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Abstract 

Background:  Variable selection for regression models plays a key role in the analysis of biomedical data. However, 
inference after selection is not covered by classical statistical frequentist theory, which assumes a fixed set of covari-
ates in the model. This leads to over-optimistic selection and replicability issues.

Methods:  We compared proposals for selective inference targeting the submodel parameters of the Lasso and its 
extension, the adaptive Lasso: sample splitting, selective inference conditional on the Lasso selection (SI), and univer-
sally valid post-selection inference (PoSI). We studied the properties of the proposed selective confidence intervals 
available via R software packages using a neutral simulation study inspired by real data commonly seen in biomedical 
studies. Furthermore, we present an exemplary application of these methods to a publicly available dataset to discuss 
their practical usability.

Results:  Frequentist properties of selective confidence intervals by the SI method were generally acceptable, but the 
claimed selective coverage levels were not attained in all scenarios, in particular with the adaptive Lasso. The actual 
coverage of the extremely conservative PoSI method exceeded the nominal levels, and this method also required the 
greatest computational effort. Sample splitting achieved acceptable actual selective coverage levels, but the method 
is inefficient and leads to less accurate point estimates.

The choice of inference method had a large impact on the resulting interval estimates, thereby necessitating that the 
user is acutely aware of the goal of inference in order to interpret and communicate the results.

Conclusions:  Despite violating nominal coverage levels in some scenarios, selective inference conditional on the 
Lasso selection is our recommended approach for most cases. If simplicity is strongly favoured over efficiency, then 
sample splitting is an alternative. If only few predictors undergo variable selection (i.e. up to 5) or the avoidance of 
false positive claims of significance is a concern, then the conservative approach of PoSI may be useful. For the adap-
tive Lasso, SI should be avoided and only PoSI and sample splitting are recommended. In summary, we find selective 
inference useful to assess the uncertainties in the importance of individual selected predictors for future applications.
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Background
Statistical regression models are ubiquitous in the analy-
sis of biomedical data, where advances in data collection 
and measurement technologies facilitate the considera-
tion of more and more details of the underlying biologi-
cal processes to describe, predict or explain an outcome 
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variable [1]. However, to keep the results intelligible and 
communicable in clinical practice, sparse models includ-
ing few covariates selected according to their relationship 
with the outcome are often preferred, and some form of 
statistical inference for the selected variables is desired 
[2]. Such post-selection inference cannot be performed 
using classical statistical approaches, as they rely on the 
assumption of a prespecified set of independent vari-
ables to be included in the model. This is no longer the 
case when the same data is used to, first, select a set of 
covariates, and second, to estimate their coefficients and 
conduct inference. Hence, the selected set of variables 
constitutes a random component of the model. This issue 
of selectively assessing hypotheses has affected regres-
sion modelling since variable selection techniques were 
introduced decades ago and resulting problems, such as 
a lack of replicability, have been discussed extensively in 
the literature [3–6].

Naturally, this also affects the very commonly used 
L1-penalized regression, i.e. the Lasso, and its extensions 
such as the adaptive Lasso, which became very popu-
lar after their introduction as they provide automated 
variable selection and scalability [7–9]. In recent years, 
numerous proposals for post-selection inference for the 
Lasso address different use-cases and methodological 
approaches [9, 10]: two-stage approaches (sample split-
ting and data carving [11–13]), bootstrap based [14–16], 
de-sparsified/de-biased Lasso [17–23], approaches con-
trolling the expected number of false positive selections 
(e.g. Stability selection [24, 25], or knockoff filtering [26]), 
inference in the presence of many confounders [27, 28], 
and other conceptual approaches [29–31].

A particular strand of works adopted the general 
selective inference framework to provide post-selection 
inference for the Lasso [3, 11, 32–34]. The objective of 
this work was to review and empirically evaluate these 
recent approaches to selective inference for the Lasso in 
a neutral comparison study and investigate how well they 
extend to the adaptive Lasso. We also assessed the practi-
cal use of selective inference in a real-world data exam-
ple. Our focus was on typical biomedical applications, in 
which the number of observations exceeds the number 
of variables, and where inference about the roles of sin-
gle covariates in a model is desired. Such an investiga-
tion was recently encouraged to establish evidence-based 
state-of-the-art guidance [35].

Methods
We adopt the notation of Berk et al. [3] and distinguish 
models by their ’active sets’ of included variables. Thus, if 
the set of candidate predictors comprises p variables, we 
write MF := {1, 2, . . . , p} for the full model using all 

predictors, and M ⊆ MF for any (fixed) submodel. We 
use the notation  M̂(y) (generally abbreviated as  M̂ ) for 
the model chosen by variable selection, depending on the 
outcome y =

(
yi
)
∈ R

n . The vector of regression coeffi-
cients corresponding to a specific choice of predictors M 
is denoted as βM :=

(
βj,M

)
j∈M

∈ R
|M| (if M = MF we will 

omit the index). Similarly, we write X = (xij) ∈ R
n×p for 

the matrix of n observations on the p variables and XM 
for the matrix comprising only the variables in M.

