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Abstract 

Background:  Prostate cancer is a very prevalent disease in men. Patients are monitored regularly during and after 
treatment with repeated assessment of prostate-specific antigen (PSA) levels. Prognosis of localised prostate cancer 
is generally good after treatment, and the risk of having a recurrence is usually estimated based on factors meas-
ured at diagnosis. Incorporating PSA measurements over time in a dynamic prediction joint model enables updates 
of patients’ risk as new information becomes available. We review joint model strategies that have been applied to 
model time-dependent PSA trajectories to predict time-to-event outcomes in localised prostate cancer.

Methods:  We identify articles that developed joint models for prediction of localised prostate cancer recurrence over 
the last two decades. We report, compare, and summarise the methodological approaches and applications that use 
joint modelling accounting for two processes: the longitudinal model (PSA), and the time-to-event process (clinical 
failure). The methods explored differ in how they specify the association between these two processes.

Results:  Twelve relevant articles were identified. A range of methodological frameworks were found, and we 
describe in detail shared-parameter joint models (9 of 12, 75%) and joint latent class models (3 of 12, 25%). Within 
each framework, these articles presented model development, estimation of dynamic predictions and model 
validations.

Conclusions:  Each framework has its unique principles with corresponding advantages and differing interpretations. 
Regardless of the framework used, dynamic prediction models enable real-time prediction of individual patient prog-
nosis. They utilise all available longitudinal information, in addition to baseline prognostic risk factors, and are superior 
to traditional baseline-only prediction models.

Keywords:  Dynamic prediction models, Prostate cancer, PSA, Joint modelling, Dynamic predictions, Personalised 
medicine
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Background
Prostate cancer is highly prevalent, as the 2nd most diag-
nosed cancer in men worldwide (1.3 million cases in 
2018) [1] and the most common cancer among men in 
the UK [2, 3]. Within the UK, one in eight men on aver-
age are diagnosed with prostate cancer, increasing to 
1-in-6 for men born after 1960. In the period 2014–16 

there were almost 48,000 diagnosed per-annum and 
over 11,500 deaths in 2016 from prostate cancer [4–6]. 
Over half of patients (56.5—61.3%) present at diagnosis 
with localised prostate cancer, where disease is confined 
to the prostate and has not yet spread to the nodes or 
other organs of the body [7, 8]. Many treatment options 
are available to patients with localised prostate cancer, 
including external-beam radiotherapy (EBRT), brachy-
therapy, radical prostatectomy; or conservative manage-
ment strategies for favourable-risk prostate cancer to 
delay or avoid aggressive treatment and potential side 
effects [9]. Potential treatment-related toxicities and side 
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effects often affect management treatment choices [10]. 
EBRT is deemed most appropriate for those with moder-
ate- or high risk disease [11]. A combination with hormo-
nal therapy (HT) can be given for its neoadjuvant efficacy 
[9]: for low-grade localised prostate cancer, HT can be 
given 3–6 months before EBRT treatment, or longer for 
higher-risk stages [12].

Patients are monitored regularly during, and after 
treatment. In particular, for their prostate-specific anti-
gen (PSA), a serine protease protein biomarker secreted 
by the prostate [13]. Repeated PSA readings are taken 
during patient check-ups. Patients present at diagnosis 
with elevated PSA levels, which decrease upon starting of 
HT and radiotherapy (RT). Thus, increased levels of PSA 
after treatment suggest a growth of prostate cancer cells, 
reflecting a higher risk of prostate cancer recurrence. 
PSA is used to determine biochemical failure (BcF), 
defined as a PSA concentration greater than the nadir 
(the lowest observed PSA value) plus 2 ng/mL [14]. HT 
can be used as a salvage therapy following BcF, lowering 
PSA levels and decreasing risk of clinical failure. Local or 
distant recurrence is confirmed by imaging.

There are known patient and tumour risk factors that 
affect prognosis of localised prostate cancer. These 
include PSA levels at diagnosis, tumour stage (as per the 
TNM scoring system) and Gleason score/grade grouping 
[15]. These risk factors are used to categorise patients into 
the National Comprehensive Cancer Network (NCCN) 
low, intermediate and high risk groups [16] (Table  1). 
Prognosis of localised prostate cancer (T1–T2N0M0) is 
generally good after treatment, with 5-year disease-free 
survival rates around 76% (95% CI: 75%—76%) [17].

Clinical prediction models (CPMs) are developed 
from patient and tumour features at diagnosis, as well as 
information on short-term treatments, to predict future 
prognosis. To date, a plethora of CPMs guide manage-
ment decisions for localised prostate cancer, visualised in 
nomograms and online calculators [18–26]. These CPMs 
only consider information available at the time of diagno-
sis and/or at start/end of treatment, and PSA values col-
lected after that timepoint are rarely considered, if only 
for the definition of BcF. However, it is of interest to both 
patient and clinician to examine the association of the 
biomarker of interest over time to prognosis. Knowing 

the patient is alive and recurrence-free at the new visit, 
with an updated PSA value, is informative. Including 
this new information into a prediction model can elicit 
dynamic predictions that enable updated prognosis of 
patients.

A naïve approach would be to consider PSA as a time-
dependent variable in an extended Cox/relative risk 
model [27]. However, this is not appropriate due to the 
endogenous nature of the biomarker of interest [28, 29], 
which contains biological variation and measurement 
error. A further extension is to use landmark modelling 
[28, 30–34]: dynamic predictions are obtained by fitting 
time-dependent Cox models to the patient subsample 
still at risk at several prediction, or landmark times of 
interest, together with the value of the longitudinal bio-
marker at that time. Landmark models are straightfor-
ward to fit with standard software, but no measurement 
error for the time-varying biomarker is considered nor is 
the entire longitudinal history of the biomarker utilised 
(due to using the last observation carried forward) [34]. 
To improve predictions, a two-stage approach to land-
marking (also known as mixed model landmarking [28, 
35]) can be considered to model measurement error and 
incorporate the full biomarker history. However, uncer-
tainties in the mixed-effect model estimates are not 
carried through to the survival submodel, resulting in 
overexact estimates [36].

