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A stabilized spatiotemporal kriging method 
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Abstract 

Mapping spacetime disease rates can provide a more in-depth understanding of their distribution and trends. 
Traditional spatiotemporal kriging methods can break the constraints of geopolitical boundaries and time intervals. 
Still, disease rates in densely and sparsely populated areas are stabilized to the same degree, resulting in a map that is 
oversmoothed in some places but undersmoothed in others. The stabilized spatiotemporal kriging method proposed 
in this study overcomes this problem by allowing for nonconstant variances over space and time. A spatiotemporal 
map of the standardized incidence ratio for oral cancer in men in Taiwan between 1997 and 2017 reveals that the 
high-risk areas for oral cancer are in the midwestern and southeastern regions of Taiwan, spreading toward the center 
and north, with persistent cold spots in the northern and southwestern urban regions. However, the correspond‑
ing map for breast cancer in women in Taiwan reveals that the high-risk areas for breast cancer are concentrated 
in densely populated urban regions in the west. Spatiotemporal maps facilitate our understanding of disease risk 
dynamics. We recommend using the proposed stabilized spatiotemporal kriging method for mapping disease rates 
across space and time.
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Introduction
Disease mapping has long been a part of public health. 
Epidemiologists often construct disease maps to inves-
tigate the geographical variation in diseases. The cho-
ropleth map is the widely used map type for mapping 
disease rates, using local administrative areas (LAAs) 
such as counties, cities, or towns as geographic units. The 
isarithmic map was another common map type, using 
latitude and longitude as geographic units and breaking 
the constraints of geopolitical boundaries. Tracking the 
disease rates of each geographic unit over several years 

constitutes spatiotemporal data. The three-dimensional 
spatiotemporal map visualizes the distribution of disease 
risks over space and time, which can help detect possible 
risk factors and form the basis of health policies.

Mapping disease rates with raw data and visualizing 
with the choropleth map may incur too much spatial 
variability; in LAAs with smaller populations, the dis-
ease rates may become highly unstable. Empirical Bayes 
methods stabilize the rates in LAAs adaptively accord-
ing to their population size [1]. Conditional autoregres-
sive models further consider spatial correlations between 
LAAs [2]. The spatial random effects model involves the 
benefits of the abovementioned methods and can deal 
with confounding factors [3, 4]. These methods can also 
incorporate “time” as a covariate or as a random effect 
to deal with the variations in disease risks in the time 
domain [3, 4].
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Mapping disease rates as a continuous surface and vis-
ualizing with the isarithmic map can more legibly depict 
the spatiotemporal patterns of disease risks. Trend sur-
face analysis and kernel smoothing created a continuous 
surface of disease rates [5–7]. The spatiotemporal kriging 
method has been widely used in environmental and earth 
sciences [8–10]. Epidemiologists also applied the kriging 
method to investigate the spread of infectious diseases 
[11–13], the distribution of environmental risk factors 
[14, 15], and the spatiotemporal variations of disease 
rates [16, 17]. The kriging method estimates the spati-
otemporal correlations based on a nonparametric model 
and extrapolates the disease rates at any given point in 
space and time. The method breaks the constraints of 
geopolitical boundaries and time intervals [18–20]. How-
ever, because of the homoscedasticity assumption, the 
kriging method stabilizes the disease rates in LAAs with 
different population sizes to the same degree, resulting in 
a map that is oversmoothed in some places but unders-
moothed in others.

This study proposed a stabilized spatiotemporal krig-
ing method for disease mapping. This method accounts 
for the heteroscedasticity in the spatiotemporal data, 
permitting the disease rates to be shrunk toward the 
mean to different degrees, thus avoiding oversmooth-
ing and undersmoothing. Monte Carlo simulations 
were conducted to assess the properties of the proposed 
method compared with the traditional kriging method. 
Real data applications for oral cancer in men and breast 
cancer in women in Taiwan were also performed for 
demonstration.