The Lasso
Classical linear regression models the conditional 
expectation of the outcome variable of interest Y  as 
E(Y |X) = β0 + Xβ for the fixed predictor matrix 
X ∈ R

n×p, with intercept β0 ∈ R and regression coef-
ficients β ∈ R

p . For inference, the components Yi of Y  
are assumed to follow independent Gaussian distribu-
tions with expected values equal to the linear predictors 
β0 + β1xi1 + · · · + βpxip and constant variance σ 2 . Given 
the observed outcome vector y ∈ R

n, the Lasso regres-
sion model is obtained by maximising the penalized 
likelihood

where L(β) = L(β|X , y) is the likelihood function and 
� controls the impact of the penalization term defined by 
the L1-norm of the regression coefficients [8]. This form 
of penalization induces variable selection by forcing some 
of the entries of the estimated   β̂ to exactly zero. The 
objective function of the Lasso is convex, such that effi-
cient algorithms exist to compute estimates for a whole 
path of � values [36]. Thanks to its sparsity and computa-
tional accessibility, the Lasso was widely adopted in many 
fields of modern science. However, the Lasso suffers from 
several drawbacks, such as a high false positive selection 
rate and a bias towards zero for large coefficients [9, 37, 
38].

The adaptive Lasso [7] addresses these issues by intro-
ducing weights in the penalty term 

∑
jwj|βj| . These 

weights can be obtained, e.g., from reciprocal unpenal-
ized regression coefficients as wj = 1/

∣∣∣β̂j
∣∣∣
γ

, using a sec-
ond hyperparameter γ to control the impact of the 
weights on the penalization. In contrast to the ordinary 
lasso, the adaptive Lasso offers consistent variable selec-
tion under conditions that can be considered realistic 
with large sample sizes [7, 39]. The adaptive Lasso can be 
easily implemented in any software that is able to fit the 
ordinary Lasso by re-scaling the input data: weighting the 
contributions of individual coefficients 

∣∣βj
∣∣ to the penalty 

LP(β) = L(β)− �

p

j=1

|βj|,



Page 3 of 13Kammer et al. BMC Medical Research Methodology          (2022) 22:206 	

term by wj > 0 is equivalent to scaling the corresponding 
column in X by 1/wj.

Selective inference for the Lasso
Selective inference is a general paradigm to address 
issues arising when statistical hypotheses are not speci-
fied before data collection, but defined during the process 
of data analysis. The prototypical use-case presented here 
is the use of variable selection procedures [5]. In classi-
cal statistical inference, a 1− α confidence interval (CI) 
CIj for a regression coefficient  βj is a contiguous set of 
numbers computed from the data such that the prob-
ability P

[
βj ∈ CIj

]
 to cover the true parameter βj is 1− α , 

where 1− α is a pre-specified confidence level. In anal-
ogy, selective CIs can be defined by model-dependent 
coverage probabilities. These apply when the researcher 
conducts variable selection to obtain a model M , and 
subsequently is interested in inference for the variables 
in M . An important quantity in the definition of selec-
tive coverage is the target parameter of inference in the 
population. The methods discussed in the following 
introduce the submodel population regression coeffi-
cients βM specific to a given model M as inference tar-
gets. In the case of linear regression these are defined 
by βM :=

(
XT
MXM

)−1
XT
ME(Y ) [3]. The submodel target 

is a linear functional of the true full model population 
parameters β , since βM =

(
XT
MXM

)−1
XT
MXβ. Note that 

βM is neither intended nor required to recover the corre-
sponding true full model parameters in β, and its compo-
nents will differ from the full model target β unless there 
is no correlation between variables, which is unrealistic 
with observational data. Instead, the submodel target can 
be interpreted as the coefficients of a linear approxima-
tion to the full model using only a subset of variables. 
A brief discussion of alternative targets for inference is 
provided in Supplementary Figure S1 and in the original 
publication by Berk et al. [3].

Sample splitting (Split)
Sample splitting is an intuitive approach to selective 
inference agnostic to the model selection procedure, 
introduced already in 1975 [40]. It consists of partition-
ing the dataset into two parts. First, a set of active varia-
bles M is derived from one part of the dataset. Inference 
is conducted using the other part of the dataset, in which 
the set of active variables can be considered fixed, condi-
tional on the data used in the first step. Thus, classical 
statistical theory yields selective inference for M . This 
approach controls the submodel coverage at the nominal 
significance level α such that 
P

[
βj,M ∈ CIj,M |M̂ = M

]
≥ 1− α , j ∈ M . Sample split-

ting is easily implemented in any statistical software. The 
two parts of the dataset can be of unequal sizes, related 

to a trade-off between selection and inference accuracy. 
Simulations suggest that a simple 50-50% split offers a 
good compromise [11, 30].