Joint models (JMs) permit dynamic prediction in local-
ised prostate cancer by considering two time-dependent 
processes simultaneously: the repeated longitudinal PSA 
biomarker over time (modelled using a mixed-effects 
submodel), and the time to an event of interest (mod-
elled using a relative-risk, or Cox submodel). The event of 
interest can be BcF, recurrence of disease (either locally 
in the prostate gland, in the regional lymph nodes or in 
a distant organ), clinical failure (need to re-commence 
HT), death, or a composite of all these events. The asso-
ciation between these two processes can be captured 
by shared random effects in both the longitudinal and 
time-to-event submodels (shared-parameter joint mod-
els, SPJMs) or by assuming a latent association structure 
between them (joint latent class models, JLCMs).

In this paper, we synthesize a review for published 
applications of joint models to localised prostate cancer 

Table 1  Risk stratification by clinical risk factors: Clinical T-stage, Gleason score, and presenting PSA. Locally advance prostate cancer 
includes high-risk localised patients, as defined by NCCN [16]

Risk level Clinical T-stage Gleason Grading Group Presenting PSA Condition to be met

Low risk T1-T2a 1 <  10 ng/mL All three

Intermediate risk T2b-c 2 or 3 10-20 ng/mL Any

High risk T3a 4 or 5 > 20 ng/mL Any
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over the last two decades, focusing on the modelling of 
the time-to-event process(es), the functional form of 
PSA, validation strategies and evaluation of dynamic 
predictions. We describe the search strategy to identify 
papers, and we briefly describe the joint modelling meth-
odology, as well as how to compute dynamic predictions, 
measures of predictive performance from joint models. 
Given the rapid popularity and use of dynamic prediction 
models, this article serves as a reference to assess and 
reflect the applied and dynamic methods used in local-
ised prostate cancer. The main review of the identified 
articles is given in the results section and summarised 
on Table 2. Finally, an appraisal and conclusion of these 
models are given.

Methods
Literature search strategy
Our search strategy included linear combinations of, 
{“joint model*” OR “individual* prediction”} AND 
{“prostate cancer” OR “prostate-specific antigen” OR 
“PSA”} in the title or abstract, using Web of Science 
and PubMed databases up to and including June 2020. 
A flowchart depicting the study identification strategy 
is given in Fig. 1. A total of 751 articles were identified 
from the initial search parameters, 703 and 48 articles 
came from Web of Science and PubMed respectively. 
Duplicated articles were removed leaving 702 unique 
papers. Novel and seminal papers that involve the joint 
modelling of the longitudinal biomarker PSA and time-
to-event of clinical recurrence in localised prostate 
cancer were selected by the lead author, and selection 
discussed with co-authors, as the focus was to under-
stand the PSA dynamics for this disease, which can be 
quite different from PSA dynamics for advanced prostate 

cancer. Further exclusions were made on inspecting the 
abstract, these included: advance/metastatic disease; dif-
ferent disease; no joint modelling undertaken, or alter-
native machine learning/artificial intelligence methods 
used; simulated data used; predicting alternative end-
points such as time to diagnosis or death; no dynamic 
predictions derived; and whether focus was on method-
ology development.

Notation
In this section, we define the mathematical notation com-
mon to SPJMs & JLCMs frameworks. Let yi = yi(tij); i = 1, 
…, N; j = 1, …, ni} be a longitudinal response vector of the 
continuous biomarker measurements for the ith patient 
and jth biomarker reading taken at time tij. There are N 
patients with ni longitudinal measurements per patient.

Let the random variable Ti be the time-to-failure for 
the i th patient, where Ti = min T ∗

i ,Ci  . The true event 
time is denoted T ∗

i  and Ci is the censoring time. An indi-
cator variable δi = I

(

T ∗
i ≤ Ci

)

 is unity if the event of 
interest is observed for that patient, or zero otherwise.

Shared‑parameter joint model
Under the shared-parameter joint models framework, 
random effects are used to link the longitudinal and time-
to-event components under study, whilst also accounting 
for the correlated repeated measurements within the lon-
gitudinal outcome.

The longitudinal process yi is assumed to follow a mixed-
effects model, defined by a linear combination of pos-
sibly time-dependent main- and random effects Yi(tij) = 
mi(t) + ϵi(tij) = βXi(tij) + biZi(tij) + ϵi(tij). The vector 𝜷 are 
coefficients for the main- and time-effect covariates of the 
design matrix Xi, and the corresponding random effects 
bi for the Zi design matrix. The measurement errors 
ǫi
(

tij
)

=
{

ǫi(ti1), . . . , ǫi
(

tini
)}T are independent and iden-

tically distributed and assumed to follow ǫi
(

tij
)

∼ N
(

0, σ 2
e

)

 , 
or t-distribution with several degrees-of-freedom, with the 
fatter tails used to accommodate for possible outliers. The 
random effects, independent of ϵi(tij), are usually assumed to 
follow a multivariate normal distribution, with an unknown 
square covariance matrix structure D, bi~MVN(0, D).

A relative risk, or proportional hazards model, is used 
for the parameterisation of the survival submodel:

Where Mi(t) denotes the true (unobserved) and entire 
longitudinal biomarker history up to time point t, with 
mi(t) indicating the true value at t (i.e. the mixed effect 
model not contaminated with measurement error). 
The baseline covariates in the hazard submodel are wi, 
with γT corresponding to the log-hazard ratio coeffi-
cients. An example of the parameterisation of the func-
tional form f(Mi(t), bi, α) can be a linear combination 
of value and gradient of the longitudinal biomarker, 
f (. . . ) = α1mi(t)+ α2

dmi(t)
dt  . The corresponding α 

hi(t|Mi(t),wi) = lim
�t→0

Pr
{

t ≤ T ∗
i < t +�t

∣

∣T ∗
i ≥ t,Mi(t),wi}

�t

= h0(t) exp
{

γ T
wi + f (Mi(t), bi,α)

}

.
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parameters quantify the intensity of association between 
the two outcomes. Other functional forms of f exist, such 
as the (weighted) cumulative effect (1), or random effects 
association (2),

The former quantifies the risk of recurrence from the 
area under the biomarker trajectory and can allocate 
greater weights to more recent biomarker observations, 

(1)f = α

∫ t

0
ω(t − s) × mi(s) ds

(2)f = αT
bi

e.g., using a standard normal density function for ω. 
The latter parameterisation uses only the random 
effects as a linear predictor, this requires no numeri-
cal integration which is computationally advantageous. 
Using a simple random intercept- and slopes struc-
ture is most interpretable, whereby patient deviations 
from the population average is expressed [49]. More 
elaborate structures are challenging to interpret [29, 
50, 51]. A full parametric specification of the baseline 
hazard function, h0(t), is recommended (e.g. using con-
stant-piecewise, or regression splines models), with an 
adequate number of knots for flexibly modelling the 
underlying baseline risk. Leaving h0(t) unspecified can 

Fig. 1  A flowchart for identifying studies of the literature review
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lead to underestimating the precision of parameter 
estimates [52].

