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Abstract 

Background:  Diagnosing urinary tract infections (UTIs) in children in the emergency department (ED) is challenging 
due to the variable clinical presentations and difficulties in obtaining a urine sample free from contamination. Clini-
cians need to weigh a range of observations to make timely diagnostic and management decisions, a difficult task to 
achieve without support due to the complex interactions among relevant factors. Directed acyclic graphs (DAG) and 
causal Bayesian networks (BN) offer a way to explicitly outline the underlying disease, contamination and diagnos-
tic processes, and to further make quantitative inference on the event of interest thus serving as a tool for decision 
support.

Methods:  We prospectively collected data on children present to ED with suspected UTIs. Through knowledge 
elicitation workshops and one-on-one meetings, a DAG was co-developed with clinical domain experts (the Expert 
DAG) to describe the causal relationships among variables relevant to paediatric UTIs. The Expert DAG was combined 
with prospective data and further domain knowledge to inform the development of an application-oriented BN (the 
Applied BN), designed to support the diagnosis of UTI. We assessed the performance of the Applied BN using quanti-
tative and qualitative methods.

Results:  We summarised patient background, clinical and laboratory characteristics of 431 episodes of suspected 
UTIs enrolled from May 2019 to November 2020. The Expert DAG was presented with a narrative description, elucidat-
ing how infection, specimen contamination and management pathways causally interact to form the complex pic-
ture of paediatric UTIs. Parameterised using prospective data and expert-elicited parameters, the Applied BN achieved 
an excellent and stable performance in predicting Escherichia coli culture results, with a mean area under the receiver 
operating characteristic curve of 0.86 and a mean log loss of 0.48 based on 10-fold cross-validation. The BN predic-
tions were reviewed via a validation workshop, and we illustrate how they can be presented for decision support 
using three hypothetical clinical scenarios.
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Introduction
Urinary tract infections (UTIs) are a common reason for 
children to present to hospital emergency departments 
(EDs) [1, 2]. Diagnoses of UTIs in children are made dif-
ficult because signs and symptoms are often non-specific 
and poorly sensitive, especially in those too young to 
communicate verbally [3, 4]. Although urine culture is 
considered the gold standard for the diagnosis of UTIs, 
urine testing may be affected by false positive and false 
negative results. Sample collection is challenging and 
urine contamination in children is frequent and can 
cause false positive diagnoses or obscure true positive 
infections, resulting in inappropriate treatment [4]. Urine 
testing may also be affected by false negatives due to prior 
use of antibiotics and low bacterial counts [3]. Manage-
ment of UTIs in children requires timely decisions that 
balance the risks of secondary bacteraemia and sepsis if 
appropriate treatment is delayed, and the potential side 
effects of those treatments, as well as the growing public 
health risks from antimicrobial resistance associated with 
indiscriminate treatment [5].

Formulating a diagnosis relies on gathering, requesting, 
and synthesising information from multiple sources under 
time and resource constraints. Cognitive heuristics (i.e. 
short cuts) allow decisions to be made quickly and with 
little information and high uncertainty; however, these 
heuristics may be biased and are thought to contribute to 
75% of misdiagnoses [6, 7]. The management of children 
with suspected UTI in the ED could benefit from decision 
support based on quantitative modelling. A number of 
predictive models have been constructed to aid the diag-
nosis and management of UTIs in children, with varying 
success. Individual biomarkers have been proposed for 
guiding diagnosis [8, 9], treatment and prognostication, 
while others propose combining routinely collected infor-
mation to provide quantitative risk-based assessments 
[10, 11]. The lack of explanability and user engagement 
may be the reason many predictive models, regardless 
of their accuracy, fail to be successfully implemented or 
utilised [12–15]. Causal directed acyclic graphs (DAGs) 
can be used to map and describe effects centred around a 
causal question of interest [16], providing a potential way 
to address the lack of explanability.

Causal DAGs are a graphical representation of vari-
ables of interest and their relationships with each other, 

depicted by a series of nodes (variables) and arrows 
(the causal relationships between the connected vari-
ables) [17]. They assist in understanding when and how 
observing one variable should change our expectation of 
another, either because the first variable causes the sec-
ond, the first is caused by the second, each is caused by 
a third variable, or because each shares an effect which is 
also observed. Arguably, causal models appeal to a type 
of reasoning familiar to clinicians about the unobserv-
able (latent) pathophysiological processes which under-
lie disease. In contrast, rule-based decision tools simply 
focus only on what can be directly observed, detaching 
clinicians from any need to think about the underlying 
processes. Rule-based decision tools provide a simple 
heuristic for clinicians, avoiding the challenge of obtaining 
robust (quantitative) inference based on a DAG structure.

Bayesian network (BN) models extend DAGs by quan-
tifying the strength and direction of the cause-effect 
relationships between variables using conditional prob-
ability tables (CPTs) [18, 19], providing a way to obtain 
formal quantitative inferences under a causal framework. 
When the relationships between all relevant observable 
and unobservable (latent) variables are organised under a 
causal BN framework, observed variables (data) can then 
be used to make probabilistic inferences about missing 
variables that are either unobservable and must always be 
inferred (e.g., latent states), or those that are potentially 
observable but not yet observed (e.g., future outcomes). 
They provide an approach for designing decision support 
tools by predicting unobserved variables using available 
data.

Causal BNs can describe a complex problem by 
synthesising expert opinion on the qualitative struc-
ture (i.e., the DAG), and expert opinion and/or data 
to parameterize it [19, 20]. Incorporating medical 
expertise into the building of BNs requires specialised 
knowledge in both the problem domain and the mod-
elling technologies; as a result, the usefulness of BN 
models often increase when multidisciplinary teams 
work together [21, 22]. Despite the increased amount of 
investment (of expertise thus effort and time) required 
to create the models, working with medical experts to 
co-develop BNs compensates for data limitations that 
can be both systematic and significant. This improves 
model predictions and helps to illuminate the clinical 

Conclusion:  Causal BNs created from both expert knowledge and data can integrate case-specific information to 
provide individual decision support during the diagnosis of paediatric UTIs in ED. The model aids the interpretation 
of culture results and the diagnosis of UTIs, promising the prospect of improved patient care and judicious use of 
antibiotics.
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problem at hand, increasing the likelihood that any 
decision support tools arising from these models will 
be understood, accepted and hence used in clinical care [23].

Causal BNs are now recognised as an important 
method for decision support in medicine especially 
among non-communicable diseases [21, 22]. However, 
evidence of implementation of BNs in healthcare settings 
is rare, and we believe this is partly attributable to a lack 
of systematic documentation from existing applications 
on how their BNs were developed (structure and param-
eterisation) from data and expert knowledge, why par-
ticular development processes were chosen, and whether 
those processes are repeatable [21, 24]. In this work, we 
propose the use of BNs for organising information in a 
coherent way that captures the complex relationships 
amongst variables relevant to the problem domain of 
paediatric UTIs. We describe the methodological pro-
cess of building a causal BN based decision support tool 
for diagnosing the causative pathogens for children who 
present to ED for suspected UTI. We illustrate how an 
expert-elicited causal DAG can be translated into an 
applied BN model parameterised with a prospective pae-
diatric cohort. We discuss the potential use of the applied 
BN model in clinical settings with the aim of guiding the 
diagnosis and management of UTI in children.

Methods
This project is described in three phases to illustrate 
how prospective cohort data “The prospective paediatric 
emergency department cohort” section  and an expert-
elicited causal DAG “Qualitative model: the Expert DAG” 
section can be utilised to derive a clinical decision sup-
port BN quantifying the strength of these relationships 
“Quantitative model: the Applied BN”.

The prospective paediatric emergency department cohort
Our prospective cohort enrolled children from the ED of 
Western Australia’s sole tertiary public children’s hospital 
(Perth Children’s Hospital). The study aimed to capture 
clinical and laboratory information about UTIs and their 
risk factors from paediatric ED clinicians, laboratory 
results, and from parents of children with a suspected 
UTI. A child was included if they were aged less than 
13 years, presented to the ED with a suspected UTI, had 
urine collected for laboratory culture and susceptibil-
ity testing, were prescribed empiric antibiotics for their 
suspected UTI, and had informed consent provided by 
their legal guardian. Participants could be re-enrolled if 
they presented to the ED at least 14 days after their initial 
presentation. Ethics approval was granted by the Child 
and Adolescent Health Service Human Research Ethics 
Committee (EC00268).