Exact post‑selection inference for the Lasso (SI)
The procedure proposed by Lee et  al. [33] constructs 
selective CIs that guarantee coverage at the nominal 
significance level α , conditional on the specific model 
M that was selected by the Lasso such that 
P
[
βj,M ∈ CIj,M |M̂ = M

]
≥ 1− α , j ∈ M . The authors 

show that the selection event for M corresponds to a 
polyhedral region in the space Rp of regression coeffi-
cients, and are thereby able to analytically derive the 
sampling distribution conditional on M required to 
compute CIs. The approach assumes an estimate of the 
outcome variance σ 2 to provide valid inference, in prac-
tice estimated using the squared residual error from the 
full unpenalized model as σ̂ 2 = 1

n−p−1

∑n
i=1

(
yi − ŷi,F

)2 . 
Notably, this method was derived for the special case of 
the Lasso with a fixed parameter � . In practice, this is 
not a realistic usage scenario as the penalization 
strength is generally tuned. Computer intensive exten-
sions to incorporate tuning of � have been developed, 
but are not yet available as a software package [30, 41].

Universally valid post‑selection inference (PoSI)
The approach by Berk et  al. [3] was developed to pro-
vide valid CIs irrespective of model selection strategy. 
For a given significance level α , the authors propose to 
control the family wise error rate 
∀M̂ ⊆ MF : P

[
∀j ∈ M̂ : βj,M̂ /∈ CIj,M̂

]
≤ α, casting selec-

tive inference as a multiple testing problem. For any 
specific selected submodel M and its estimated coeffi-
cients β̂M , symmetric confidence intervals are formed 
as CIj,M =

[
β̂j,M ± K σ̂

(
β̂j,M

)]
 , where σ̂

(
β̂j,M

)
 denotes 

the estimated standard error of the j-th entry of the 
coefficient vector β̂M . The “PoSI” multiplier K  is com-
puted to account for the selection of M from the space 
of all submodels of MF  . It depends on the correlation 
structure of the dataset, desired coverage and an inde-
pendent estimate of the outcome variance σ 2 . The latter 
may be based on the squared residual error of the full 
model, assuming it is correctly specified. Other possi-
ble ways of estimation such as using another independ-
ent dataset to estimate the variance were outlined in 
the original publication. As there is no general closed-
form expression for K  , it is approximated by Monte-
Carlo simulation. This method providing simultaneous 
error control is expected to be a very conservative pro-
cedure, but recent extensions [4] or restricting the 
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search space of submodels may improve efficiency of 
the method.

Simulation design
Our simulation study is reported following the 
ADEMP-structure by Morris et al. [42]. A brief simula-
tion profile as well as in-depth details can be found in 
the Supplementary Material Sects. 2 and 3.

Aim
The aim of this simulation study was to evaluate recent 
proposals for selective inference in the context of Lasso 
regression regarding their frequentist properties in prac-
tical usage scenarios.

Data generation
We generated data using a generic simulation procedure: 
first, we sampled a matrix Z from a multivariate normal 
distribution with pre-specified correlation structure. 
The resulting values were then transformed (denoted 
by T  ) to obtain different predictor distributions. Given 
the final data matrix X = T (Z) of pre-specified sample 
size, we computed the true outcome y = Xβ + ǫ using 
a pre-specified coefficient vector β . The signal-to-noise 
ratio (target coefficient of determination R2) was con-
trolled via the variance of ǫ drawn from a normal dis-
tribution with mean zero. Validation data was obtained 
by using the same realisation of the data matrix X and 
drawing another error vector ǫ′ to obtain a new outcome 
vector y′ . 

Using this generic simulation procedure, we created 
two different setups: a simple ‘toy setup’ with multivariate 

normal data ( T  is the identity function) using various 
correlation structures, and a ‘realistic setup’ with more 
realistic distributions and dependencies (Table 1). For the 
latter, T  comprised affine and exponential functions, as 
well as thresholding to yield continuous and binary vari-
ables following Binder et al. [43].

Estimands and other targets
The primary estimands of interest in our simulation were 
the selective CIs, i.e. the lower and upper confidence lim-
its, for the methods under evaluation. The confidence 
level was fixed at 90%, which is also the default level in 
the main software package used. Other targets of inter-
est were the selective null hypotheses associated with the 
CIs, the selected submodels, and their predictions.

Methods for simulation study
Methods studied in our work consisted of a variable 
selection step, and a subsequent inference step (Table 2). 
Variable selection was conducted using the Lasso (Lasso) 
and the adaptive Lasso (ALasso). We used the recipro-
cals of the absolute values of the coefficient estimates 
from the unpenalized full model as penalization weights 
in the adaptive Lasso. The penalization parameters were 
determined via tenfold cross-validation (CV, estimated 
through the parameter that yielded the smallest CV pre-
diction error) or, for the SI method only, via the method 
by Negahban et al. (Neg, [44]), which differ in whether or 
not the observed outcome is used in the estimation pro-
cedure (Supplementary Material Sect. 3.4).

In the inference step, we evaluated the Split, SI and 
PoSI methods for selective inference.