Given the random effects bi, Yi and Ti become inde-
pendent (conditional independence). Excellent overviews 
of shared-parameter joint modelling can be found in Riz-
opoulos [49] and Papageorgiou et al. [29].

Joint latent class model
The joint latent class models framework assumes the 
existence of latent classes that capture the association 
between the longitudinal biomarker trajectory and the 
relative risk of the endpoint of interest. Following the 
same notation as above, we can define the JLCM by the 
mixed-effect- and relative risk submodels for each latent 
class ci ∈ {1, .., G}T:

where assignment to latent class g is given by a multi-
nomial submodel,

With Xi a fixed baseline design matrix associated 
with classification and corresponding coefficients 
�
T
g =

(

�
T
0 = 0, �T1 , . . . , �

T
G = 0

)

 . Given the latent class ci, 
conditional independence between the longitudinal and 
time-to-event outcomes is assumed.

The JLCM has some advantages compared to the SPJM: 
it does not need to specify a suitable functional form to 
link the two processes, and thus the conditional inde-
pendence assumption in the JLCMs results in less oner-
ous computations. However, as the number of latent 
classes are not known a priori, it is another component 
to be estimated, and as these are not observed, the con-
ditional independence assumption is nontrivial to evalu-
ate. Jacqmin-Gadda et al. [43], proposed a trivariate score 
test to evaluate this assumption, they showed that their 
score test was uniformly most powerful and simpler than 
all other considered tests.

Dynamic predictions
Given a sample from the population of interest, joint mod-
els permit to compute dynamic predictions of the event 
of interest at a future time u given the information avail-
able up to time t > 0. For a specific ith individual, these are 
defined by πi(u| t) = Pr(T∗ ≥ u |T∗ > t, Xi, yi(t), Ti, δi, wi, θ). 

(

Yi
(

tij
)

|ci = g
)

= βgX
T
i

(

tij
)

+ bigZ
T
i

(

tij
)

+ ǫ
(

tij
)

;
(

tij
)

∼ N
(

0, σ 2
e

)

,big ∼ MVN
(

µg , D
)

hi(t |ci = g) = h0g (t) exp
(

γ T
g wi

)

Pr
(

ci = g | Xi

)

=
exp

(

�
T
g Xi

)

�G
j=1 exp

(

�
T
j Xi

) .

I.e., the conditional probability of being event-free at time 
u > t, given that the patient is still at risk of the event at 
time t (T∗ > t), the baseline covariates / fixed effects design 
matrix Xi, the biomarker longitudinal values observed up 
to time t, yi(t), and the parameters θ estimated from the 
joint model. These predictions, which can be then dynami-
cally updated when new biomarker information becomes 
available at t’ > t [28].

For the shared-parameter JMs, these are extracted by 
integrating the conditional event probability πi(u| t) over 
the random effects. Similarly for the JLCM, the pre-
dicted probabilities are given by summing over the latent 
classes. In both frameworks, this is difficult to com-
pute analytically, therefore Markov chain Monte Carlo 
(MCMC) methods are implemented. MCMC extracts the 

predicted event posterior distribution of πi(u| t) and cor-
responding credible intervals from the Monte Carlo sam-
ple percentiles of interest [45, 53].

Predictive performance
Measuring predictive ability is crucial to assess the pro-
posed model(s) performance in producing accurate pre-
dictions, the end goal for any DPM (dynamic prediction 
model). Two aspects of modelling performance can be 
assessed: calibration (how well the model predicts the 
observed data) and discrimination (how well can the 
model distinguish between those patients that do and do 
not have an event).

Discrimination is typically assessed by considering the 
time-dependent AUROC (area under the receiver oper-
ating characteristic curve) [53–56]. Within a particular 
chosen prediction window, AUROC (or simply AUC) val-
ues of 0.5 indicate random chance assignment and values 
closer to unity indicate better model discrimination.

The prediction error (PE) focuses on assessing the 
calibration of the model, and it is defined as the expecta-
tion of the difference between the observed event status 
Ni(u|t) = I

(

T ∗
i > u|t

)

 and the predicted event occur-
rence πi(u| t), at a specific time. A loss function can be 
incorporated within the expectation, e.g., the absolute- 
or mean squared-loss functions. The latter is also known 
as the Brier score (BS), which is an overall measure of 
prognostic performance [57, 58]. Under any loss func-
tion, as the difference between these two terms decrease 
and tends to zero, the closer the observed and predicted 
event align, resulting in better predictive performance 
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of the model. In practice, one may want to consider pre-
dictions over a window of interest, rather than specified 
time points, by using weighted extensions of these esti-
mators, e.g. weighted average absolute prediction error 
(WAPE) or integrated BS [59, 60]. For any of these pre-
dictive measures to be valid, the censoring distributions 
need to be corrected for, e.g. using inverse probability 
weighted estimators [28, 56, 61, 62].

Alternative measures of accuracy can be utilised, such 
as the expected prognostic observed cross-entropy 
(EPOCE) [63]. The EPOCE quantifies the prognostic 
information from the joint model at the landmark time 
of interest. When estimated internally, leave-one-out 
cross-validation of the prognostic observed log-likeli-
hood (CVPOL) is used to correct for over-optimism [64]. 
For external validation, no cross-validation is required. 
Proust-Lima et  al. [45] argue the advantages of EPOCE 
over the previously stated measures, including no cen-
soring distribution nor a prediction window is assumed, 
direct comparison of two joint models can be made, and 
that it is more reasonable to evaluate directly on the like-
lihood density functions. Further formulation and dis-
cussion on this predictive accuracy metric can be found 
in [45, 63].