Electronic and paper medical records were system-
atically reviewed to capture the participant’s clinical his-
tory including their demographics, reported signs and 
symptoms, clinical observations, laboratory results, and 
treatments prescribed. A standardised case report form 
was developed in the Research Electronic Data Capture 
(REDCap) system and trained research nurses reviewed 
and entered data in accordance with a standard operat-
ing procedure in order to accurately transcribe medi-
cal information. Parents were surveyed electronically 
at enrolment to identify any additional risks factors for 
antimicrobial resistance and 14  days after presenting to 
the ED to ascertain treatment outcomes. Samples were 
processed, analysed and reported by the local laboratory 
per their standard procedures. Additional file 1 provides 
a detailed schematic of participant enrolment and data 
collection.

Qualitative model: the Expert DAG
A qualitative causal DAG was constructed based on 
knowledge elicited from clinical domain experts over 
multiple workshops and collaborative meetings. We call 
this the Expert DAG, as it details the experts’ understand-
ing of the problem domain without the technical con-
siderations required of a robust operational quantitative 
model. The experts were chosen to represent a range of 
health professionals involved in the diagnosis and man-
agement of children with UTIs at a tertiary hospital, and 
are the intended end-users of a decision support tool 
resulting from this work. The domain experts were from 
paediatric emergency medicine, microbiology and infec-
tious diseases, general paediatrics, nephrology, epidemi-
ology and medical laboratory science.

The elicitation rested on an initial causal framework 
based on preliminary insights from the prospective 
cohort data and mixed domain and modelling knowl-
edge from a core team (YW, JAR, SM, TLS). Proposed 
relationships from this initial framework were then 
confirmed, corrected, or expanded after input from the 
broader expert group (DAF, AJC, PI, MLB, CCB, NGL, 
TR, AOM, PCMW). Many causal relationships between 
model variables were fairly intuitive and not controver-
sial, meaning the relationships were clear (often visible) 
events occurring in clear temporal sequence. Therefore, 
elicitation of the model structure occurred with moder-
ated discussion where a full Delphi protocol was not war-
ranted. Additionally, discussions within a diverse expert 
group allowed consensus to be achieved, with specialty 
input only requested when needed, replicating decision-
making processes in clinical care.

The outcome DAG elicited from the experts was then 
refined by the core team and re-presented in a written 
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format, with each causal relationship depicted explicitly 
described. Further iteration was sought via written feed-
back and one-on-one expert and core team discussions. 
The resultant final Expert DAG describing the diagno-
sis and management of UTIs in children is described in 
“Expert DAG description” section.

Quantitative model: the Applied BN
The final Expert DAG was converted into an application-
oriented BN (the Applied BN), designed to illustrate how 
BN models can provide clinical decision support for the 
diagnosis and management of suspected UTI in children 
who present to the ED. Information from both the Expert 
DAG and the prospective cohort data were integrated to 
inform the selection of Applied BN variables. Conversion 
of the Expert DAG took into consideration: how a par-
ticular variable is relevant to the Applied BN’s purpose; 
how it could be matched to available data; and how it 
could help simplify parameterisation or computational 
workload. This process frequently involved simplifica-
tions by removing and merging variables, and expansions 
by splitting and adding variables. All changes during the 
conversion ensured the structure of the Applied BN was 
compatible with the Expert DAG, meaning all the elic-
ited causal relationships were preserved either by explicit 
causal links or, where it was considered necessary, non-
causal approximations.

The Applied BN was parameterised using data from the 
prospective cohort. In many cases, a variable’s probabil-
ity conditional on its parents (predecessor node) could 
be estimated directly from the data. However, some of 
the variables in the Applied BN are latent, as they play 
crucial explanatory or simplification roles, and param-
eterisation in such cases is less straightforward. There 
are two kinds of latent parameters associated with latent 
variables: parameters that quantify the relationship of the 
latent variable with its parents; and parameters that quan-
tify the relationship of the latent variable with its chil-
dren (nodes extending from other nodes). In most cases, 
latent parameters were handled by eliciting estimated 
probabilities from experts and using these estimates as 
seeds to the expectation maximisation (EM) algorithm 
[25].1 Specifically, parameterisation surveys were created 
and issued to experts to elicit parameters for all and only 

latent variables and these parameters were used to inform 
the corresponding CPTs. This was not done for other 
(observable) variables, as sufficient data was available for 
such variables. In most cases, these CPTs constituted pri-
ors that were further updated by the prospective cohort 
data, while in other cases, the CPTs were kept fixed. In 
addition, one group of latent parameters were determined 
separately, making use of EM in the form of a clustering 
algorithm to “complete” the data (see Sect. 3.3 for descrip-
tion). Additional file 2 includes the full list of survey ques-
tions used to elicit parameters for the Applied BN, and in 
Additional file 6, we include all responses received for the 
parameterisation survey questions.

The Applied BN was evaluated from the perspective 
of both (numerical) accuracy and clinical usefulness. 
BN predictions for a selected set of target variables (e.g., 
pathogen-specific urine culture results) were compared 
with the observations of those variables captured in the 
prospective cohort study. The difference between the 
BN predictions and observations were described using 
two metrics based on k-fold cross-validation, namely the 
area under the receiver  operating characteristic  curve 
(AUROC) and the log loss [26], both intended to meas-
ure the performance characteristics of the model, though 
each in different ways. A sensitivity analysis was con-
ducted on the conditional probability parameters with a 
high degree of uncertainty, using variance-based sensitiv-
ity analysis (VBSA) [27, 28]. VBSA allows the distribution 
of several input parameters to be investigated simulta-
neously to help understand how changes influence the 
BN target predictions in the CPTs. The clinical experts 
evaluated the clinical usefulness of the BN via a valida-
tion workshop where relationships and concepts were 
checked and refined. Three scenarios were simulated to 
demonstrate how the Applied BN might be used for clini-
cal decision support for a child presenting to the ED with 
a suspected UTI.

Results
Prospective paediatric cohort
From May 2019 to November 2020, 391 children were 
enrolled in the prospective cohort study. This accounted 
for 431 UTI episodes, where the mean age at presenta-
tion was 3.9  years old (Interquartile Range, IQR, 0.7—
6.2) and 316 (73%) were girls. A prior history of UTI or 
urinary tract pathology (e.g., neuropathic bladder, phi-
mosis, renal agenesis, dysplasia) were reported in 197 
(46%) of participants according to their medical notes or 
reported by their parent in the study survey. Commonly 
reported symptoms on ED presentation included parent-
reported fever (269, 62%), nausea and/or vomiting (169, 
39%), poor oral intake (161, 37%), abdominal pain (144, 
33%), and pain or discomfort referrable to the urinary 

1  At a high level, the EM algorithm works in an iterative manner by initially 
choosing random (but valid) values for missing data, hence completing the 
dataset. This complete dataset is then used to perform a first parameterisa-
tion of the model (using the model’s existing CPTs as priors – in the present 
case, the priors were the expert elicited CPTs), which is then used to produce 
improved predictions of the missing data, which is in turn used to improve 
the model parameterisation again – with the process repeating until the 
model’s performance in predicting the data can be improved no further, con-
verging to a final, locally optimal set of model parameters. (Convergence is 
guaranteed, as shown in (25).).
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tract (148, 34%). Symptoms varied significantly between 
those < 2 years old and those ≥ 2 years old (Table 1). Chil-
dren were prescribed antibiotics during their episode of 
care as per the inclusion criteria, where broad spectrum2 
antibiotics were prescribed in 32% of children. Among 
the 431 urine samples collected in the ED, 219 (51%) 
reported pure growth, 150 (35%) reported no growth 
and 7 (2%) reported mixed growth, while urine culture 
data was unavailable for 56 episodes (13%). Escherichia 
coli (E.coli) was the most common bacteria reported 
accounting for 204 (47%) of total episodes and 90% of 
positive urine samples (204/226). Other Gram negative 
organisms (e.g. Proteus mirabilis, Enterobacter cloacae, 
Pseudomonas aeruginosa) and Gram positive organ-
isms (e.g. Staphylococcus aureus, Enterococcus faecalis) 
were isolated in 4% and 3% of total episodes, attribut-
ing to 7% (16/226) and 6% (13/226) of positive samples, 
respectively. Antibiotic use prior to ED presentation 
was reported in 61 (14%) of episodes and was negatively 
associated with urine culture (Table 1).