For comparison, we included two methods without 
data-driven variable selection: the full model (Full) on all 

Table 1  Simulation setup

See the description of the simulation setups in the Supplementary Material for more details on the correlation and coefficient structures. Varying design parameters 
are the parameters that were varied in the full factorial design in both setups

Toy setup Realistic setup

Fixed design parameters Motivation Simplicity, insight Realistic data

Number of variables 4 17

Type of variables Continuous Continuous, binary

Distribution of variables Gaussian Mixed
(Supplementary Table S2)

Varying design parameters Correlation structures � 7 blocked correlation matrices with no 
or strong correlation (Supplementary 
Material Sect. 3.2)

Fixed, mimicking real study
(Supplementary Material Sect. 3.3)

Coefficient structures β 10
(Supplementary Table S1)

13
(Supplementary Table S3)

True target R2 (noise ǫ) 0.2, 0.5, 0.8 0.2, 0.5, 0.8

Observations per variable 5, 10, 50 5, 10, 50

Simulation parameters Number of scenarios 630 117

Iterations per scenario 900 900
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variables and the oracle model (Oracle), which included 
only the variables used for generating the data. The oracle 
model served as a benchmark and was generally expected 
to perform best among all methods, since it "knew" the 
true data generating mechanism. Of course, such infor-
mation is not available during a real analysis and there-
fore was inaccessible to all other methods.

Performance measures
We evaluated three primary performance measures for 
selective CIs, marginalizing over all selected models and 
variables (Table 3):

•	 Selective (actual) coverage probability was estimated 
as the proportion of simulation iterations in which 
the CI covered the submodel target parameter; meth-
ods with coverage probability closer to the nominal 
confidence level were considered better.

•	 Selective power for a variable with submodel tar-
get parameter unequal to zero was estimated by the 
proportion of simulation iterations in which its cor-
responding CI excluded zero; methods with higher 
power were considered better.

•	 Selective type 1 error probability for a variable with 
submodel target parameter equal to zero was esti-
mated as the proportion of simulation iterations 
in which the CI excluded zero; methods with error 
probability closer to one minus the nominal confi-
dence level were considered better.

In the computations of these performance measures 
the submodel targets βM̂ depend on the selected model 
M̂ and can vary across the iterations of the simula-
tion. They were computed for each iteration using the 
true covariance matrix and the pre-specified popula-
tion values of the full vector of regression coefficients β
. In particular, βM̂ = �M̂�M̂,MF

β , where �M̂ is the q × q 
submatrix of the true covariance matrix � which contains 
only the variables in M̂ , and �M̂,MF

 is the q × p submatrix 
which contains all the covariances of the variables in M̂ 
and the whole set of candidate predictors MF.

We also report median and interquartile ranges of 
widths of selective CIs as additional performances meas-
ures. Since the SI method has been shown to lead to 
highly variable CIs of extreme or even infinite width in 
some cases [33, 45], we report the relative frequency with 
which this occurred. To address the remaining study tar-
gets, we report simulation estimates for the probability 
of true model selection and variable selection probabili-
ties, for which methods closer to the oracle model were 
considered better. Relative prediction performance of the 
models was measured by the achieved R2 on validation 
data, where higher was considered better.

Table 2  Overview of methods investigated in this study

Method Variable selection Tuning Inference

Full None None Wald CI

Oracle None None Wald CI

Lasso-CV-Split Lasso tenfold CV Split-sample

Lasso-CV-PoSI Lasso tenfold CV Universally valid post-selection inference [3]

Lasso-CV-SI Lasso tenfold CV Exact post-selection inference [33]

Lasso-Neg-SI Lasso Fixed penalization parameter [44] Exact post-selection inference [33]

ALasso-CV-Split Adaptive Lasso tenfold CV Split-sample

ALasso-CV-PoSI Adaptive Lasso tenfold CV Universally valid post-selection inference [3]

ALasso-CV-SI Adaptive Lasso tenfold CV Exact post-selection inference [33]

ALasso-Neg-SI Adaptive Lasso Fixed penalization parameter [44] Exact post-selection inference [33]

Table 3  Primary performance measures investigated in this 
study

We denote the set of all iterations of a simulation scenario by S = {1, . . . , nsim} . 
The full model using all predictors is written as MF = {1, . . . , p} , the selected 
model in a specific iteration s is written as M̂s . By the use of I[.] we denote 
the indicator function for the event specified between square brackets. Note 
that for methods without variable selection, the estimands reduce to the 
usual definitions of frequentist properties. More details on the derivation of 
the approximation in the simulation are given in the Supplementary Material 
Sect. 3.1

Measure Definition Approximation by simulation

Coverage
P

[
β
.,M̂

∈ CI
.,M̂

] ∑
j∈MF

∑
M⊆MF

∑
s∈SI

[
M̂s=M∧βj,M∈CIj,M

]

∑
j∈MF

∑
s∈SI

[
j∈M̂s

]

Power
P

[
β
.,M̂

∈ CI
.,M̂
|β

.,M̂
�= 0

] ∑
j∈MF

∑
M⊆MF

∑
s∈SI

[
M̂s=M∧0/∈CIj,M

]

∑
j∈MF

∑
s∈SI

[
j∈M̂s∧βj,M̂s

�=0

]

Type 1 error
P

[
β
.,M̂

∈ CI
.,M̂
|β

.,M̂
= 0

] ∑
j∈MF

∑
M⊆MF

∑
s∈SI

[
M̂s=M∧0/∈CIj,M

]

∑
j∈MF

∑
s∈SI

[
j∈M̂s∧βj,M̂s

=0

]
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Extensions of the main simulation design
Besides the simulation designs outlined so far, we have 
also assessed several more specific research questions 
using smaller setups:

•	 To study the properties of selective CIs for different 
confidence levels, we assessed the selective cover-
age for 95% selective CIs in a setup based on the toy 
setup, but using only 300 iterations per scenario.

