819.

	45.	 Hanson CE, Wieczorek WF. Alcohol mortality: a comparison of spatial 
clustering methods. Soc Sci Med. 2002;55(5):791–802.

	46.	 Ayubi E, et al. Exploring neighborhood inequality in female breast cancer 
incidence in Tehran using Bayesian spatial models and a spatial scan 
statistic. Epidemiol Health. 2017;39:e2017021.

	47.	 Rodeiro CLV, Lawson AB. An evaluation of the edge effects in disease 
map modelling. Comput Stat Data Anal. 2005;49(1):45–62.

	48.	 Rohleder S, Bozorgmehr K. Monitoring the spatiotemporal epidemiology 
of Covid-19 incidence and mortality: A small-area analysis in Germany. 
Spatial and Spatio-temporal Epidemiol. 2021;38:100433.

	49.	 Madden JM, et al. Spatio-temporal models of bovine tuberculosis in the 
Irish cattle population, 2012–2019. Spatial and Spatio-temporal Epide-
miol. 2021;39:100441.

	50.	 Lawson, A.B., Bayesian disease mapping: hierarchical modeling in spatial 
epidemiology. 2018: Chapman and Hall/CRC.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Evaluation and comparison of spatial cluster detection methods for improved decision making of disease surveillance: a case study of national dengue surveillance in Thailand
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Cluster detection methods
	Getis Ord 
	Anselin local Moran’s I (Local Moran)
	Spatial scan statistics (SaTScan)
	Bayesian disease mapping via exceedance probability

	Simulation study
	Simulated scenarios and data generation
	Method and model specification
	Evaluation of spatial clustering procedures


	Results
	Simulation study
	Application to national dengue surveillance in Thailand

	Discussion
	Performance variations in simulation study
	Empirical dengue surveillance data validation
	Limitations
	Public health implications and future directions

	Conclusions
	Acknowledgements
	References