Methods
Stabilized spatiotemporal kriging
Let the observed and expected number of cases for a 
particular disease in the i th LAA of the j th year be Oij 
and Eij , respectively ( i = 1, . . . ,N  ; j = 1, . . . ,M ). The 
expected number of cases can be calculated as

where pijk is the population size in the i th LAA of the j 
th year for the k th age group and Rk is the incidence rate 
for the k th age group of a standard population 
( k = 1, . . . ,K  ). The standardized incidence ratio, SIR, 
and its natural logarithm, logSIR, are then estimated as 
r̂ij =

Oij

Eij
 and θ̂ij = loge

(
r̂ij
)
 , respectively. We assume a lin-

ear mixed model as follows:

where θij is the natural logarithm of the true standard-
ized incidence ratio (logSIR) and εij is the measurement 

Eij =
∑K

k=1pijk × Rk ,

(1)θ̂ij = θij + εij = µ+ δij + εij ,

error, which is unbiased and independent of one 
another; thus, E

(
εij
)
= 0 ( i = 1, . . . , n ; j = 1, . . . ,m ) and 

Cov
(
εij , εkl

)
= 0 ( ij  = kl ). The θij is the sum of the spati-

otemporal mean ( µ , a fixed effect) and the spatiotempo-
ral variations ( δij , random effects with a mean of zero). 
The δij is second-order stationary and spatially isotropic; 
accordingly, the variance of θij is a constant τ 2 and the 
covariance between θij and θkl ( Cij,kl , ij  = kl ) depends 
only on the spatial distance ( hik ; unit: km) between the 
centroids of the i th and k th LAAs and the temporal 
distance ( ujl ; units: year) between the j th and l th years. 
Commonly used distance metric in health research 
involved straight line (Euclidean) distance and Manhat-
tan distance, and, in this study, we used the Euclidean 
distance.

Data consists of n×m couples of 
(
θ̂ij , v̂ij

)
 for 

i = 1, . . . , n and j = 1, . . . ,m . The vij , the estimation of 
Var

(
εij
)
 , is 1

Oij
 (Additional file 1: Appendix 1). Under the 

formula (1), a best linear unbiased predictor for the log-
SIR in a particular locality (subscript s ; this can be an 
LAA centroid or any noncentroid geographical coordi-
nate) at one specific time point (subscript t ; this can be 
the middle or any time point in any year) is.

and the weights wij are

where � is the Lagrange multiplier to ensure ∑n
i=1

∑m
j=1 wij = 1.

The parameters τ 2 and Cij,kl ( Cij,kl = Ckl,ij ; 
i, k = 1, . . . , n ; j, l = 1, . . . ,m ; ij  = kl ) in formula (2) can 
be estimated from a semivariogram. First, we calculate 
a total of 12 × n×m× (n×m− 1) paired sample semi-
variances: 12

(
θ̂ij − θ̂kl

)2
 for i, k = 1, . . . , n ; j, l = 1, . . . ,m ; 

ij  = kl . We then produce the semivariogram by plotting 
these semivariances against the spatial distance hik and 
temporal distance ujl between any pair of distinct spati-
otemporal data points. We then fit a spatiotemporal 
semivariance function γ (h,u) , which monotonically 
increases as h and u increase, to the semivariogram 
based on generalized least squares. Herein, we use the 
“sum-metric” spatiotemporal semivariance structure 
detailed in [21]: �(h,u) = �S (h) + �T (u) + �ST

[
√

h2 + (� × u)
2

]

 , where 
γS(·), γT (·) , and γST (·) are the semivariance functions 
for space, time, and spacetime interactions, respec-
tively, and α is a parameter that integrates the distances 

θ̂st =
∑n

i=1

∑m
j=1wij θ̂ij ,

(2)
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in space and time into a single spacetime distance met-
ric. Note that the functions γS(·) , γT (·) , and γST (·) must 
increase monotonically and have upper limits so that 
the spatiotemporal semivariance function γ (h,u) can 
approach a maximum (referred to as the “sill”) when 
the distances in space and time become extremely large. 
Commonly used semivariance functions include the 
spherical, exponential, and Gaussian functions.