•	 We focus on the use of CV to tune penalization 
parameters due to its widespread use. Another com-
monly used method is the closely related Akaike 
information criterion (AIC). Both tune penalization 
strength by an estimate of the out-of-sample predic-
tion error. Alternatively, the Bayesian information 
criterion (BIC) may also be used. We assessed the 
properties of selective CIs when the Lasso is tuned 
with AIC and BIC instead of CV in a smaller simu-
lation study based on the toy setup, but using the SI 
method only. The other inference methods (Split and 
PoSI) are unaffected by the change in tuning strategy.

•	 We assessed whether the results transfer to logistic 
regression in a smaller simulation study based on the 
realistic setup, but in which the events per variable 
(5, 10, 50) and outcome prevalence (0.1 or 0.5) were 
varied. Only 4 methods (Oracle, Full, Lasso-CV-Split, 
Lasso-CV-SI) were evaluated in this smaller setup, as 

the PoSI method is not directly available in this set-
ting so far.

Software and implementation details
All analyses were implemented in the R statistical soft-
ware, version 3.5.1 [46]. We used the packages glmnet [47] 
(version 2.0–18), for implementing Lasso and ALasso, 
selectiveInference [48] (version 1.2.4) for the SI and PoSI 
[49] (version 1.0) for the PoSI method. Data simulation 
and visualisation was facilitated by the simdata [50] and 
looplot [51] packages. Generally, we left most options for 
the selectiveInference and PoSI packages at their sensible 
default values, but adapted several arguments for compu-
tational feasibility, see Supplementary Material Sect. 3.5 
for details. In line with the literature, we derived esti-
mates of the outcome variances required for the SI and 
PoSI methods from the residuals of the full model fitted 
on the training data set. All computations were done on 
standardized covariate data.

Results
Selective inference
Primary estimands
Summary results for selective coverage in both simu-
lation setups are shown in Fig.  1, with a more in-depth 
view provided in Supplementary Figure S4. Selective 

Fig. 1  Simulation study: selective coverage from both simulation setups of selective 90% CIs for the submodel inference target. For each scenario, 
the actual selective coverage rate was estimated by simulation, and over all scenarios, the values were summarised by boxplots. See Supplementary 
Figure S4 for stratified results. The nominal confidence level of 0.9 used in the construction of the CIs is depicted as dashed line. Colors indicate the 
type of variable selection. Monte Carlo error is indicated by grey areas describing binomial 95% CIs expected at the nominal confidence level with 
900 iterations
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power and type 1 error are depicted in Fig.  2 and Sup-
plementary Figure S5 for the toy and realistic setups, 
respectively. Generally, the realistic setup showed lower 
variability since it was based on a fixed correlation struc-
ture, in contrast to the toy setup. Selective coverage and 
type 1 error remained stable across the different signal-
to-noise ratios and were similar between both simula-
tion setups, while selective power increased with higher 
signal-to-noise ratio. Lasso-CV-SI led to coverage rates 
slightly lower than nominal (in median 0.03 below target 
for the toy setup, less than 0.01 for the realistic setup). 
This was partly a result of computational issues: in the 
realistic setup a relevant proportion of simulation itera-
tions (26%) led to highly variable CIs by the SI method 
(see the section on 20 below). Removing such runs 
from the analyses shifted results towards claimed levels: 
median selective coverage over all scenarios in the realis-
tic setup increased to 0.93, median selective type 1 error 
decreased from 0.12 to 0.06. As expected, Lasso-CV-
PoSI and ALasso-CV-PoSI were conservative, especially 
in the realistic setup with a larger number of variables, 
and yielded coverage rates above 0.9 with corresponding 
selective type 1 error rates clearly below 0.05. In contrast 

to the Lasso, ALasso-CV-SI consistently led to noticeably 
lower-than-nominal selective coverage (in median 0.06 
below target in the toy setup). While the selective power 
was higher than for the Lasso, the selective type 1 error 
also increased drastically. Lasso-CV-Split and ALasso-
CV-Split gave similar results, as sample splitting is agnos-
tic of the model selection procedure.

Additional results for selective coverage conditional 
on a specific variable being selected are shown in Sup-
plementary Figure S6. The results indicate that coverage 
generally decreases with decreasing variable selection 
frequency for the PoSI and SI methods and is particularly 
problematic with the adaptive Lasso.