Expert DAG description
The Expert DAG comprising 29 variables represents a 
mechanistic causal model of UTI infection, diagnosis and 
management of children presenting to an ED (Fig. 1). The 
model can be divided into the infection, contamination, 
and management pathways. In Additional file 3, we pro-
vide a detailed variable dictionary for the Expert DAG 
describing the meaning of each variable, the interactions 
modelled, and the causal mechanisms involved.

The Infection Pathway
The infection pathway describes predisposing back-
ground factors and the pathophysiology of infection, 
and how a UTI gives rise to signs, symptoms and labo-
ratory evidence. For a UTI to occur, organisms must be 
present in the urinary tract (d13), usually from ascen-
sion of organisms from the external genitalia (d12) or, 
on rare occasions, from haematogenous seeding of the 
upper urinary tract with organisms from the blood-
stream (d14) which then infect the urinary tract (d15) 
[31]. Infection here is a ‘latent’ event, meaning that 
although it may be inferred from evidence with vary-
ing confidence, it generally cannot be directly observed; 
importantly we separate the existence of a UTI (infec-
tion pathway, d15), from the diagnosis of a suspected 

UTI (management pathway, d2) based on the presence 
or absence of various signs, symptoms, dipstick test 
and laboratory results. Age and UTI-relevant comor-
bidities (such as structural or functional abnormali-
ties of the urinary tract) influence the probability of a 
UTI in a given child, due to their predisposing effect 
[32]. Infection of the urinary tract typically provokes 
an inflammatory response which may manifest as UTI-
localising signs and symptoms (d17) caused by inflam-
mation of the urinary tract, and/or non-localising signs 
and symptoms (d16) caused by systemic inflammation. 
In children, especially those too young to communicate 
verbally, UTI-localising symptoms may be difficult to 
ascertain, forcing clinicians to assess observable signs 
and symptoms that are non-specific and non-localis-
ing such as fever and irritability, and which are shared 
with other conditions [33]. Where incompatible signs 
and symptoms (d18) are present—those not typically 
associated with a UTI (e.g., respiratory symptoms), the 
diagnosis is dependent on the probability of alternative 
diagnoses that may provide a better explanation for the 
child’s presentation.

The contamination pathway
The practical definition of urinary contamination varies 
widely across the literature and in practice [34, 35]. Con-
tamination and infection are often considered mutually 
exclusive, but in reality organisms cultured from urine 
samples may be pathogens, contaminants, or both. In 
our model, contamination is treated as a latent event, 
and describes the presence of non-causative organisms 
in a urine specimen (d28). Contamination usually occurs 
at the time of collection when organisms present super-
ficially on the external genital area (d12) become mixed 
with the ‘clean’ urine sample from the bladder (in this 
context, ‘clean’ means the specimen is free from con-
taminants, not that it is free of organisms). A child’s age, 
sex, and for boys, circumcision status, can directly influ-
ence both the density of any organisms present on the 
external genitalia (d12) and the ability to produce a clean 
urine sample (d24). Incontinence and/or diarrhoea may 
increase the density of organisms present on the external 
genitalia (d12), increasing the risk of specimen contami-
nation (d27), and possibly also the risk of infection of the 
urinary tract (d15) via the ascending route (d12).

The probability of contamination is strongly influenced 
by the urine collection method (d3). Within the model, 
the latent concept of specimen contamination risk (d27) 
represents all factors contributing to contamination 
which, if true, increases the probability of the presence 
of non-causative organism in the specimen (d28). Labo-
ratory processing factors (d26) representing any pro-
cess that may introduce (rare in most laboratories) or 

2  The specified antibiotic was classified as narrow (< = 3) or broader (> 3) 
according to published Antibiotic Spectrum Index (29). Narrow: Amoxi-
cilin, Trimethoprim, Benzylpenicillin, Cefalexin, Cefazolin, Erythromicin. 
Broad: Amoxicillin + Clavulanic acid, Trimethoprim + Sulfamethoxazole, 
Co-trimoxazole, Amikacin, Cefepime, Cefotaxime, Ceftazidime, Ceftriaxone, 
Ciprofloxacin, Colistin, Ertapenem, Gentamicin, Meropenem, Moxifloxacin, 
Nitrofurantoin, Norfloxacin, Piperacillin + Tazobactam, Tobramycin, Vanco-
mycin.
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Table 1  Prospective cohort study summary statistics

Demographics and clinical history

Subgroup by age group  < 2yo 179 (41.5% of total 431 episodes)  >  = 2yo 252 
(58.5% of total 431 
episodes)

  Female 101 (56%) 215 (85%)

  Prior urinary tract pathology (including previous UTI) 55 (31%) 142 (56%)

  On antibiotics at ED presentation2

  Broad
  Narrow

6 (3%)
15 (8%)

14 (6%)
26 (10%)

Clinical symptoms recorded

  Pain or discomfort referrable to the urinary tract (e.g., dysuria, genital pain) 11 (6%) 137 (54%)

  Parent reported fever 137 (77%) 132 (52%)

  Temperature > 38 °C 43 (24%) 64 (25%)

  Abdominal pain 5 (3%) 139 (55%)

  Foul smelling urine 34 (19%) 27 (11%)

  Haematuria 6 (3%) 17 (7%)

  Irritable 72 (37%) 19 (8%)

  Lethargy 52 (29%) 51 (20%)

  Nausea/vomiting 76 (42%) 93 (37%)

  Poor oral intake 85 (47%) 76 (30%)

  Diarrhoea 25 (14%) 12 (5%)

  Respiratory symptoms 46 (26%) 43 (17%)

ED Investigations and management recorded

  C-reactive protein
  ≥ 15 mg/L
  Investigation not done

49 (27%)
108 (60%)

29 (12%)
206 (82%)

  Leucocyte count
   ≥ 10 × 10^9/L
  Investigation not done

57 (32%)
109 (61%)

30 (12%)
209 (83%)

  Neutrophil count
  ≥ 8 × 10^9/L
  Investigation not done

26 (15%)
109 (61%)

28 (11%)
209 (83%)

  Broad spectrum2 antibiotic empirically prescribed 57 (32%) 82 (33%)

  Patients discharged after ED consult 108 (60%) 217 (86%)

Urine analysis

  Method of urine specimen collection
  Clean catch
  Catheter
  Suprapubic aspirate

63 (35%)
70 (39%)
2 (1%)

112 (44%)
16 (6%)
0 (0%)

  Bacteria seen on microscopy 110 (66%) 94 (37%)

  > 100 leucocytes per high power field 107 (60%) 145 (57%)

  Moderate epithelial cells on microscopy 21 (12%) 32 (13%)

  Leucocyte esterase (3 +) on urine dipstick 51 (28%) 100 (40%)

  Nitrites detected on urine dipstick 64 (36%) 76 (30%)

Urine culture

  No growth 47 (26%) 103 (41%)

  E.coli 97 (54%) 107 (42%)

  Gram-negative bacteria (other than E.coli) 6 (3%) 10 (4%)

  Gram-positive bacteria 5 (3%) 8 (3%)

Subgroup by antibiotics use prior to ED On antibiotic 61 (14%, n = 431) Not on antibiotic 
342 (79%, n = 431)

  No growth 35 (57%, n = 61) 106 (31%, n = 342)

  E.coli 13 (21%, n = 61) 177 (52%, n = 342)

  Gram-negative bacteria (other than E.coli) 4 (7%, n = 61) 11 (3%, n = 342)

  Gram-positive bacteria 2 (3%, n = 61) 11 (3%, n = 342)

Unless stated otherwise, all percentages were calculated using positively reported observations within each age group (i.e., as a percentage of the 179 cases for < 2yo, 
and 252 cases for >  = 2yo). Of note, when a variable (e.g., abdominal pain) was not reported, it’s likely that the child reported no pain (confirmed negative observation) 
or the data was missing (e.g., not queried or recorded by the treating doctors)
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concentrate non-causative organisms in the specimen 
(d28) from when the urine arrives in the laboratory to its 
final reporting. This may include delays in sample pro-
cessing or refrigeration and improper aseptic technique.