We derive the covariance function C(h,u) by subtract-
ing the semivariance function from the sill. This function 
is then a monotonically decreasing function of distances 
in both space and time. The parameters in formula (2) 
are then estimated as τ̂ 2 = C(0, 0) , Ĉij,kl = C

(
hik ,ujl

)
 , 

and Ĉij,st = C
(
his,ujt

)
 , respectively, for i, k = 1, . . . , n ; 

j, l = 1, . . . ,m ; ij  = kl.
We refer to this method as stabilized spatiotem-

poral kriging. The key to stabilization is that with the 
error variances, v11, . . . , vnm , added to the diagonal of 
the square matrix in formula (2), smaller weights are 
given to data with larger variances and larger weights 
to those with smaller variances. The approach extends 
the stabilized kriging method in a purely spatial setting, 
as proposed by Hsu et  al. [22], to deal with spacetime 
data.

The stabilized spatiotemporal kriging method can be 
implemented through the following steps:

1.	 Produce a semivariogram and fit the semivariance 
function. This can be achieved using the same soft-
ware package used for traditional spatiotemporal 
kriging.

2.	 Subtract the semivariance function from the sill (the 
maximum of the semivariance function) and derive 
the covariance function.

3.	 Estimate the parameters τ 2 , Cij,kl , and Cij,st 
( Cij,kl = Ckl,ij ; i, k = 1, . . . , n ; j, l = 1, . . . ,m ; ij  = kl ) 
from a direct readout of the values from the covari-
ance function.

4.	 Calculate the kriging weight for any spatiotemporal 
point to be estimated. This can be done using any sta-
tistical package that supports formula (2) matrix cal-
culations.

5.	 Calculate the weighted average and then use expo-
nentiation to obtain the kriging estimate of SIR at 
that spatiotemporal point.

We further use the annual percent change (APC) to 
measure the trend of SIR over time. We recommend 
using Cole’s definition of the symmetric percentage 
change [23]. The APC at a certain spatiotemporal point, 
st, can be obtained as follows:

1.	 Calculate the kriging estimates of logSIR at the spa-
tial point s within a 5-year time window centered at 
the temporal point t.

2.	 Perform a simple linear regression of the kriged log-
SIR against time (in years) to obtain the estimate of 
the slope β̂ .

3.	 The APC at the spatiotemporal point st is β̂ × 100(%)

.

A positive APC indicates that the value of SIR is increas-
ing, a negative APC that the value is declining, and an APC 
near zero that the value remains stable. Note that the con-
ventional definition of APC leads to overt asymmetry; the 
value comparing two consecutive years is [
exp

(
β̂

)
− 1

]
× 100% (with a lower limit of −100% and 

without an upper limit) with the first year as the reference, 
but is 

[
1− exp

(
−β̂

)]
× 100% (with an upper limit of 100% 

and without a lower limit) with the second year as the ref-
erence. However, Cole’s definition of APC is always 
β̂ × 100%.

Monte Carlo simulation
We generated 4417× 21 spatiotemporal points (with lon-
gitudes between 120.00° and 121.95° and latitudes between 
21.92° and 25.27° from 2000 to 2020) to encompass the 
entire Taiwan island (Additional file  1: Appendix  2). We 
considered a single-hotspot scenario at coordinate point 
ℎ and a double-hotspots scenario at coordinate points 
ℎ and ℎ*, respectively (Additional file 1: Appendix 3). We 
set the true value of the logSIR for each spatiotemporal 
point according to the two-dimensional Gaussian func-
tion, which diminishes in value with distance and time, as 
follows:

1.	 A single hotspot at coordinate point ℎ

2.	 Double hotspots at coordinate points ℎ and ℎ*, 
respectively,

where Da,b denotes the distance between two coordi-
nate points a and b (unit: km).