Widths of confidence intervals
Figure  3 and Supplementary Figures S7 and S8 depict 
summaries of the results regarding the width of the 
selective CIs. Widths of CIs were standardized and cor-
responded to unit standard deviation of a predictor. 
The shortest intervals were obtained by the compara-
tor methods without data-driven selection (i.e. the Ora-
cle followed by Full). The intervals obtained by the SI 
method (Lasso-CV-SI, ALasso-CV-SI, Lasso-Neg-SI, 

Fig. 2  Toy simulation study: selective power and selective type 1 error of selective 90% confidence intervals. For each scenario, power or type I 
error was estimated by simulation, and over all scenarios with specified target simulation R2, the values were summarised by boxplots. The target 
values are depicted as dashed lines (1 for power, 0.1 for type 1 error). Colors indicate the type of variable selection. Results from the realistic setup 
are comparable to the ones shown here (Supplementary Figure S5)
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ALasso-Neg-SI) could be extremely wide, usually when 
a weak or noise variable was selected into the active set. 
However, these CIs were also highly asymmetric, such 
that the selective power was on average not negatively 
impacted. In contrast, PoSI intervals (Lasso-CV-PoSI, 
ALasso-CV-PoSI) are symmetric by definition and were 
narrower than the SI CIs but they tended to be the wid-
est of all inference procedures for strong, true predictors. 
The ALasso-CV-SI and ALasso-Neg-SI intervals were 
generally narrower and less prone to extreme widths than 
the corresponding CIs for Lasso-CV-SI and Lasso-Neg-
SI, likely due to the ability of the adaptive Lasso to select 
relevant predictors more accurately. If runs with unstable 
CIs were removed from the analysis, the width and vari-
ability of the selective CIs for the SI method decreased 
noticeably (not shown).

Stability
The Lasso-CV-SI method sometimes produced intervals 
with infinite confidence limits, or which did not include 
the point estimate of the regression coefficient. The CI 
widths were generally extremely sensitive to the inclu-
sion of weak or false predictors. When such predictors 

were selected by chance, small changes in the coefficient 
estimates led to large changes in the CI widths, i.e. highly 
variable CIs, potentially even for other, stronger predic-
tors. We therefore termed the CIs in such situations as 
“unstable”. Almost 26% of the iterations of the realistic 
setup resulted in unstable CIs, while this happened for 
only 5% of the runs in the smaller toy setup. This issue 
was most prevalent when all predictors of the full model 
were strongly positively correlated and its prevalence 
generally increased with the signal-to-noise ratio or sam-
ple size due to the Lasso’s tendency to include weak pre-
dictors. The problem was much less severe for methods 
with less frequent false selections, such as the ALasso-
CV-SI, Lasso-Neg-SI and ALasso-Neg-SI (each with less 
than 7% of all simulation iterations with unstable CIs, 
respectively).

Model and variable selection
Generally, the adaptive Lasso was better able to iden-
tify the true model and led to fewer false selections 
in both simulation setups, in particular with higher 
signal-to-noise ratios. In contrast, the false positive 
rate increased for Lasso-CV with higher target R2. 

Fig. 3  Toy simulation study: median and interquartile range (IQR) of the widths of selective 90% CIs. CIs were standardized. For each scenario the 
median and IQR of CI widths were computed, and over all variables and scenarios with specified target simulation R2, the values were summarised 
by boxplots. Dashed lines mark a width of zero. Colors indicate the type of variable selection. Supplementary Figure S7 shows the same results 
stratified by true predictors and noise variables. Results for the realistic setup are comparable (Supplementary Figure S8)
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Lasso-Neg and ALasso-Neg generally led to very sparse 
models, with good properties regarding false positives, 
but at a higher probability of missing important predic-
tors. Lasso-CV-Split and ALasso-CV-Split resulted in 
slightly lower accuracy of model selection due to less 
data being available for the selection. Results from both 
simulation setups are summarised in Supplementary 
Figures S9 and S10, with a detailed view per variable 
given in Supplementary Figure S11.

Predictive accuracy
Predictive accuracy on validation data is depicted in 
Fig.  4 and Supplementary Figure S12. With increasing 
sample size, the target R2 values were achieved by the 
reference methods Full and Oracle, and most methods 
tuned by CV (Lasso-CV-SI, Lasso-CV-PoSI, ALasso-
CV-SI, ALasso-CV-PoSI). However, Lasso-Neg-SI and 
ALasso-Neg-SI often led to very sparse models, result-
ing in inferior predictive accuracy. Similarly, for Lasso-
CV-Split and ALasso-CV-Split only half the data was 
available to estimate effects and make predictions. This 
sub-optimal trade-off is clearly noticeable in the results.