The management pathway
The existence of a UTI cannot be known with absolute 
certainty, and a clinician’s belief (or judgement) about 
its presence or absence may vary over time, perhaps 
related to evolving evidence. It may be suspected on the 
clinician’s initial assessment (d1) based on the child’s 
history and background risk factors. As more evidence 
is gained via the elicitation of symptoms and signs and 
from investigations, a working or provisional diagno-
sis of UTI is made (d2) – thus, the suspicion based on 
the initial assessment (d1) is updated. A urine speci-
men may be sent to the laboratory (d4) and if the suspi-
cion of UTI is sufficiently high, empiric antibiotics may 
be prescribed (d5) even before the urine testing results 

are known. Management decisions are also influenced 
by whether the clinician believes that there is a high risk 
of the patient having or developing complications (d22). 
In the model, this is represented as a latent concept that 
describes the risk of progressing to severe complications. 
This risk is largely driven by a child’s age, the time delay 
to seeking and/or initiating treatment, and the presence 
of comorbidities such as abnormalities of the urinary 
tract or immune system.

Interpretation of the presence, type and density of 
growth cultured from a urine specimen (d7) is difficult, 
as this is where the contamination and infection path-
ways converge. Information regarding these pathways is 
not normally available to the laboratory scientist decid-
ing how to report the results (d8) of the urine test. Thus, 
if an organism is isolated with evidence of an inflamma-
tory response (e.g. pyuria) on microscopic analysis (d6), 
the probability that the cultured organism is causative 
is high and therefore it is reported as significant in the 

Fig. 1  The Expert DAG v11.1. The expert-elicited causal directed acyclic graph describing the relationships between infection (white), specimen 
contamination (yellow) and UTI management (purple) in children, in particular, variables that fell into more than one pathways were indicated 
in green. Note: Numbers within the model nodes correspond with the narrative description. A detailed variable dictionary is provided with the 
supplementary material: Additional file 3. The source model file for the Expert DAG can be accessed via the Open Science Framework [30]
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laboratory report (d8) and antimicrobial susceptibil-
ity results are also reported. In contrast, the isolation 
of multiple organisms is typically reported as a ‘mixed 
growth’, precluding either the confirmation or exclusion 
of a UTI.

A final updated clinical diagnosis (d9) is made when 
outstanding evidence or other information is available. 
The existence of a UTI directly influences the urine lab-
oratory report (d8), any biomarker (d20) and imaging 
results (d21), as well as the subsequent clinical progress 
of the child (d23) with or without antibiotic treatment. A 
clinician uses these observations to further update their 
belief about the probability that the patient has a UTI, 
together with any antimicrobial susceptibility data from 
the laboratory report (d8) to decide whether to initiate, 
stop or change the antibiotic prescription (d10).

Applied BN for decision support
The Applied BN represents a demonstrative decision 
support tool using the Expert DAG that aims to help 
determine if a child truly has a UTI and if so, the likely 
causative pathogen. To develop this BN, variables in the 
Expert DAG were mapped to available data from the pro-
spective cohort. Conversion of the Expert DAG into the 
Applied BN required simplification and expansion, whilst 
ensuring compatibility and preservation of the causal 
knowledge. Illustrative steps are summarised along the 
top of Fig.  2. In this example, a fragment of the Expert 
DAG is selected (step a) that describes the presence or 
colonisation of bacterial pathogens on the external geni-
talia and in the urinary tract using two variables (d12 and 
d13), with an arc between them indicating that patho-
gens may spread from the genitalia to the urinary tract. 
In addition, there is depicted another possible (albeit 
uncommon) pathway for a pathogen to reach the urinary 
tract haematogenously via the bloodstream (d14). For 
simplicity, d14 was removed, and since this left only one 
explicit pathway, d12 and d13 were combined into a sin-
gle variable that broadly describes local colonisation (step 
b). The local colonisation variable was then expanded 
(step c) into three nodes (b7-9) to describe local colonisa-
tion for three specific pathogen groups which are of key 
interest and that not only affect the probability of devel-
oping UTI, but may also constitute the causative patho-
gen if UTI is present (b10). Variable states were then 
selected (step d), typically to match the data where pos-
sible. However, in the case of latent states, this was not 
possible and the goal instead was to represent key divi-
sions within each variable while minimising the demand 
on the latent parameterisation process. Here, each local 
colonisation variable is latent and has been assigned two 
states (High and Low), with the causative pathogen varia-
ble being assigned four states (one state for each possible 

causative pathogen plus a state for no pathogen/no UTI). 
The causative pathogen was assumed to be singular and 
mutually exclusive, i.e., assuming no co-infection of the 
urinary tract by two or more pathogens. Additional file 4 
includes a full list of differences between the two models.

The Applied BN (Fig.  2, bottom panel) comprises 36 
nodes including 6 latent nodes, which can all be mapped 
to variables in the Expert DAG (see Additional file  4). 
Expert survey responses were collated (Additional 
file 6) to inform the CPT priors for the BN, which were 
further updated by training based on the prospective 
cohort data (as described in “Quantitative model: the 
Applied BN”) section. Of note, the node ‘current clini-
cal phenotype’ was introduced into the Applied BN as a 
summary node of patient presentation phenotypes after 
feedback from the expert validation workshop. This 
node is latent but was treated uniquely to provide a defi-
nition of current clinical phenotype that is independ-
ent of other latent factors in the model. In particular, a 
separate clustering was performed (using the EM algo-
rithm) on the signs and symptoms, resulting in a group-
ing into three types, simply called “Type 1”, “Type 2” and 
“Type 3”, “Type 1” being systemic signs and symptoms 
predominant but mild urinary tract localising symp-
toms, “Type 2” being urinary tract localising symptoms 
predominant, and “Type 3” being abdominal pain pre-
dominant with minimal other symptoms. The cluster-
ing model was then used to determine each patient’s 
most probable clinical phenotype, and this information 
was added to the prospective cohort data in the form of 
an additional column and subsequently treated like an 
observed variable.

It is important to reiterate, by UTI, we mean the exist-
ence of UTI, which reflects the state of the world where a 
child’s urinary tract is infected by a pathogenic organism, 
and is only imprecisely defined. As a result, operational 
definitions of UTI and its causative pathogen vary across 
studies, and the definition is often incomplete (missing 
cases that we want to classify as UTIs). Evidence for UTI 
is indirect and comes from factors like cultures results 
and expert judgements, which is the way we approached 
it with our BN, leaving UTI as a latent variable and 
defined by its relationship with these other factors. The 
primary BN output is the causative pathogen for UTI 
(b10). Results from a 10-fold cross-validation3 show that 
the model predicts 68.0% of the presenting episodes in 
our cohort were UTIs, with IQR 67.2–68.9%. Specifically, 
this includes 40.2% E.coli UTI (IQR 39.3–40.8%), 11.6% 
other Gram negative UTI (IQR 11.6–11.9%), and 16.3% 

3  For the k-fold cross-validation, we chose k = 10 for its stable performance 
and efficient computational requirements [36]. Multiple values of k were 
investigated (k = 2, 5 and 20) and we found no notable difference in their per-
formance in terms of mean log loss and AUROC.
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Gram positive UTI (IQR 14.9–18.0%). Figure 3 presents 
the Applied BN predictions for E.coli culture for every 
presenting episode, and compares these against their 
final laboratory results. The graphs represent four scenar-
ios (a-d), each providing more information to the model 
than its preceding scenario. Namely, (a) provides the 
model with information on basic demographics (age and 
sex) and clinical history (history of urinary tract pathol-
ogy), (b) provides (a) plus reported signs and symptoms, 
(c) provides (b) plus urine collection method and dipstick 
results, and (d) provides (c) plus all other available results 
(including urine microscopy and other clinical investiga-
tions). The evaluation results show that the evaluation 
metrics (log loss and AUROC) improve as more evidence 
is available for a given child, especially if that evidence is 
sensitive and/or specific for UTI.