Results
We identified 12 relevant full-text papers that best illus-
trated the joint modelling framework and summarised 
its applications in localised prostate cancer, these were 
selected to be included within this review. Table 2 sum-
marises these twelve papers including details of the mod-
elling framework used, sample sizes, parameterisations, 
the prediction windows of interest, whether validation 
was undertaken, and the code/software used.

Where available, the corresponding software and code 
with packages can also be found [65, 66]. Nine papers (9 
of 12, 75%) applied the shared-parameter joint modelling 
framework, with three of these presenting the standard 
joint model for a time-to-failure endpoint, while 6 of 9 
papers presented extensions to the time-to-event sub-
model incorporating cure, competing risks, and multi-
state models for localised prostate cancer (e.g., local- and 
distant recurrence, salvage therapy, and death). Three 
papers (3 of 12, 25%) described the joint latent class 
approach. In the following, we review and summarise 
these papers in detail around their model specification, 
estimation of dynamic predictions and model validations 
conducted.

Shared‑parameter joint models to predict recurrence 
in localised prostate cancer
In this section, we focus our review on three relevant 
papers that investigated PSA dynamics to predict 

recurrence in localised prostate cancer using the SPJM 
framework: Taylor et al. [44], Sène et al. [46], and Pauler 
& Finkelstein [37]. All three articles develop models in 
localised prostate cancer patients treated with EBRT in 
the absence of neoadjuvant HT. Taylor focused on devel-
oping a model to creating a clinical prediction tool online; 
Sène explored the effect on initiating salvage treatments 
at different time points and its effect on the predicted 
dynamic probabilities of recurrence. Pauler & Finkelstein 
use a change-point model to capture any jump in PSA.

Model specification
In Taylor et al. [44], the functional form over time of the 
longitudinal PSA mixed model assumes three phases: 
baseline/presenting PSA (Β0), and the short-term 
(decrease, Β1), and long-term (increase, Β2) evolutions 
of PSA, Yi(t) = log[PSAi(t) + 0.1] = Β0 + Β1f1 + Β2f2, with 
f1 =

{

(1+ time)−
3
2 − 1

}

and f2 = time . For each of the 
three phases, Bk = {0, 1, 2}, are matrices containing linear 
combinations of the fixed baseline covariates T-stage, 
Gleason grade and presenting pre-treatment PSA, along 
with subject-specific random effects parameters. A 
t-distribution with five degrees-of-freedom for the error 
term is assumed. Time to prostate cancer clinical recur-
rence is measured from the end of RT. In the survival 
submodel, the functional form f(Mi(t), bi, α) is a linear 
combination of the value of PSA concentration and its 
slope at time t, f (Mi(t) bi,α) = α1PSA(t)+ α2

d PSA(t)
dt

 . 
Additionally, the survival submodel included a time-
dependent indicator variable for when salvage hormonal 
treatment (ST) is initiated to account for the subsequent 
drop in hazard of clinical failure. PSA values after ST 
were excluded due to the sudden decrease in PSA tra-
jectory and did not feature in the mixed-effect model; 
however, clinical recurrences after ST were considered. 
A piecewise constant function is assumed for the base-
line hazard.

Sène et  al. [46] made similar modelling assumptions 
as Taylor et al. [44] for the functional forms in the mixed 
and survival submodels. The model adjusted for present-
ing PSA, Gleason score, T-stage, and total corrected dose 
of EBRT (using the linear-quadratic model given in [67]). 
Initiation of ST was included as a time-dependent indi-
cator variable to reflect the potential decrease in risk of 
progression; five functional forms of ST were consid-
ered. Three different association structures of f were fit-
ted: a linear combination of PSA value and gradient (with 
and without a logistic transformation for PSA), and the 
random effect structure, which evaluated the individual 
deviations from the overall population’s PSA trajecto-
ries. A combination of those different parametrisations 
yielded 12 models with varied complexity.



Page 11 of 19Parr et al. BMC Medical Research Methodology          (2022) 22:245 	

Pauler & Finkelstein [37] proposed a change-point 
parameterisations in the longitudinal model for PSA, by 
incorporating an unknown change-point indicator vari-
able for whether change in PSA has occurred. If a shift is 
indicated, a likely change-point time-range is estimated 
with a uniform distribution for PSA. A narrower poste-
rior change-point range with larger differences in the 
slopes before- and after the change-point indicate pros-
tate cancer recurrence is likely (before the formal clinical 
failure endpoint). Trivariate normal and uniform priors 
are used for four random effects, they included: intercept; 
change-point time (uniform); the slope before and after 
the change-point. For the survival submodel, a piecewise 
exponential hazard function was used. Baseline covari-
ates included age, presenting PSA, and disease stage. For 
the joint model, non-informative priors were chosen.

Estimation, prediction and validation
In Taylor et  al. [44], estimation was undertaken under 
a Bayesian framework using C software. The joint 
model was developed on three pooled cohorts (totalling 
N = 2,386 patients) and externally tested using a sepa-
rate fourth dataset (N = 846 patients). Dynamic predic-
tions for an individual patient’s PSA trajectory and risk of 
recurrence for the next 3 years were shown: no formal val-
idation measures were presented. The authors opted for 
simpler graphical inspections to study the model, owing 
to the complicated nature of the time-dependent ST 
events within the validation cohort. An online prognos-
tic calculator was developed, enabling individual dynamic 
predictions of disease recurrence given PSA trajectories 
for future patients (http://​psaca​lc.​sph.​umich.​edu1).

In Sène et al. [46], estimation was undertaken under a 
frequentist framework, and R software used for model 
development, again using the same three cohorts as in 
Taylor et  al. [44]. Internal approximated leave-one-out 
cross-validation was used to assess six of the 12 models’ 
predictability, using BS and EPOCE accuracy measures 
[64]. The two best fitting models were the logistic-trans-
formed PSA value and slope that separated the effect of 
PSA before- and after ST, whilst the model with the ran-
dom effect association structure performed best when 
assumed that the patient would not start ST within 3 
years. Exemplar individualised dynamic predictions used 
a prediction window of 3 years on an intermediate risk 
patient. Different scenarios when ST would be initiated 
were used to illustrate the impact of delays in ST initia-
tion on risk of recurrence. External validation was not 
performed.