Summary of main simulation results
A high-level overview of the results is provided in 
Table  4. The Lasso-CV-Split and ALasso-CV-Split 
approaches led to generally acceptable coverage prop-
erties of the CIs even for weak predictors (i.e. within 

simulation variability for most scenarios), but this came 
at the cost of diminished predictive performance and sta-
tistical efficiency. The Lasso-CV-SI and ALasso-CV-SI 
approaches delivered acceptable results within expected 
simulation variability, but especially the latter could not 
guarantee nominal coverages. In particular, coverage was 
too low for variables with selection frequencies lower 
than 50%. Also, these methods suffered from highly vari-
able CI widths, in particular when the Lasso “just barely” 
included certain variables with a very small penalized 
coefficient, leading to issues in the computation of the 
CIs [33]. Lasso-Neg-SI and ALasso-Neg-SI led to slightly 

Fig. 4  Toy simulation study: predictive accuracy in terms of difference of validation R2 and target simulation R2. The target simulation R2 was 0.2 in 
left panel, 0.8 in right panel. For each scenario, predictive accuracy was estimated by simulation, and over all scenarios, the values were summarised 
by boxplots. Dashed lines mark an optimal difference of zero. Colors indicate the type of variable selection. Results for the realistic setup are 
comparable (Supplementary Figure S12)

Table 4  Overview of main results for the primary estimands of 
our simulation study

By “Acceptable” we mean that results were mostly (i.e. in median over all 
scenarios) within the expected simulation variability

Method Stability Coverage Power Type 1 error

Lasso_CV_Split No concern Acceptable Low Acceptable

Lasso_CV_PoSI No concern Too high Low Low

Lasso_CV_SI Problematic Acceptable Acceptable High

Lasso_Neg_SI Problematic Acceptable Acceptable Acceptable

ALasso_CV_Split No concern Acceptable Acceptable Acceptable

ALasso_CV_PoSI No concern Too high Acceptable Acceptable

ALasso_CV_SI Problematic Too low High High

ALasso_Neg_SI Problematic Acceptable High High
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improved properties of the CIs, as well as lower probabil-
ity to include weak predictors, but had a clear negative 
impact on prediction performance. The Lasso-CV-PoSI 
and ALasso-CV-PoSI methods led to extremely con-
servative CIs with coverage consistently higher than the 
chosen level of significance and with very low selective 
type 1 error. Therefore, these methods may be too con-
servative to be used as default inference method for the 
Lasso. They may be applied if very strict error control is 
desired, potentially even stricter than indicated by the 
chosen level of significance, and only a moderate num-
ber of candidate predictors are of interest (e.g. a pool of 
25 variables to be selected from) due to their computa-
tional demand (Supplementary Material Sect. 4.1). Alter-
natively, the PoSI methods may be useful when only a 
subset of variables, e.g. a single predictor of interest, is to 
undergo selection.

Extensions of the main simulation design
Beyond the results reported in Table 4, our study admits 
some further insights from the extended simulation 
setups. First, the results on 90% selective CIs were cor-
roborated by simulations with 95% selective CIs (results 
not shown). In the second extension setup we found that 
while the selected penalization parameters differ, the 
properties of selective CIs using Lasso with CV, AIC and 
BIC were comparable (see Supplementary Figure S13). 
Lastly, in the third extension setup we found that the 
conclusions for logistic regression were similar to those 
presented in Table  4 (see Supplementary Figure S14). 
However, the PoSI method was not yet available for logis-
tic regression and was excluded here.

Real data example
We use Johnson’s body fat dataset [52] of 252 men to 
demonstrate a practical application of the selective infer-
ence framework. Following Johnson’s original publica-
tion, one observation was removed from the analysis due 
to implausible values. The dataset is freely available at the 
original article’s website [53].

Research question
The research question was to develop a prediction model 
for the percentage of bodyfat, measured by underwater 
weighting according to Siri’s formula, using multiple lin-
ear regression [54]. The candidate predictors were age 
(in decades), height (dm), weight (kg) and ten anthro-
pometric measurements (all in cm). The goal of variable 
selection in this case study was to optimize the number 
of measurements necessary for the body fat estimation in 
future applications, rather than studying their causal rela-
tionship with the outcome.

Analysis
We analyzed the dataset with the methods of our study 
(Table  2). In-line with recommendations on practical 
applications of variable selection, we additionally com-
puted variable selection frequencies using 100 subsam-
pling resamples of the dataset [2, 55].

Results
An interesting feature of the dataset is its blocked cor-
relation structure: the body measurements and weight 
are highly correlated (mean pairwise Pearson correla-
tion of 0.65 between the individual variables), while age 
and height are rather uncorrelated (mean pairwise Pear-
son correlation with all other variables of 0.03 and 0.28, 
respectively). Therefore, even variables excluded from 
the final model cannot necessarily be deemed as “not 
predictive”, since they are often correlated to a “predic-
tor” in the final (sub)model. It is therefore natural to be 
interested in inference about the specific set of selected 
variables, rather than targeting the full model. In the lat-
ter case, any assumption about the correctness of the 
chosen submodel would be questionable due to the high 
correlations.

