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Abstract

Background: Randomized test-treatment studies aim to evaluate the clinical utility of diagnostic tests by provid-

ing evidence on their impact on patient health. However, the sample size calculation is affected by several factors
involved in the test-treatment pathway, including the prevalence of the disease. Sample size planning is exposed to
strong uncertainties in terms of the necessary assumptions, which have to be compensated for accordingly by adjust-
ing prospectively determined study parameters during the course of the study.

Method: An adaptive design with a blinded sample size recalculation in a randomized test-treatment study based
on the prevalence is proposed and evaluated by a simulation study. The results of the adaptive design are compared
to those of the fixed design.

Results: The adaptive design achieves the desired theoretical power, under the assumption that all other nuisance
parameters have been specified correctly, while wrong assumptions regarding the prevalence may lead to an over- or
underpowered study in the fixed design. The empirical type | error rate is sufficiently controlled in the adaptive design
as well as in the fixed design.

Conclusion: The consideration of a blinded recalculation of the sample size already during the planning of the study
may be advisable in order to increase the possibility of success as well as an enhanced process of the study. However,
the application of the method is subject to a number of limitations associated with the study design in terms of feasi-

bility, sample sizes needed to be achieved, and fulfillment of necessary prerequisites.
Keywords: Adaptive design, Sample size recalculation, Sensitivity, Specificity, Prevalence

Background

The patient’s health should be the primary consideration
when evaluating diagnostic tests [1, 2]. Once a diagnostic
test is approved, randomized controlled trials are needed
in order to evaluate the clinical effectiveness of a diag-
nostic test [1, 3]. These trials are stated as randomized
test-treatment trials where patients are randomized to
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diagnostic test procedures and subsequently receiving
treatments. Finally, patient-relevant outcomes are evalu-
ated, leading to evidence of potential patient benefit,
such as reduction in patient mortality or morbidity or
improvement in health-related quality of life. In this set-
ting, “test-treatment” pathways are assessed rather than
interventions alone [4—6].

In principle, patient outcomes are affected by a link-
age between a test result and subsequent treatment
choices. One commonly referred design is the classical
two-arm design, in which patients are randomized to two
test-treatment arms [4, 7]. In one arm, an experimental
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test A is applied, in the other a comparator test B. Test
results are communicated and associated with subse-
quent management decisions: for example, test positives
are assigned to treatment / and test negatives to treat-
ment II. Afterwards, the patient outcome is evaluated
in each subgroup (see Fig. 1). Further designs are intro-
duced in the literature, but will not be discussed here
[4, 7]. So far, only a few randomized controlled trials
(RCTs) that evaluate diagnostic strategies on patient out-
come are published [4, 8]. One example is a randomized
trial to evaluate and compare the safety of two manage-
ment strategies based on repeated Ultrasonography and
D-Dimer testing in patients with suspected deep vein
thrombosis [9]. Another trial investigated two different
diagnostic approaches for the management of outpatients
with dysphagia who have a high risk for developing aspi-
ration pneumonia [10].

Randomized test-treatment trials may involve a few
challenges in terms of study planning and practical fea-
sibility. One challenging aspect is the calculation of
the required sample size which is an essential step in
the planning of any clinical trial. A fixed clinical trial is
designed with a targeted sample size that is specified at
the planning stage and the study is conducted according
to its pre-specified study protocol without prospectively
planned adaptations. After data collection is completed,
data are analyzed following a predefined statistical anal-
ysis plan. In the design phase of the randomized test-
treatment study, the total number of participants needed
to detect a clinically relevant test-treatment difference
with sufficient power depends on assumptions about the
expected treatment effect, in addition to the type I error
rate and power, as well as parameters such as disease
prevalence and diagnostic test accuracy [3]. However,
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reliable estimates of these variables are often weak
guesses based on barely reliable empirical information.
Therefore, there is a high risk of not reaching the tar-
geted power in a fixed sample size design. In this sense, it
may be worth considering adjustments during the study
regarding wrong assumptions to increase the chance of a
successful and efficient study, thus requiring the imple-
mentation of an adaptive trial design in order to make
the clinical trial more flexible [11, 12]. “An adaptive
design is defined as a clinical study design that allows
for prospectively planned modifications based on accu-
mulating study data without undermining the study’s
integrity and validity” [13]. They can be applied across
all phases of clinical research, from dose escalation to
confirmatory trials. One possible adaptation is sample
size recalculation (SSR) in a blinded manner based on
accumulating interim data from an internal pilot study.
Blinding the study until its finalization means that no
differences between the study arms can be observed
until then, nor can null hypotheses be tested [14]. Some
methods for interim sample size adjustment require
unblinding of the treatment assignment [15], while other
methods do not [16, 17].

In general, adaptive designs in therapeutic trials,
including blinded SSR, are well accepted by regulators
[13]. However, adaptive study designs are much less com-
mon in diagnostic trials than in intervention trials [18].
Research for blinded sample size recalculation in the
context of intervention trials does already exist [19-23],
but is barely existent in randomized test-treatment stud-
ies [4]. Stark and Zapf [17] proposed an optimal sample
size calculation procedure and dealt with blinded sam-
ple size recalculation in the context of single-arm con-
firmatory diagnostic accuracy studies. To our knowledge,
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Fig. 1 A schematic representation of a classical randomized test-treatment study [4, 5]
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the present paper is the first to describe an approach
using interim data from a randomized test-treatment
study which generally does not result in the trial being
unblinded before its completion and therefore results
in no or negligible inflation of the probability of falsely
rejecting the null hypothesis.