Two sets of parameters turned out to be very impor-
tant in driving the primary target of the Applied BN (i.e., 
Causative pathogen, b10), namely, the probability of UTI 
in the prospective cohort (i.e., one minus the probability 
that Causative pathogen is none) and the pathogenicity 

(i.e., likelihood of causing disease and worsening illness) 
for each organism. Understanding the proportion of UTI 
and the pathogenicity of different organism groups is key 
as they determine how often a child would acquire UTI 
given local colonisation of an organism that is poten-
tially pathogenic, which organism is more likely to be the 
causative pathogen when two or more organism groups 
co-colonise, and how likely the child would manifest as 
a more severe clinical case. These parameters were chal-
lenging to estimate as they were completely latent, hence 
we relied on expert opinion collected via a parameter 
survey as described earlier (Sect.  2.3). For the first of 
these parameters, the survey responses gave a mean esti-
mate of 68% UTI among the study cohort (IQR 59–81%). 
Table 2 presents the survey outcomes for the second set 
of parameters on pathogenicity for each organism. We 
defined the pathogenicity of an organism as the pro-
pensity of the organism to cause UTI when an other-
wise healthy child is colonised by that organism on the 
perineum or external genitalia. The survey elicited the 
pathogenicity of other Gram negative and Gram positive 

Fig. 2  Top: An example of converting from the Expert DAG v11.1 to the Applied BN v2.2. Bottom: The high-level Applied BN structure. Additional 
file 4 includes a full list of differences between the two models. Additional file 5 presents the detailed structure of the Applied BN, in particular the 
local structure of submodels microscopic analysis, dipstick results, blood markers, and signs and symptoms (round box in the bottom panel), as well 
as the BN variable dictionary. The source model file for the Applied BN can be accessed via Open Science Framework [30]
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organisms as a numerical ratio relative to E.coli, on aver-
age, the responses suggest that E.coli and gram positive 
bacteria are very similar regarding their pathogenic-
ity (1 and 0.98 respectively), and the other Gram nega-
tive bacteria is the most pathogenic (scored 1.35). Unlike 
other responses in the survey, the elicited responses for 
pathogenicity varied widely among experts. In Additional 
file  6, we provide a summary of responses to all survey 
questions.

Given the high level of variation in these survey out-
comes, we therefore conducted sensitivity analyses by 
varying the prior CPT parameters for b10 by ± 20%. In 
response, as shown in Fig.  4, the predicted probability 
of UTI in our cohort of suspected UTIs ranged from 44 
to 87%. E.coli is always predicted to be the most likely 

causative pathogen among the UTIs (39–64%), the rela-
tive attribution of other Gram negatives and Gram 
positives as the causative pathogen among the UTIs is 
sensitive to their pathogenicity, ranging from 12–29% 
and 22–32%, respectively.

Figures  5, 6 and 7  present three hypothetical clini-
cal scenarios to illustrate how the Applied BN may be 
used for point of care decision support in the manage-
ment of children with a suspected UTI. Predictions for 
each of the scenarios is shown branching conditional on 
various potential information and test results as they may 
become available over time. The scenario in Fig.  5 pre-
sents an infant who is unable to communicate any local-
ising symptoms. As information from the dipstick test, 
blood test and culture result become available, the BN’s 

Fig. 3  Applied BN v2.2 performance as compared with observations, with Log Loss and AUROC across four scenarios. Each panel presented the 
distribution of the Applied BN predicted probabilities of isolating E.coli from urine sample given available patient’s information under the specified 
scenario. The predicted probabilities were compared with the reported culture result of each patient, where brown, blue and grey indicated 
E.coli was isolated, not isolated and no data, respectively. Scenario (a): age, sex, history of UTI, urinary tract comorbidities. Scenario (b): scenario 
(a) + reported diarrhoea, urine tract pain or discomfort, abdominal pain, haematuria, foul smelling urine, respiratory symptoms, parent reported 
fever, temperature, irritability, lethargy, nausea/vomiting, poor oral intake. Scenario (c): scenario (b) + urine collection methods, urine dipstick results 
(leucocyte esterase & nitrite). Scenario (d): scenario (c) + urine microscopy (leucocytes, bacteria, epithelial cells), leucocyte and neutrophil count 
(from full blood count), C-reactive protein level and ultrasound result
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predictions for the presence of UTI (and, if present, the 
associated causative pathogen) are updated accordingly. 
For example, when evidence from a dipstick result and 
C-reactive protein (CRP) analysis are strongly indicative 
of UTI (i.e., “Nitrites detected” and “CRP 80”), a negative 
culture won’t exclude a UTI. Figure 6 presents a scenario 
in which UTI is always highly probable. Here, the pres-
ence or absence of comorbidities, temperature, dipstick 
nitrites and blood neutrophil levels only influence which 
causative pathogen is most likely. Finally, Fig. 7 describes 
a child with no obvious localising symptoms, where a 
combination of test results can both rule in or rule out 
a UTI, as well as affect conclusions about the most likely 
causative pathogen.

Discussion
Diagnosis and management of UTIs in children can be 
challenging due to the variability of clinical presentations 
and difficulties in obtaining a urine sample free from con-
tamination. By mapping the causal pathways involved 

in this process through the development of an expert 
knowledge-derived DAG (the Expert DAG, Fig. 1 & Addi-
tional file 3), we have highlighted how the convergence of 
the causal pathways through sample collection and clini-
cal diagnosis are key in creating this diagnostic challenge. 
Further to this, we have described which information may 
be available at different stages of the diagnostic and man-
agement process, and which additional evidence may be 
required to better understand the causal process. With the 
data collected from 431 episodes of suspected UTI in chil-
dren, we converted the Expert DAG into a causal Applied 
Bayesian network model (the Applied BN, Fig. 2 & Addi-
tional file 5) to assess the probability of UTI (and if so the 
causative pathogen) among children with a suspected UTI. 
The Applied BN achieved an excellent and stable perfor-
mance in predicting E. coli culture results, with a mean 
AUROC of 0.86 and a mean log loss of 0.48 based on 
10-fold cross-validation. We illustrated how the Applied 
BN could be implemented in practice as a clinical decision 
support tool using three hypothetical clinical scenarios.

Table 2  Expert survey outcome results of organism pathogenicity

Pathogenicity Average Standard 
Deviation

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8

E.coli 1 0 1 1 1 1 1 1 1 1

Other Gram negatives 1.35 0.53 1.5 2 0.8 1 0.75 1.75 1 2

Gram positives (e.g., Enterococcus) 0.98 0.91 0.5 0.2 0.5 1 0.375 2.75 0.5 2

Fig. 4  Sensitivity analysis on causative pathogens as the pathogenicity of different organism changes by ± 20%
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The need for a better understanding of epidemiology 
and diagnosis of UTI
UTI epidemiology is primarily described based on urine 
culture results which are influenced by three causal path-
ways; (i) specimen contamination, where bacteria are 
introduced and not causative of the infection, (ii) clinical 

management, where empiric antibiotic exposure may 
suppress the bacteria causing an infection and/or speci-
men contamination, and (iii) the pathogenic causative 
organism of interest. Among the 431 episodes of sus-
pected UTIs enrolled through the prospective cohort, 
after excluding 55 missing culture results, 60% specified 

Fig. 5  Predictions from the Applied BN under the clinical scenario A 

Fig. 6  Predictions from the Applied BN under the clinical scenario B 
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growth of a bacterial organism, of which 90, 7 and 6% 
were E. coli, other Gram negative bacteria and Gram 
positive bacteria, respectively. After the cohort data 
was used to train the Applied BN and thus interpreted 
under a causal framework, 69% of the study cohort were 
predicted to be UTIs, of which 57, 16 and 27% were 
predicted to have been caused by E. coli, other Gram 
negatives, and Gram positive bacteria, respectively. The 
difference in the predicted distribution of causative path-
ogens by the causal model and crude microbiology data, 
which does not account for contamination and the effect 
of prior treatment, could have implications for antibiotic 
guidelines and urine culture reporting protocols.