θst = log(1.0)+ exp

(
−
1

2
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We used a log-normal distribution to generate the pop-
ulation size of the 349 LAAs in Taiwan. We considered 
the expected values of the population size were 50,000 
and 25,000; the coefficients of variation of the popula-
tion size were 0.5 and 1.0. For an LAA, we multiplied its 
simulated population size by the simulated disease rate 
(assumed to follow an exponential distribution) at the 
centroid of that LAA to obtain the expected number of 
cases ( Eij ). We then used a Poisson distribution (with a 
mean of Eij × eθij ) to generate the observed number of 
cases ( Oij ) for each LAA. The estimated logSIR ( ̂θij ) of the 
LAA is the logarithm of the ratio between the observed 
and expected numbers of cases.

We used the stabilized spatiotemporal kriging method 
and the traditional spatiotemporal kriging method to 
estimate the logSIR of all coordinate points within the 
geopolitical boundary of Taiwan based on the simulated 
data. We calculated the index of symmetric mean abso-
lute percentage error (SMAPE):

The smaller the SMAPE index, the closer the estimated 
value is to the true value. We performed 1,000 simula-
tions for each scenario.

All analyses were performed using SAS version 9.4 and 
R version 3.5.2. R packages, including gstat, sp, and spa-
cetime, were used to perform the spatiotemporal kriging 
method.

Results
Simulation results
The simulation results are presented in Table  1. The 
SMAPEs increased with decreasing population size and 
increasing coefficient of variation for both methods. For 
the single-hotspot scenario, the stabilized spatiotemporal 
kriging method and the traditional kriging method had 
similar performance. For the double-hotspots scenario, 
the stabilized spatiotemporal kriging method performed 
better (having smaller SMAPE) than the traditional 

SMAPE =
100%

21× 4417

∑21
t=1

∑4417
s=1

|eθ̂st − eθst |

eθ̂st + eθst
.

spatiotemporal kriging method in all combinations of 
population size and coefficient of variation.

Real data applications
We used oral cancer in men and breast cancer in women 
in Taiwan as examples to demonstrate the methodology. 
The data of male patients with oral cancer and female 
patients with breast cancer from 1997 to 2017, including 
their ages and the LAAs they resided in, were extracted 
from the Taiwan Cancer Registry [24, 25]. The age-spe-
cific mid-year population numbers (the averages of the 
end-year population numbers in two consecutive years) 
for men and women in every LAA in Taiwan from 1997 
to 2017 were extracted from an online database provided 
by the Department of Household Registration in Taiwan’s 
Ministry of the Interior. We focused our analysis on the 
349 LAAs on the main island of Taiwan (the 19 LAAs in 
the outlying islands were excluded). The patients’ ages 
were divided into 18 age groups: 0–4, 5–9, …, 80–84, and 
85 + . The average incidence rate for each age group on 
the main island over 21 years (1997–2017) was taken as 
the age-specific rate of the standard population. A total 
of 2× 349× 21 = 14, 658 SIRs (2 cancer types, 349 
LAAs, 21 years) were then calculated as described previ-
ously. In this study, the representative point of an LAA 
was taken to be its geometric center and the middle of 
each year, July 1.

We generated a square mesh coordinate point system 
with a 1-km spacing (69,084 coordinate points, with 
longitudes between 120.00° and 122.02° and latitudes 
between 21.89° and 25.31°) to encompass the entire 
main island of Taiwan. We then used the proposed sta-
bilized spatiotemporal kriging method to estimate the 
SIRs of all the coordinate points on the main island (a 
total of 32,263 coordinate points) for a total of 
21× 12 = 252 months (each month represented by its 
first day) based on the available data of 
349× 21 = 7, 329 couples of 

(
θ̂ij , v̂ij

)
 for i = 1, . . . , 349 

and j = 1, . . . , 21 . We applied the sum-metric structure 
and used the spherical spatiotemporal semivariance 

Table 1  The symmetric mean absolute percentage errors (%) of the traditional and stabilized spatiotemporal kriging in the scenarios 
of a single hotspot and double hotspots