Variable selection frequencies of the selected variables 
were mostly above 50%, and for variables with lower fre-
quencies, the CIs had reasonable widths. Figure  5 pro-
vides a comparative presentation of the results, although 
in a real analysis each method would be interpreted by 
itself. As an example, assume the statistical analysis plan 
outlined the use of the Lasso tuned by CV, followed by 
SI for selective inference (Lasso-CV-SI). This procedure 
selected eleven variables, out of which four (abdomen, 
wrist, age and height) had corresponding 90% CIs exclud-
ing zero, and seven CIs including zero. All CIs included 
the respective point estimates and had finite limits. All 
variables with CIs excluding zero had resampling selec-
tion frequencies of 95% or more, while the variables with 
CIs including zero had frequencies of 57% or less. Some 
CIs were very asymmetric. In comparison, the Lasso-CV-
PoSI approach led to wider CIs that excluded zero only 
for abdomen and wrist. These different results probably 
reflect different use-cases: the SI method could be poten-
tially useful in early phase, explorative stages to single out 
weak predictors surviving the Lasso screening; the PoSI 
method could be favoured in later phase research where 
false positives are of particular concern and inference 
should respect all kinds of selection mechanisms during 
analysis. If the ALasso was chosen for variable selection, 
the resulting models were similar to the Lasso if CV was 
used, but sparser with sample splitting or the Neghaban 
methods to select the penalty parameter.
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Discussion
In this work, we studied the properties of proposals for 
selective inference for the Lasso available as R software 
packages via a neutral comparison study. In actual appli-
cations, selective inference requires careful consideration 
of the intended use of a statistical model by the practi-
tioner. For example, in descriptive or predictive research, 
the interest often lies in the finally selected model, 
rather than in addressing the population parameters of 
an assumed underlying data generating mechanism. In 
explanatory research, the data-adaptive selection of con-
founders may provide benefits in terms of reduced mean 
squared error when estimating the exposure effect, given 
the selected submodel is sufficient to control for all con-
founders or confounding is addressed by specialized 
methods such as inverse probability weighting. Selective 

inference is well suited for these usages, where it is not of 
primary concern whether a “true model” exists and what 
its parameters are. Through accounting for the selection 
of the model of interest, over-optimism via false positive 
selections in reported inference can be reduced, thereby 
enhancing replicability.

This was elaborated in our real data example, where 
an additional inference step after selection allowed to 
single out variables which were likely most relevant to 
the prediction of the outcome, in contrast to those with 
small, but non-zero point estimates. This is of great inter-
est when using the Lasso, as it is known to have a high 
probability for the inclusion of weak predictors. How-
ever, selective inference does not come free, as there is 
not only a trade-off regarding power and type 1 error, 
but also a relation of selection and inference accuracy. As 

Fig. 5  Real data example: point estimates and 90% selective CIs for regression coefficients. Results are shown at the original scales of the variables. 
Each method is depicted in a separate panel. The variables are ordered by increasing standardized coefficients. The individual selection frequencies 
estimated by 100 subsamples are given as percentages above each panel



Page 12 of 13Kammer et al. BMC Medical Research Methodology          (2022) 22:206 

demonstrated in our simulations, the SI approach could 
only provide reliable results when the selected submodel 
was stable in the first place, i.e. only included variables 
with comparatively high selection frequency.

In this study we made extensive use of the software 
packages in R that are available to conduct selective infer-
ence for the Lasso, PoSI and selectiveInference [48, 49]. 
While we found the functions in these packages purpose-
ful and sufficiently well developed for use in our simula-
tion study, there is still a lack of smooth integration into 
the common framework of modelling functions in R such 
as lm, glm, step or glmnet. Given that the methodology of 
selective inference is rather new, providing easily acces-
sible software and a satisfactory user-experience may 
increase the adoption of the methods by applied statisti-
cians and their collaborators.

Our study has some limitations. It was restricted to 
recent approaches to selective inference with a focus 
on the submodel view of inference. The data generating 
mechanism of our simulations was chosen to be sparse 
and all effects were assumed linear. We used mostly 
default parameters for the implementation of the meth-
ods if they were sensible, ensuring comparability between 
the methods. Lastly, for the PoSI and SI methods we 
derived an estimate for the outcome variance from the 
residual variance of the full model, which is in line with 
the literature and often the only estimate available in 
practical applications.

Based on our extension studies, we expect the find-
ings from our simulations to transfer to other confidence 
levels (e.g. 95%), Lasso tuning based on AIC or BIC, and 
logistic regression.

Conclusions
In general, we recommend combining post-selection 
inference with an assessment of model stability and 
variable selection frequencies. We found that the SI 
methodology for selective inference yielded acceptable 
actual coverage rates in most scenarios. It is therefore 
our recommended approach for most cases. If the num-
ber of observations is large and simplicity is strongly 
favoured over efficiency, then the Split approach, or 
a more refined variant (data carving [11, 30]), are an 
alternative. If only few predictors undergo variable 
selection (i.e. up to 5) or the avoidance of false posi-
tive claims of significance is a concern, then the con-
servative PoSI approach may be useful. For the adaptive 
Lasso, especially if the penalization strength is tuned, 
the SI approach should be avoided because of violation 
of the claimed confidence levels. Selective inference is 
a useful tool for regression modelling using the Lasso, 
but its application in practice requires sophisticated 

interpretation and awareness of the intended use of the 
model, as well as the availability of more user-friendly 
software.
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