More explicitly, the observed proportion of E.coli cul-
ture (54% of the overall prospective cohort) does not 
include all and only cases of UTI. The Applied BN sug-
gests that: (i) specimen contamination results in 26% of 
urine culture isolates of E.coli being predicted to be non-
UTIs and non-E.coli UTIs (i.e., false positives); and (ii) 
84% of predicted E.coli UTIs reported growth of E.coli, 
implying a 16% false negative rate with a predicted 73% 
of prior antibiotic use. This concept is further described 
in the illustrative scenario of Fig. 5, where for an irritable 
infant boy with fever and antibiotic use prior to ED, hav-
ing no nitrites detected on urinary dipstick and with no 
CRP test performed, and where E. coli was isolated from 
the urine sample, the Applied BN predicts a 46% prob-
ability of this representing a E. coli UTI. In contrast, for 
the same child with nitrites detected on their urinary dip-
stick and with a CRP of 80 mg/L, the Applied BN predicts 

a 77% chance of a E. coli UTI, even if E. coli is not isolated 
from the urine sample.

When making decisions, clinicians are required to 
balance the risks associated with treatment based on 
a positive urine culture result that may not represent 
a UTI, against the risk of complications if UTIs are not 
adequately treated, particularly in neonates and young 
infants. By organising observable information within a 
causal DAG, we can highlight potential mediators, con-
founders and sources of selection bias and measurement 
errors [37]. The prospective cohort study has mapped 
out the variation in the clinical picture of children inves-
tigated for a suspected UTI. Reported symptoms and 
urine analysis results differed greatly with age (Table 1), 
which likely represents an amalgam of children with and 
without UTI, and further highlights the need for decision 
support tools to distinguish between these groups. Map-
ping observable variables of the prospective cohort study 
cohort to the variables described in the Expert DAG, 
coupled with simplification and expansion, has enabled a 
quantitative model to be developed into a decision sup-
port tool (the Applied BN). Interpreting the observations 
available to clinicians under this causal framework may 
offer a clearer understanding of the clinical picture and 
provide robust assessments of the likelihood of UTI.

Organism-specific pathogenicity needs to be better 
understood to improve the diagnosis of the causative 
pathogen for each UTI. Based on our experts’ survey 
responses (Table  2), we assumed that non-E. coli Gram 
negative bacteria have the greatest pathogenicity in the 

Fig. 7  Predictions from the Applied BN under the clinical scenario C 
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current model, while E.coli and Gram positive pathogens 
have similar and lower pathogenicity. These assump-
tions can have implications for the model predictions. 
An example can be found in the scenario of Fig. 6, where, 
for a 3-year-old girl with reported abdominal pain, smelly 
urine, burning, no parent reported fever but a recorded 
temperature of 38 degrees, nitrites not detected on uri-
nary dipstick and blood neutrophil count of 5 × 109/L, 
the Applied BN predicts other Gram negative bacteria as 
the most likely causative pathogen, regardless of whether 
the child has any history of urinary tract pathology. 
However, the survey outcomes indicated a high level of 
variation regarding the relative expert-derived patho-
genicity of different organism groups. This was especially 
relevant for Gram positive organisms where growth is 
often attributed to contamination and the ability of some 
organisms to cause UTI may be disputed. As a result, 
the Applied BN only demonstrates there is a potential 
to differentiate causative pathogens for UTI like non-E.
coli Gram negative and Gram positive bacteria, based on 
assumed pathogenicity and current data. While it’s not 
yet ready to be used for differentiating pathogens, it does 
suggest a way forward in understanding the organism-
specific pathogenicity.

Learnings from the modelling process
The Expert DAG demonstrated that specimen contami-
nation risk, propensity to develop complications and an 
organism invading the urinary tract system were the key 
latent concepts that concerned clinical teams. Impor-
tantly, superficial colonisation of the perineum/ genita-
lia lies on the causal pathways mediating both invasion 
of the urinary tract system and specimen contamina-
tion which converge at urine culture, the only point at 
which either of the two pathways is typically observed. 
We therefore chose to model these variables explicitly in 
the Applied BN as pathogen-specific ‘local colonisation’ 
(b7-b9), ‘causative pathogen’ for UTI (b10) and ‘speci-
men contamination risk’ (b13), despite the challenges 
of parameterising these latent nodes. We addressed this 
challenge by designing survey questions to elicit esti-
mates of relevant parameters from the domain experts. 
In some cases, even those expert elicited responses were 
inconclusive (namely, the organism-specific pathogenic-
ity) and in those cases we conducted sensitivity analyses 
to ensure the implications and limitations of the uncer-
tain parameters were recognised (as discussed for patho-
genicity in the previous section).

Where possible, the Expert DAG was causal and com-
prehensive of the problem domain rather than con-
strained by variable observability or data availability. 
This allowed it to be used as an accurate representa-
tion of expert knowledge, enabling the use, adaptation 

and extension by the core research team and external 
researcher. The Expert DAG constitutes the knowledge 
base for creating the Applied BN, and once the BN is cre-
ated, the Expert DAG is no longer involved – for example, 
only the Applied BN would be used as part of any deci-
sion support tool. In the ideal case, when expert under-
standing evolves, the DAG should be updated to reflect 
this new understanding, which would in turn drive future 
updates to the BN. By documenting the detailed steps 
of the conversion from the Expert DAG to the Applied 
BN (Additional file  4), we established a methodological 
framework that can be generalised beyond the UTI prob-
lem domain. Decisions to keep, remove or add variables 
in the applied model should be driven by a well-defined 
modelling purpose, matched to the availability and qual-
ity of data, and technical efficiency (such as reducing the 
number of latent nodes, or reducing the complexity of 
the variable relationships).

Like most complex modelling work, our variable selec-
tion, structure development, parameterisation and evalua-
tion processes were iterative. The communication between 
modellers and the domain experts played an important role 
in this project, which required both parties to make efforts 
to understand each other’s expertise and language. Medical 
education focuses on the pathophysiology of disease, where 
factor ‘X’ predisposes to outcome ‘Y’. However, in practice, 
clinicians are more experienced in using rule-based flow 
charts and decision trees to aid in management, which 
depict ‘if [specific signs and symptoms], then perform [this 
test]; if [this result] then commence [this treatment]’. The 
creation of an expert-derived DAG required clinicians not 
only to revisit the concepts of the causal effects of each vari-
able and their direct influence on another, but also to depart 
from the concept of a graph reflecting a sequence of steps or 
yes/no questions to observations, and instead that one may 
have the real outcome of interest (e.g. the existence of UTI) 
existing as a latent node in the body of the model, influenc-
ing the observable nodes that appear below it. Similarly, 
the concept of a latent node was challenging, given that 
clinicians typically work on the premise that they have the 
correct (i.e., ‘true’) diagnosis that informs their treatment 
decisions. While clinicians are certainly familiar with the 
related concepts of false positives and negatives, the exten-
sion to latent nodes was not straightforward and required 
more guidance from the core research team. The creation 
of a DAG highlights the fact that some important variables 
will always remain unobserved and therefore uncertain; 
although evidence may be accumulated to increase certainty 
about the presence or absence of infection, in reality infec-
tion can only ever be inferred and never directly observed. 
Becoming comfortable with these concepts enabled the 
experts to create the elicited DAG and understand its utility 
in clinical practice in the form of a BN.
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Study limitations and future research
The prospective study cohort aimed to describe partici-
pants < 13  years of age who presented into the ED and 
were prescribed antibiotics for a suspected UTI. With 
these criteria the data used to develop the models and 
resultant models likely represents patients that have more 
severe and complex disease and a greater risk of hospi-
talisation and antimicrobial resistance than those pre-
senting for a UTI within the community. In other words, 
selection bias may be generated at the time patients were 
screened for eligibility and recruited for data collection, 
limiting the use of the Applied BN to the same cohort. 
Microbiology data obtained as part of the prospective 
study cohort was limited. The distribution of pathogens 
was likely representative, however, there were a small 
number of samples that isolated non-E. coli Gram nega-
tive bacteria and Gram positive bacteria. This required a 
broad pathogen grouping which may have included bac-
teria with greatly differing uropathogenic characteristics, 
as a result, only a limited understanding of how clinical 
and laboratory variables can help differentiate causa-
tive pathogens was developed. Further to this, a greater 
understanding of colonisation, infection and bacteria 
specific pathogenicity in the urinary tract is required to 
further the development of this model, yet much of this 
information is debated widely in the scientific commu-
nity [38]. The Applied BN briefly describes the empiric 
antibiotic prescribing patterns within the ED where 62 
and 38% of described antibiotics prescriptions were nar-
row and broad spectrum, respectively. It is intended this 
model will be expanded with additional information 
on antimicrobial susceptibility profiles to evaluate the 
appropriateness of empiric antibiotic prescriptions for a 
range of causative pathogens.