A single hotspot Double hotspots

Population size Coefficient of 
variation

Traditional 
spatiotemporal kriging

Stabilized 
spatiotemporal kriging

Traditional 
spatiotemporal kriging

Stabilized 
spatiotemporal 
kriging

25,000 0.5 21.18 21.02 26.11 20.75

25,000 1.0 21.56 21.36 33.31 28.87

50,000 0.5 15.26 15.12 24.53 20.69

50,000 1.0 18.23 18.08 24.99 20.14
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function. We also calculated the APC at each spati-
otemporal point using kriged SIRs. Finally, we pro-
duced the spatiotemporal SIR and APC maps for oral 
cancer in men (Figs. 1 and 2; Additional file 1: Appen-
dix  4) and breast cancer in women in Taiwan (Figs.  3 
and 4; Additional file 1: Appendix 5).

The SIR map for oral cancer in men (Fig. 1) reveals 
that before 2000, people in most parts of Taiwan, 
except for the midwestern and southeastern regions, 
were at low risk of oral cancer, with cold spots in 
the north and southwest. After 2000, high-risk areas 
began to emerge in the Central and Southern moun-
tainous region and the Eastern coastal area, connect-
ing with the midwestern and southeastern high-risk 
regions to form a hot zone. The hot zone intensified 
over time and spread to the center and north. The 
risk in the Central and Northern regions changed 
from low to high after 2008. The risk of oral can-
cer in the northern and southwestern urban regions 
remained low over time.

The corresponding APC map for oral cancer in men 
(Fig. 2) indicates that the risk of oral cancer in Taiwan rose 
rapidly before 2005. The Central and Southern moun-
tainous region and the Eastern coastal area had APC hot 
spots between 2001 and 2004, coinciding with the SIR hot 
zone formation mentioned above. After 2005, the APC in 
the whole of Taiwan began to decline, indicating that the 
increase in the risk of oral cancer had slowed down. The 
APC in the Central and Northern regions first decreased 
and then increased, indicating that the high-risk area of oral 
cancer had spread to the north. After 2015, the APC in Cen-
tral and Southern Taiwan dropped below zero, indicating 
that oral cancer risk there had peaked and then declined.

The SIR map for breast cancer in women (Fig.  3) 
reveals that before 2005, the whole population of Tai-
wan was at low risk of breast cancer, but the cold spots 
were gradually shrinking. In 2005, an area of slightly ele-
vated risk first appeared in the north, and later, hot spots 
emerged one after another in the Western, northeastern, 
and southeastern regions. These hot spots intensified and 

Fig. 1  The stabilized spatiotemporal kriging map for the standardized incidence ratios (SIRs) of oral cancer in men in Taiwan, 1997 to 2017
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spread outward over time. Note that the high-risk areas 
of breast cancer tend to be concentrated in densely popu-
lated urban regions in the west. In contrast, the risks in 
the Western and Eastern coastal areas and the Central 
mountainous region remain low.

The APC map for breast cancer in women (Fig.  4) 
indicates that the risk of breast cancer in Taiwan has 
been rising over the last 21  years. The APC hot spots 
in the Northern region between 2005 and 2008 corre-
sponded to the emergence and growth of the SIR hot 
spots in that region. The APC varied greatly over space 
and time, with the APC hot spots mostly occurring in 
the Western and Eastern urban areas and the South-
ern mountainous region. After 2011, the APC stabi-
lized, although an APC hot spot appeared briefly in the 
southeastern region.

The spatiotemporal dynamic maps (Additional file  1: 
Appendices 4 and 5) clarify our understanding of the 
nuances and trends of disease risk dynamics.

Discussion
The stabilized spatiotemporal kriging proposed in this 
study breaks the constraints of geopolitical bounda-
ries and time intervals and stabilizes the disease rates 
properly. Hsu et  al. [22] proposed the stabilized kriging 
method for spatial mapping. Their simulation results 
showed the benefits of the stabilized kriging method for 
spatial mapping of disease rates over the empirical Bayes 
and the traditional kriging methods. The spatiotem-
poral mapping (proposed in this study) is similar to the 
stabilized kriging method by Hsu et al.; however, in our 
proposed method, the additional variations in the time 
domain and those arising from spacetime interactions 
must also be considered. The simulation results of this 
study showed that the stabilized spatiotemporal kriging 
method improves on the traditional spatiotemporal krig-
ing method when the spacetime interaction exists.