We cannot make direct comparisons between the pre-
dictive performances of the two papers as they used dif-
ferent assessment methods (graphical approaches in 
Taylor, EPOCE & BS presented in Sène). In Sène et  al., 
patients who did not receive HT nor ST within 3 years 
were mainly used in order to assess predictive perfor-
mance. Sène noted that this may not be a representative 
situation for all patients, so they performed a sensitivity 
analysis using Taylor’s approach to widen the sample on 
HT-free patients at the landmark prediction time only, 
then with subsequent ST initiation within the three-
year prediction window, as either a recurrence event or 
dependent censoring. The relative predictive perfor-
mance was largely unchanged in both papers under this 
approach and therefore can be considered robust.

In Pauler & Finkelstein [37], estimation was done in 
a Bayesian framework, using C and S-plus software. 
The joint model was developed on a cohort of N = 676 
patients. As the majority of patients do not exhibit clini-
cal failure, the slope after the change-point was non-sig-
nificantly negative, indicating PSA trajectories generally 
remain constant over the follow-up period. The regres-
sion coefficients from the relative risk component are not 
straightforward to interpret due to the number of pair-
wise and three-way interactions, the authors noted that 
coefficients are in the expected directions. Sensitivity 
analysis was done on three differing definitions of recur-
rence based on PSA rises. They showed that regardless of 
rule followed, there was little difference to their optimal 
joint model. The AIC rose when considering only a rela-
tive risk model using indicator covariates for each rule, 
this provided justification on using the joint change-
point model, as the longitudinal PSAs substantively 
improve the goodness-of-fit. The posterior distributions 
of four individual patient change-points were shown. For 
two patients who do relapse, sharp change-points are 
given between 2 and 4 years, who then go on to recur at 
six and 4 years of follow-up. For stable PSA patients, the 
change-point is imprecise with very wide uniform pos-
teriors. Individualised predictions are performed on two 
hypothetical patients showing each’s posterior predictive 
distributions of time to relapse. Although discussed, the 
model was not validated.

Latent class joint models to predict recurrence in localised 
prostate cancer
In this section, we focus our review on relevant papers 
that investigated PSA dynamics using the JLCM frame-
work. There are three papers of interest reviewed in this 
section, by Proust-Lima & Taylor [42], Jacqmin-Gadda 
et  al. [43], and a third paper by Proust-Lima et  al. [45], 
which is appraised separately as this compares the SPJM 
and JLCM.1  Last accessed in September 2022.

http://psacalc.sph.umich.edu


Page 12 of 19Parr et al. BMC Medical Research Methodology          (2022) 22:245 

Proust-Lima & Taylor [42] modelled the functional 
longitudinal PSA similarly to Taylor et al. [44] (described 
previously). Baseline covariates T-stage, Gleason score, 
and pre-treatment PSA were included into both submod-
els. The survival submodel also includes an exogenous 
time-dependent indicator variable for initiation of ST, 
and a class-specific Weibull baseline hazard function.

Model development was performed on a single cohort 
of patients (N = 1,268), and external validation was per-
formed on two additional smaller cohorts (with N = 503 
and N = 615 patients respectively). Several JLCMs were 
fitted with ranging classes (2—6), with the five-class 
model (5-JLCM) producing the lowest Bayesian Infor-
mation Criterion (BIC); the optimal model included esti-
mation of 75 parameters. Predicted PSA evolutions and 
survival curves for each of the five classes illustrate how 
PSA trajectories with long-term rise of PSA correspond 
to greater risk of failure. Dynamic predictions were made 
within a prediction window of 3 years for two patients 
with contrasting baseline risk factors: a lower-risk patient 
who recurs and a higher-risk patient with no observed 
recurrence.

Within each external validation cohort, measures of 
predictive accuracy (absolute prediction errors EP and 
WAEP) for the five-class JLCM were computed, and com-
pared to a relative risk model with baseline information 
only, and a two-stage landmark model. The JLCM was 
shown to be the best fitting at various landmark times, 
and accounting for the longitudinal biomarker reduced 
both the EP and WAEP, particularly at earlier landmarks.

For Jacqmin-Gadda et al. [43], the score test methodol-
ogy introduced previously is applied to develop a prog-
nostic joint model for prostate cancer recurrence (with 
the same dataset used as in Taylor et  al., [40]). They 
develop the JLCM similarly to Proust-Lima et al., [35, 42]. 
They show that the more flexible 4-class JLCM did not 
reject conditional independence, whereas the less power-
ful alternative Wald test for dependence failed to reject 
the null for a 3-class JLCM.

Comparison between latent‑class and shared‑parameter 
joint models
A direct comparison is made between the two types of 
joint models applied to prostate cancer by Proust-Lima 
and colleagues [45]. Three prognostic baseline factors 
were adjusted for, logged initial-PSA, T-stage, and Glea-
son score using the same Michigan hospital cohort data-
set. The three-component parameterisation of PSA in 
the mixed-effect model was done in the same manner 
to Proust-Lima & Taylor, and Taylor et  al. [42, 44] for 
both joint models for direct comparison. The developed 
4-JLCM adjusting for PSA value and slope was chosen 
from information criteria and conditional independence 

being met. The BIC favoured the 4-JLCM compared to 
the shared-parameter JM.

For direct comparisons between the JLCM and SPJM, 
evaluation of dynamic predictions (for the entire follow-
up) are made using the cross-validated EPOCE frame-
work in the first 6 years. The 4-JLCM is superior to the 
SPJM in the first 4 years on internal validation, and also 
slightly better in the first 3 years on external validation.

Extensions to the shared‑parameter joint model
We present some further extensions to the joint model in 
the following subsections. In particular we comment and 
review four papers with a cured fraction [38–41]; a com-
peting risk joint model [48], where clinical recurrence is 
competing with a non-related cancer death; and a multi-
state joint model [47], whereby patients can go through a 
pathway of disease states throughout follow-up.