With a richer dataset, our models could benefit from 
further development that could provide predictions for 
a broader scope, for example, incorporating how deci-
sions were made on collecting urines and conducting 
blood tests, as well as potential other diagnoses other 
than UTI. We provide this model in its current updatable 
form for further parameterisation, validation, and exten-
sion by external and future researchers. The model can 
be adapted across a range of laboratories, hospitals and 
patient populations, and we anticipate this framework 
will aid the interpretation of culture results, the diagno-
sis of UTIs, and choice of antibiotic prescription, and can 
be incorporated into routine clinical pathways with the 
overall goal of improving patient outcomes and reducing 
inappropriate antibiotic use in children. To our knowl-
edge this is the first causal BN for UTIs in children; we 
believe it serves as an exemplar for the creation and use 
of causal model-based decision support tools across a 
broad range of infectious disease problems.

Abbreviations
UTI: Urinary tract infection; ED: Emergency department; DAG: directed acyclic 
graphs; BN: Bayesian networks; CPT: Conditional probability table; EM: Expec-
tation maximisation; VBSA: Variance-based sensitivity analysis; AUROC: Area 
under the receiver operating characteristic curve; IQR: Interquartile Range; 
CRP: C-reactive protein; E.coli: Escherichia coli.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​022-​01695-6.

Additional file 1. Schematic of participant enrolment and data collection.

Additional file 2. Parameterisation survey questions. 

Additional file 3. The Expert DAG and variable dictionary. 

Additional file 4. List of changes when converting the Expert DAG to the 
Applied BN. 

Additional file 5. Full structure of the Applied BN and the BN dictionary. 

Additional file 6. Parameterisation survey responses. 

Acknowledgements
We acknowledge all enrolled participants and their family for contributing 
data to this research. We acknowledge research nurses Sharon O’Brien, Lisa 
Properjohn, Mel Dowd, Katy Whitten and Jacq Noonan at Perth Children’s 
Hospital, emergency department for data collection.

Authors’ contributions
TLS and YW initiated the project. YW designed the project. JAR, AJC, DAF and 
TR led the data collection. YW and JAR led data analysis and interpretation. 
YW, SM, JAR and TLS led the initial DAG development. YW and SM led the 
knowledge elicitation, BN modelling, and model evaluation activities. TS, AJC, 
DAF, AOM, PI, MLB, CCB, NGL, TR and PCMW participated in the develop-
ment of models as domain experts. JAR and YW led the manuscript writing. 
All authors have substantially contributed to the writing, and reviewed and 
approved the final manuscript for publication.

Funding
This work is supported by the Perth Children’s Hospital Foundation Project 
grant (2018). YW is supported by the Western Australian Health Translation 
Network Early Career Fellowship and the Australian Government’s Medical 
Research Future Fund (MRFF) as part of the Rapid Applied Research Transla-
tion program. AOM is supported by a National Health and Medical Research 
Council Postgraduate Scholarship (1191465) and an Australian Government 
Research Training Program Fees Offset. TLS is supported by a Career Develop-
ment Fellowship from the National Health and Medical Research Council 
(GNT1111657).

Availability of data and materials
All source models and associated dictionaries are accessible as additional files 
to the manuscript, and via our Open Science Framework page, https://​osf.​io/​
8taqy/.

Declarations

Ethics approval and consent to participate
All methods were performed in accordance with the relevant guidelines 
and regulations. Ethics approval was granted by the Child and Adolescent 
Health Service Human Research Ethics Committee of Perth Children’s Hospital 
(EC00268). Informed consent was provided by the legal guardian of each 
participant.

Consent for publication
Not applicable.

Competing interests
All authors declared no competing interests.

https://doi.org/10.1186/s12874-022-01695-6
https://doi.org/10.1186/s12874-022-01695-6
https://osf.io/8taqy/
https://osf.io/8taqy/


Page 16 of 17Ramsay et al. BMC Medical Research Methodology          (2022) 22:218 

Author details
1 Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids 
Institute, University of Western Australia, Nedlands, WA 6009, Australia. 2 Bayes-
ian Intelligence Pty Ltd, Upwey, VIC 3158, Australia. 3 Faculty of Information 
Technology, Monash University, Clayton, VIC 3168, Australia. 4 Department 
of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA 6009, Australia. 
5 Department of Microbiology, PathWest Laboratory Medicine, Nedlands, 
WA 6009, Australia. 6 Department of General Paediatrics, Perth Children’s 
Hospital, Nedlands, WA 6009, Australia. 7 School of Pathology and Labora-
tory Medicine, University of Western Australia, Nedlands, WA 6009, Australia. 
8 Emergency Department, Perth Children’s Hospital, Nedlands, WA 6009, 
Australia. 9 Divisions of Emergency Medicine and Paediatrics, School of Medi-
cine, University of Western Australia, Nedlands, WA 6009, Australia. 10 Faculty 
of Health and Medical Sciences, University of Western Australia, Crawley, 
Australia. 11 Department of Nephrology, Perth Children’s Hospital, Nedlands, 
WA 6009, Australia. 12 Child and Adolescent Health Service, Perth Children’s 
Hospital, Nedlands, WA 6009, Australia. 13 Sydney School of Public Health, 
Faculty of Medicine and Health, University of Sydney, 2006, Camperdown, 
NSW , Australia. 14 Sydney Children’s Hospital Network, Randwick, NSW 2031, 
Australia. 15 School of Women’s and Children’s Health, The University of New 
South Wales, Sydney, NSW 2052, Australia. 16 School of Public Health, Curtin 
University, Bentley, WA 6102, Australia. 17 Menzies School of Health Research, 
Charles Darwin University, Darwin, NT 0815, Australia. 

Received: 19 April 2022   Accepted: 21 July 2022

References
	1.	 Hellström A, Hanson E, Hansson S, Hjälmås K, Jodal U. Association 

between urinary symptoms at 7 years old and previous urinary tract 
infection. Arch Dis Child. 1991;66(2):232–4.

	2.	 Sood A, Penna FJ, Eleswarapu S, Pucheril D, Weaver J, Abd-El-Barr AER, 
et al. Incidence, admission rates, and economic burden of pediatric 
emergency department visits for urinary tract infection: data from the 
nationwide emergency department sample, 2006 to 2011. J Pediatr Urol. 
2015;11(5):246.e1-8.

	3.	 Bauer R, Kogan BA. New developments in the diagnosis and manage-
ment of pediatric UTIs. Urol Clin North Am. 2008;35(1):47–58; vi.

	4.	 Korbel L, Howell M, Spencer JD. The clinical diagnosis and management 
of urinary tract infections in children and adolescents. Paediatr Int Child 
Health. 2017;37(4):273–9.

	5.	 Kutasy B, Coyle D, Fossum M. Urinary tract infection in children: manage-
ment in the era of antibiotic resistance-a pediatric urologist’s view. Eur 
Urol Focus. 2017;3(2–3):207–11.

	6.	 Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. 
Arch Intern Med. 2005;165(13):1493–9.

	7.	 Kassirer JP, Kopelman RI. Cognitive errors in diagnosis: instantiation, clas-
sification, and consequences. Am J Med. 1989;86(4):433–41.