Disease rates are unstable in areas with small popu-
lations and appear extremely high or low. Therefore, 

Fig. 2  The stabilized spatiotemporal kriging map for the annual percent changes (APCs) in the standardized incidence ratios of oral cancer in men 
in Taiwan, 1997 to 2017
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the LAA-based spatiotemporal map of the original 
disease rates exhibits large jumps in values, even in 
adjacent LAAs or consecutive years (Additional file 1: 
Appendices 6 and 7). The traditional spatiotemporal 
kriging without adjusting for the nugget effect (assum-
ing no measurement errors) can produce a smooth 
curved surface of the cross-sectional disease rates at 
any time point. However, the kriging estimate for a 
spatiotemporal centroid point (the centroid of an LAA 
in the middle of a year) is the original rate of the LAA 
in that year without a stabilizing effect (Additional 
file 1 :Appendices 8 and 9). At the other extreme, the 
nugget-adjusted spatiotemporal kriging (with homo-
scedasticity assumption) stabilizes the rates indiscrim-
inately; it oversmooths the rates in populous regions 
but undersmooths the rates in sparsely populated 
ones (Additional file  1: Appendices 10 and 11). The 
stabilized spatiotemporal kriging adjusts the smooth-
ing of a data point according to its variance, result-
ing in a desirable effect (Figs.  1 and 3). In this study, 
the stabilized spatiotemporal kriging is anchored to 

the centroids. The method could be extended to an 
area-to-area or area-to-point kriging [26, 27] in future 
research to consider the shapes, sizes, and popula-
tion distributions of LAAs. In addition, the proposed 
method assumed a constant effect ( µ ) across space 
and time, which was only suitable for a simple spati-
otemporal process scenario. Kriging methods with the 
spatiotemporal trends fitted by straight lines, polyno-
mials, or splines are also worthy of study.

The SIR map for oral cancer in men (Fig.  1) created 
by our proposed method reveals that the high-risk 
areas of oral cancer originated in the midwestern and 
southeastern regions and spread to the middle and the 
north, with persistent cold spots in the northern and 
southwestern urban regions. The spatiotemporal vari-
ations of oral cancer risk may be related to the Taiwan-
ese habit of chewing betel nuts and concentrations of 
heavy metals in the soils [22, 28]. However, the SIR 
map for breast cancer in women (Fig.  3) reveals that 
the high-risk areas for breast cancer are concentrated 
in densely populated urban regions in the west, where 

Fig. 3  The stabilized spatiotemporal kriging map for the standardized incidence ratios (SIRs) of breast cancer in women in Taiwan, 1997 to 2017
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people primarily have higher socioeconomic status and 
have adopted westernized lifestyles and eating habits 
[29]. Further studies can extend the methodology to the 
setting of the universal kriging (regression kriging) [9] 
to incorporate covariate information, if available, into 
spatiotemporal maps.

The stabilized spatiotemporal kriging has greater 
uncertainty in areas with smaller populations. To dem-
onstrate the effect, we used the SIR hot spot for breast 
cancer in women in the mountainous, sparsely popu-
lated southeast region as an example (Fig.  3). We pro-
duced a SIR time-series plot for the hot spot centroid 
(Yanping Township in Taitung County). We did the 
same for a hot spot centroid in the densely populated 
Taipei Metropolis (Zhongzheng District in Taipei City). 
In Additional file  1: Appendix  12, the comparison 
reveals that the SIR trends are similar in the two LAAs, 
but the 95% confidence interval for the Yanping Town-
ship is much wider than that in the Zhongzheng Dis-
trict. Including 1.00 in the 95% SIR confidence interval 

for the Yanping Township raises whether it is genuinely 
a SIR hot spot.

Spatiotemporal maps facilitate the understanding of 
disease risk dynamics. We recommend using the stabi-
lized spatiotemporal kriging method for mapping disease 
rates across space and time.
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