Joint‑cure models
A natural extension to the SPJM is to incorporate a cure 
component to the time-to-event submodel, whereby 
patients are considered to be susceptible to experience 
the event under study (e.g. recurrence), or, on the con-
trary, to be cured after initial treatment, and thus never 
susceptible of recurrence. Allocation into the two groups 
is typically modelled using a logistic classifier submodel:

where D = 1 refers to the susceptible group (observed 
only when the event of interest occurs), Xi is the fixed 
baseline design matrix with their corresponding vector 
of coefficients, β. Patients that have been allocated to the 
‘cured’ group are coded D = 0.

There can be a high proportion of patients that are 
recurrence-free after long follow-up, resulting in heavy 
censoring. This may compromise the predictions of a 
joint model given the lack of events observed. It therefore 
may be appropriate to model these patients that appear 
to have prolonged event-free survival as ‘cured’, using a 
cure joint model.

There are four articles that consider a joint cure model 
for the risk of clinical recurrence [38–41]. The four 
papers have a similar model specification: a nonlinear 
parametric exponential decay-growth (U-shaped) model 
is used to capture the logPSA trajectory mi(t, ri) = ri1 exp
(−tri2) + ri3 exp(tri4), where ri1, …, 4 are the random effects 
to be estimated. Those that have been allocated to the 
cure group (from the logistic incidence submodel) have 
ri4 ∣ (D = 0) = 0, as this assumption reduces the PSA tra-
jectory, mi(t, ri), to an exponential decay cure SPJM. The 

Pr (D = 1| Xi) =
exp

(

βTXi

)

1+ exp
(

βTXi

) ,
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conditional failure time model is given by h(t| Di, Xi, ri, β, 
α, g(mi)) = h0(t) exp(  βTXi + αg(mi ∣ D, t)), where g(mi) can 
be given by including the trajectory function and its slope 
given in [40, 41].

Baseline covariates included pre-treatment PSA, 
T-stage, and Gleason score. Additionally Taylor et  al. 
[40] considered PSA value & slope as time-dependent 
covariates, age, EBRT total delivered dose (in Gy) and 
treatment duration as baseline covariates. Yu and col-
leagues [41] included an exogenous time-dependent vari-
able to indicate start of salvage HT, similarly to [44], and 
used a generalised Weibull model for the baseline hazard 
function. Both frequentist and Bayesian approaches are 
directly compared by Yu et al. [39].

In Law et  al. [38], the joint cure model is compared 
to the standard cure model without longitudinal time-
dependent information, and to the shared parameter 
joint model without the cure component. They showed 
better predictions and discrimination, together with 
reducing biases from informative censoring. Taylor et al. 
and Yu et  al. [40, 41] compared the predictions of the 
model with updated information on the same patients 
who were initially used to develop the model, that is 
whereby more longitudinal PSAs and events on the same 
patients are gathered.

The extended shared-parameter joint-cure model offers 
additional flexibility to model the inherent heterogeneity 
of patients that go on to have extended event-free sur-
vival. Yu et  al. directly compared joint models with and 
without a cure component. They showed a standard JM 
tends to overestimate the number of clinical events. They 
compared the two models using the conditional predic-
tive ordinate and BIC, both favouring the additional cure 
submodel component, despite an extra 30 parameters 
needed to be estimated [41]. This however may over-
parameterise the model without adequate event sizes 
[68]. Also as the prostate cancer disease pathway is com-
plicated, clinical input is recommended with regards to 
plausibility of the cure component and its definition.

Competing risks joint models
The event of interest may be precluded by the occurrence 
of a competing event, for instance, non-cancer related 
deaths before recurrence. It is well known that biases are 
elicited by censoring these competing event deaths [69, 
70]; joint models can be extended considering the pres-
ence of a competing event.

Ferrer et  al. [48] perform individual dynamic pre-
dictions and validate the robustness of the estimators 
in the presence of competing risk of death (from a 
non-related cancer cause), within a frequentist frame-
work. A cause-specific proportional hazards submodel 
is proposed for each competing event, and thus the 

relationship of the longitudinal biomarker with each 
competing event can be assessed. Individual dynamic 
predictions were estimated and compared to land-
marking estimators. Two simulation studies were 
performed using simulated data that was alike to the 
applied prostate cancer dataset. Each approach vali-
dated the estimators, then compared and assess their 
robustness to misspecification of the joint model. Both 
the AUC and mean-squared prediction error were 
employed to characterise the predictive accuracy. An 
extension of the AUC was adapted to the competing 
risk setting, proposed by Blanche et  al. [61]. It was 
shown that in almost all cases, the joint models were 
superior to the landmark models. The landmark mod-
els were only superior to the joint models when the 
longitudinal biomarker was heavily misspecified. Fer-
rer’s competing risk paper is the only study to present 
validation metrics, using simulated studies. Code is 
available at https://​github.​com/​LoicF​errer/​Indiv​idual-​
dynam​ic-​predi​ctions.2

Multi‑state joint models
The evolution of localised prostate cancer over time can 
be characterised by the occurrence of different events 
of interest, such as biochemical failure, local recur-
rence, distant recurrence and death. One way to jointly 
model all these events is via multi-state models, in which 
the event progressions of interest define the transition 
between different disease states [71]. As longitudinal pro-
cess such as PSA trajectories can have an impact on sev-
eral of these event transitions, multi-state models can be 
generalised to the joint modelling framework.

Ferrer et  al. [47] proposed modelling the longitudinal 
PSA process using a mixed-effect submodel, similarly to 
Proust-Lima and Taylor [42], Sène et al. [46], and Ferrer 
at al [48]. They used a non-homogeneous Markov multi-
state model for the intensity of the transitions between 
five states: 0) end of EBRT treatment, 1) local recurrence, 
2) salvage HT, 3) distant recurrence, and 4) death (the 
absorbing state). Intermediate states could be skipped 
(e.g. ending EBRT0 ➔ death4), and backward transitions 
were not allowed. Two properties were considered: 1) 
the Markov property whereby the future process is only 
dependent on the present state and not the preceding 
transitions / states; 2) the non-homogeneous property 
ensures the time since entering the study influences the 
evolution of the process.