	8.	 Ünsal H, Kaman A, Tanır G. Relationship between urinalysis findings and 
responsible pathogens in children with urinary tract infections. J Pediatr 
Urol. 2019;15(6):606.e1-606.e6.

	9.	 Gorczyca D, Augustyniak D, Basiewicz-Worsztynowicz B, Karnas-Kalemba 
W. Serum and urinary MIP-1α and IP-10 levels in children with urinary 
tract infections. Adv Clin Exp Med. 2014;23(6):933–8.

	10.	 Kuppermann N, Dayan PS, Levine DA, Vitale M, Tzimenatos L, Tunik 
MG, et al. A clinical prediction rule to identify febrile infants 60 days 
and younger at low risk for serious bacterial infections. JAMA Pediatr. 
2019;173(4):342–51.

	11.	 Shaikh N, Hoberman A, Hum SW, Alberty A, Muniz G, Kurs-Lasky M, et al. 
Development and validation of a calculator for estimating the prob-
ability of urinary tract infection in young febrile children. JAMA Pediatr. 
2018;172(6):550–6.

	12.	 Bunting-Early TE, Shaikh N, Woo L, Cooper CS, Figueroa TE. The need for 
improved detection of urinary tract infections in young children. Front 
Pediatr. 2017;5:24.

	13.	 Newman TB, Bernzweig JA, Takayama JI, Finch SA, Wasserman RC, Pantell 
RH. Urine testing and urinary tract infections in febrile infants seen in 

office settings: the pediatric research in office settings’ febrile infant 
study. Arch Pediatr Adolesc Med. 2002;156(1):44–54.

	14.	 Butler CC, O’Brien K, Wootton M, Pickles T, Hood K, Howe R, et al. Empiric 
antibiotic treatment for urinary tract infection in preschool children: 
susceptibilities of urine sample isolates. Fam Pract. 2016;33(2):127–32.

	15.	 Hay AD, Sterne JAC, Hood K, Little P, Delaney B, Hollingworth W, et al. 
Improving the diagnosis and treatment of urinary tract infection in young 
children in primary care: results from the duty prospective diagnostic 
cohort study. Ann Fam Med. 2016;14(4):325–36.

	16.	 Tennant PWG, Murray EJ, Arnold KF, Berrie L, Fox MP, Gadd SC, et al. 
Use of directed acyclic graphs (DAGs) to identify confounders in 
applied health research: review and recommendations. Int J Epidemiol. 
2021;50(2):620–32.

	17.	 Greenland S, Pearl J, Robins J. Causal diagrams for epidemiologic. 
Research. 1999;1:37–48.

	18.	 Pearl J. Embracing causality in default reasoning. Artif Intell. 1988;35(2):259–71.
	19.	 Korb KB, Nicholson AE. Bayesian artificial intelligence, 2nd ed. Boca Raton: 

CRC Press; 2010. https://​doi.​org/​10.​1201/​b10391.
	20.	 Fahmi A, MacBrayne A, Kyrimi E, McLachlan S, Humby F, Marsh W, et al. 

Causal Bayesian Networks for Medical Diagnosis: A Case Study in Rheu-
matoid Arthritis. In: 2020 IEEE International Conference on Healthcare 
Informatics (ICHI). 2020. p. 1–7.

	21.	 Kyrimi E, McLachlan S, Dube K, Neves MR, Fahmi A, Fenton N. A compre-
hensive scoping review of Bayesian networks in healthcare: past, present 
and future. Artif Intell Med. 2021;117: 102108.

	22.	 McLachlan S, Dube K, Hitman GA, Fenton NE, Kyrimi E. Bayesian net-
works in healthcare: distribution by medical condition. Artif Intell Med. 
2020;107: 101912.

	23.	 Kyrimi E, Dube K, Fenton N, Fahmi A, Neves MR, Marsh W, et al. Bayesian 
networks in healthcare: what is preventing their adoption? Artif Intell 
Med. 2021;116: 102079.

	24.	 Kyrimi E, Neves MR, McLachlan S, Neil M, Marsh W, Fenton N. Medical 
idioms for clinical Bayesian network development. J Biomed Inform. 
2020;108: 103495.

	25.	 Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete 
data via the EM algorithm. J Roy Stat Soc: Ser B (Methodol). 1977;39(1):1–38.

	26.	 Good IJ. Rational Decisions. In: Kotz S, Johnson NL, editors. Breakthroughs 
in Statistics: Foundations and Basic Theory [Internet]. New York, NY: 
Springer; 1992. p. 365–77. (Springer Series in Statistics). Available from: 
https://​doi.​org/​10.​1007/​978-1-​4612-​0919-5_​24. [cited 17 Apr 2022 ].

	27.	 Borgonovo E. Sensitivity analysis: An introduction for the management 
scientist (International Series in Operations Research and Management 
Science). Cham, Switzerland: Springer; 2017.

	28.	 Sobol′ IM. Global sensitivity indices for nonlinear mathematical models 
and their Monte Carlo estimates. Math Comput Simul. 2001;55(1):271–80.

	29.	 Gerber JS, Hersh AL, Kronman MP, Newland JG, Ross RK, Metjian TA. 
Development and application of an antibiotic spectrum index for bench-
marking antibiotic selection patterns across hospitals. Infect Control 
Hosp Epidemiol. 2017;38(8):993–7.

	30.	 Source models can be accessed via Open Science Framework at https://​
osf.​io/​8taqy/.

	31.	 Leung AKC, Wong AHC, Leung AAM, Hon KL. Urinary Tract Infection in 
Children. Recent Pat Inflamm Allergy Drug Discov. 2019;13(1):2–18.

	32.	 Zorc JJ, Kiddoo DA, Shaw KN. Diagnosis and management of pediatric 
urinary tract infections. Clin Microbiol Rev. 2005;18(2):417–22.

	33.	 Craig JC, Williams GJ, Jones M, Codarini M, Macaskill P, Hayen A, et al. 
The accuracy of clinical symptoms and signs for the diagnosis of serious 
bacterial infection in young febrile children: prospective cohort study of 
15 781 febrile illnesses. BMJ. 2010;340: c1594.

	34.	 Hay AD, Birnie K, Busby J, Delaney B, Downing H, Dudley J, et al. 
The diagnosis of urinary tract infection in young children (DUTY): a 
diagnostic prospective observational study to derive and validate a 
clinical algorithm for the diagnosis of urinary tract infection in children 
presenting to primary care with an acute illness. Health Technol Assess. 
2016;20(51):1–294.

	35.	 Tosif S, Baker A, Oakley E, Donath S, Babl FE. Contamination rates of differ-
ent urine collection methods for the diagnosis of urinary tract infections 
in young children: an observational cohort study. J Paediatr Child Health. 
2012;48(8):659–64.

https://doi.org/10.1201/b10391
https://doi.org/10.1007/978-1-4612-0919-5_24
https://osf.io/8taqy/
https://osf.io/8taqy/


Page 17 of 17Ramsay et al. BMC Medical Research Methodology          (2022) 22:218 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	36.	 Marcot BG, Hanea AM. What is an optimal value of k in k-fold cross-
validation in discrete Bayesian network analysis? Comput Stat. 
2021;36(3):2009–31.

	37.	 Williams TC, Bach CC, Matthiesen NB, Henriksen TB, Gagliardi L. Directed 
acyclic graphs: a tool for causal studies in paediatrics. Pediatr Res. 
2018;84(4):487–93.

	38.	 Leimbach A, Hacker J, Dobrindt UE. coli as an all-rounder: the thin line 
between commensalism and pathogenicity. Curr Top Microbiol Immunol. 
2013;358:3–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Urinary tract infections in children: building a causal model-based decision support tool for diagnosis with domain knowledge and prospective data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	The prospective paediatric emergency department cohort
	Qualitative model: the Expert DAG
	Quantitative model: the Applied BN

	Results
	Prospective paediatric cohort
	Expert DAG description
	The Infection Pathway
	The contamination pathway
	The management pathway

	Applied BN for decision support

	Discussion
	The need for a better understanding of epidemiology and diagnosis of UTI
	Learnings from the modelling process
	Study limitations and future research

	Acknowledgements
	References