Each transition intensity is modelled assuming propor-
tional hazards and incorporated the biomarker trajectory. 
For each transition from state i to j, only patients visit-
ing the state i are included in the analysis. The baseline 

2  Last accessed in September 2022.

https://github.com/LoicFerrer/Individual-dynamic-predictions
https://github.com/LoicFerrer/Individual-dynamic-predictions
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intensity function was modelled parametrically. The 
maximum likelihood framework was used to estimate the 
corresponding parameters.

The multi-state joint model was fitted with the same 
two study datasets as in Ferrer et  al. [48]. Four covari-
ates (presenting PSA, Gleason score, T-stage, and study 
cohort) were adjusted for in the models. Worse baseline 
risk factors were associated with higher values in their 
long-term PSA trajectories, and reaching clinical failure 
states earlier. Higher presenting PSA was associated with 
a higher instantaneous risk to salvage hormone therapy 
or death. A linear combination of increases in PSA value 
& slope were associated with significant deterioration for 
all clinical progression transitions (local, salvage HT, or 
distant failures) from the initial state.

After adjusting for all other covariates and PSA slope, 
a unit increase in the log PSA gave rise to a 43% increase 
in risk to local recurrence. Patients with continually high 
PSAs or increasingly steep PSA gradients after EBRT 
treatment, led to earlier and higher hazards to clinical 
failure states. Conversely, higher PSA levels had a pro-
tective effect on the transition to direct death after EBRT 
but were more likely to progress though the prostate can-
cer progression states.

Predictions were compared with the observed data. 
The observed values were averaged at each decile with 
corresponding predicted values computed, they show 
the observed values lay within the 95% CIs, with very 
similar predicted values. The predicted transition prob-
abilities over time, in a given state to another other fea-
sible state are presented, comparing similar parametric 
estimated probabilities to the observed. The only excep-
tion was between transitions 1➔2 (from local recur-
rence to receiving HT) where the spike after EBRT was 
not adequately captured with the splines, it shows there 
is a very near-immediate initiation of HT after localised 
recurrence to control the disease. It is worth noting that 
PSA dynamics were only collected until the patient’s first 
clinical event and not thereafter and were extrapolated 
according to their posterior trajectories.

Diagnostics of the joint multi-state model were evalu-
ated visually. Residuals vs fitted values, observed and pre-
dicted PSA trajectories, and predicted vs non-parametric 
transition probabilities between states were presented. 
In general, they showed the model fits particularly well 
to the longitudinal, and multi-state submodels. The mod-
els themselves were not externally validated nor stated 
any predictive performance measures, only the estima-
tion process via simulation studies. Although equations 
for obtaining individual dynamic predictions for patients 
were presented in the paper, these were not demon-
strated with specific examples.

The code to apply these multistate models to a simu-
lated dataset and adapt for use is freely available at 
https://​github.​com/​LoicF​errer/​JMsta​teMod​el3 and could 
be used to derive patient predictions and be adapted for 
the reader’s need.

Discussion
Over the last two decades there has been a plethora of 
research on PSA protein concentration and its asso-
ciation to recurrence, or prolonged event-free survival 
(effectively cure). We have reviewed and assessed 12 
papers that report joint models of longitudinal PSA 
trajectories and time-to-event endpoints that aim to 
describe how these trajectories impact and predict pros-
tate cancer recurrence. We found two broad frameworks 
(SPJMs & JLCMs) that were utilised and assessed dif-
ferent methodologies. We synthesize these different 
approaches applied to similar dataset cohorts of pros-
tate cancer patients initially receiving EBRT without HT, 
which allow the methodology to be compared. Due to 
the long-term nature of prostate cancer recurrence and 
progression, the datasets to develop the DPMs comprise 
patients recruited from the 1980s. As long-term follow-
up is necessary the historical nature of the datasets is 
unavoidable but the impact of changes in clinical practice 
should be considered when utilising DPMs for contem-
porary patients.

There are limitations to our work, as this report was 
not initially intended to be a systematic review on all the 
available literature, but a synthesised summary of what 
we considered relevant articles of modelling both PSA 
longitudinally, and time-to-recurrence in localised pros-
tate cancer; in preparation for an application for these 
methods in our own dataset (in a publication to follow). 
For instance, we focused on specific key words within the 
title and abstract only, so we may have missed reports 
if the use of these terms was not explicit in these fields. 
Further joint modelling papers not included here were 
due to, for instance, no dynamic predictions presented 
[72], a mix of non-radiotherapy treatments (e.g, radical 
prostatectomy); methodology development focused but 
repeated analysis referred to [63, 73, 74]; or exclusive use 
of simulated datasets [75]. It was noted that not all papers 
were expectedly populated by the search strategy [76]. In 
the localised prostate cancer setting, where PSA is used 
to monitor recurrence after radical treatment of disease, 
joint models have also been used in the context of pros-
tate cancer screening [77–82] or advanced (metastatic) 
disease [33, 83–87]. We did not consider these scenarios 
as the PSA dynamics differ greatly. These models could 

3  Last accessed in September 2022.

https://github.com/LoicFerrer/JMstateModel
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also be extended to accommodate more than one longi-
tudinal biomarker, such as PSA and testosterone, or the 
sequential findings on digital rectal exams, in a joint mul-
tivariate model. Regardless of disease stage, these papers 
highlight and emphasise the use of longitudinal informa-
tion, such as the PSA biomarker. This increases the prog-
nostic power of the prediction model to help inform and 
update predictions of the event of interest, compared to 
solely using baseline risk factors that are imprecise [88].

Modern typical first-line treatment of localised pros-
tate cancer include HT before (neoadjuvant) and con-
currently with external-beam radiotherapy [12, 89], and 
PSA trajectories are known to be more homogeneous 
with combined treatment [44]. Furthermore, given recent 
advances in radiotherapy techniques and the use of mod-
erate- and ultra-hypofractionation (fewer but larger 
doses of radiotherapy) [90, 91], treatment exposures of 
RT are where there are far fewer treatment exposures of 
RT than the average treatment durations presented in 
these papers. The tool in Taylor et al. [44] was developed 
in the absence of neoadjuvant HT, therefore predictions 
from these models have limited applicability within cur-
rent treatment pathways. Further development of these 
models for patients receiving HT are needed.

The papers reviewed provide a very good exposition 
and rationale to their model development and clinical 
usage. Regardless of the functional form used in the joint 
modelling framework, a fully parametric form was fit-
ted for the mixed-effects model. There are possibly more 
appropriate and flexible forms that may exist, compared 
to the biphasic form for PSA trajectories they postulate 
throughout [35, 42–46, 48]. Many of the reviewed arti-
cles present an appraisal of their models, either by vali-
dation or contain a simulation study. External validation 
is seen as the gold-standard, to ensure model suitability 
and generalisability in other patient populations and to 
assess overfitting [92]. However, when rigorous meas-
ures of predictive performance have not been reported in 
these papers, these would not be considered validated by 
today’s standards [93].

As with any specification of modelling, there are pros 
and cons to the joint modelling approach taken and sev-
eral differences exist. For JLCMs, the maximum likeli-
hood approach contains closed-form solutions and are 
computationally feasible to compute. They are advanta-
geous for the use of developing a predictive joint model 
for dynamic predictions, whilst not having to impose spe-
cific parametric assumptions for the biomarker’s func-
tional form (e.g. current value, slope, area), unlike SPJMs 
[45]. Robustness to deviations of the imposed functional 
form have been rigorously assessed in Ferrer at al [48]. 
In this paper, they demonstrated that no method (joint 
modelling nor landmarking) was particularly robust to 

misspecification in the longitudinal biomarker. However, 
when there was heavy misspecification, landmarking 
methods did perform better than joint modelling.

The SPJMs assume a homogenous population with 
a singular average PSA biomarker trajectory, whereas 
JLCMs account for further population heterogene-
ity through the latent classes. Both JLCMs and SPJMs 
account for the variability of the PSA biomarker through 
the random effects in the longitudinal model. The pur-
pose of the random effects in the SPJM is two-fold, 
accounting for the correlation of the repeated measures 
in the mixed-effect model, and the association between 
the PSA biomarker and time-to-recurrence, whilst in the 
JLCM only the latent classes account of the association 
between the biomarker and event.

Disadvantages of the JLCMs approach include the pos-
sibility of having multiple local maxima for the maximum 
likelihood estimates, and several models are needed to 
be fitted in order to find the optimal number of latent 
classes (by comparing multiple information criteria) [49]. 
Some of these issues can be circumnavigated via paral-
lelisation of the computation for more optimal resourc-
ing, e.g., make use of parallel computing by using search 
grid methods for JLCMs as computations are independ-
ent (see the mpjlcmm function from R package lcmm); or 
implementing multiple MCMC chains performed in par-
allel using Bayesian SPJMs (jm function from R package 
JMbayes2) [65, 94].

Both Frequentist and Bayesian paradigms were used for 
the SPJMs, whereas we only reviewed frequentist meth-
ods for the JLCMs. In their direct comparison of JLCMs 
and SPJMs [45], the authors showed that the JLCMs had 
less assumptions and performed better. However when 
adjusting for the same patient cohort dataset, baseline 
covariates, prediction times, and biphasic components 
for the longitudinal PSA component: the prognostic 
accuracy measures for EPOCE in Sène et  al. [46] using 
SPJMs appeared superior than those obtained with the 
JLCM in Proust-Lima et al. [45].

All models reviewed in this paper can produce dynamic 
predictions for prostate cancer prognosis. The JLCMs do 
not assume a specific association structure nor quantify 
those associations, (like the SPJMs do), they describe the 
trajectories in a heterogeneous population. If the main 
goal is to quantify the associations assuming a homoge-
nous population, then SPJMs are recommended. There is 
not one overarching or standout model to always use by 
default. The choice of model may be primarily driven by 
the research question and personal choice. If the purpose 
is solely for prediction, then combining several frame-
works for dynamic predictions using some weighted 
model averaging methodology could be applied [95]. 
Indeed one type of framework may outperform another 
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at certain time intervals and then vice-versa at differ-
ent time windows. Each model has its own advantages, 
depending on the end goal of the reader. It is hard to 
compare each model’s framework with another in terms 
of superior predictive performance as not all these papers 
present these metrics.

This review focused on radiotherapy, however there 
are other treatments for prostate cancer including 
hormone therapy, prostatectomy and combinations 
therein, though optimal timing of these combina-
tional therapies appears unclear [96, 97]. There have 
been recent advances in using sophisticated machine 
learning/artificial intelligence (ML/AI) techniques on 
imaging data to predict whether patients require biop-
sies, or to predict clinical failure or death under these 
alternative treatment pathways. Some recent articles 
include development of artificial neural networks, 
support vector machines, and random forests for pre-
dicting diagnoses [98, 99], optimal timing of biopsies 
[100], and clinical failure [101] or death [102]. How-
ever, it is not apparent that the longitudinal nature of 
time-varying markers like PSA have been considered, 
nor produce dynamic predictions. A review of these AI 
and ML methods is given in Tătaru et al. [103]. Some 
authors refer to joint modelling itself is an AI approach 
[104]. Other studies have suggested combining the 
boosting approaches of machine learning to joint mod-
els, to create a unified framework using mechanis-
tic data-driven approaches [105]. ML/AI techniques 
are not a panacea and need to be correctly developed 
and incorporate all available information, be rigor-
ously validated, and to have clinical utility [106–109]. 
Reporting guidance, based on TRIPOD & PROBAST 
statements, have been developed for AI & ML (TRI-
POD-AI/ML & PROBAST-AI/ML) [110–113].

Conclusions
To conclude, we reviewed, summarised, and syn-
thesised principal methodologies on twelve seminal 
papers over the last two decades on dynamic predic-
tion joint models applied to the prognosis of prostate 
cancer patients, using PSA to dynamically update 
prognosis. This article supports the use of utilising 
longitudinally collected PSA, in addition to baseline 
prognostic factors to improve predictions in a joint 
modelling framework. There have been many advance-
ments in computational processing, methodologies, 
with improvements in clinical practice and treatments. 
Combining all these developments together with utilis-
ing all available information, the future of dynamic pre-
diction models is encouraging.
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