In the scope of this paper, an adaptive design for recal-
culating the sample size is presented by addressing the
internal pilot study approach proposed by Wittes and
Brittain [24], which can as well be applied to randomized
test treatment trials. Basically, the data from the first
part of the patients included in the study are used to esti-
mate nuisance parameters that are essential for this study
design. Depending on the results in the internal pilot
study, the study may be adapted before the study is con-
tinued. The final analysis includes all recruited patients,
including those from the internal pilot study. The deci-
sion of a suitable nuisance parameter depends on the
specific study design as well as on the primary endpoint
chosen in the study. In trials with a binary primary end-
point, the overall response rate is usually used to estimate
the sample size in a blinded manner. Assuming a con-
tinuous endpoint, the pooled variance may be used. The
expected outcome in randomized test-treatment trials is
derived from a set of parameters that can be considered
as nuisance parameters [4]. Here, the disease prevalence
is chosen as a nuisance parameter which implies the
application of a reference standard to estimate the pro-
portion of diseased individuals in the interim analysis.
The adaptive design is hence defined by using this preva-
lence estimate for a recalculation of the sample size.

The overall objective of this work is to investigate by
means of a simulation study whether

a) the adaptive design reaches its goals, i.e. the actual
power equals the pre-specified power and the type I
error rate is controlled

b) the recalculated sample sizes are feasible

c) the gap between nominal and actual power in the
fixed design is substantial and hence justifies the
additional efforts implied by using an adaptive
design.

The paper is structured the following way. The methods
section comprises (1) a theoretical basis for the sample
size calculation in a classical randomized test-treatment
study; (2) an example study; (3) the proposed procedure
of a single, blinded sample size recalculation based on the
prevalence applied to the example; and (4) the practical
implementation within a simulation study. Afterwards,
the results of the simulation study are presented accord-
ing to the above stated objectives. Finally, we close with a
discussion and brief conclusion.
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Methods

Design considerations

In the following, we consider a classical randomized test-
treatment trial evaluating a binary patient outcome, e.g.
mortality, and refer to the notation in Hot et al. [4]. In
general, test-treatment strategies are compared where
the particular test is linked to the treatments by the test
results. Firstly, let D € {+, —} be the true disease status of
the individuals included in the trial, where D=+ denotes
those with the target condition (i.e. the truly diseased)
and D= — those without. Hence, m=P(D=+) refers to
the proportion with the target condition in the study. If
the target condition implies the presence of a disease,
then i indicates the disease prevalence of the population.
Ideally, the determination of the patient’s target condition
or disease state is carried out using a reference standard,
a diagnostic procedure that is applied to the study popu-
lation in addition to the investigated testing procedures.
In case no reference standard can be obtained, alternative
methods have to be considered in order to approach the
disease prevalence. In the first phase of the trial, all indi-
viduals of interest are equally randomized to two (diag-
nostic) tests A and B with binary response, where test A is
an experimental test and B a comparator test (Fig. 1). Let
T denote the test applied to a patient and Ry € {+,—} the
result of the corresponding test T € {4, B}. After receiving
the test results, the intervention (management strategy)
M e{l,1I} is given to the patient based on the respective
test result, i.e. M=m(Ry ) with m(+)=1I and m(—)=IL
Management strategy I may be a more invasive treatment
or therapeutic approach which should work better for
truly diseased patients, and management I/ may repre-
sent a standard of care which should work better in truly
non-diseased patients. Finally, after receiving a treatment
strategy the patient relevant binary response variable Y is
measured. The clinically relevant hypotheses of interest
can be expressed in terms of the difference of the event
response rates A =6, — 05 following in the next lines:

Hy: A=0vs.H;: A#0

with 6,=E(Y|T=t) denoting the expected outcome/
event response rate in each test-treatment arm based on
test T=A, B. Subsequently, the expected outcomes for
test T=t can be expressed as

6, =

r€{+-}de{+—

}y;(rr)r[dP(Rt =r|D=d)P(D =d) (1)

with Mf,,(,t),td =E(YIM=mR =r,D=d) denoting
the expected outcome in the respective subgroup of patients
[4], P(R,=r,|D=d) referring to the sensitivity and speci-
ficity of the two tests, i.e. the proportion of truly diseased
and non-diseased patients, respectively, who are correctly
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identified and P(D=d) presenting the proportion of patients
with and without the target condition. The following applies
to all further considerations: the sensitivity and specificity
of a test t=A, B are denoted as Se,=P(R,=+|D=+) and
Sp,=P(R,=—| D=—), respectively.

The sample size for binomial trials depends on the
response rates assumed under the null and alterna-
tive hypotheses for each arm, the type I error rate, and
the power. The sample size N=N,+ Nj needed for this
trial design can be calculated for the balanced design by
inserting 6, and 65 in the following formula

2

N, =Nj = [, /25(1 —E)zl_a/z + \/HA(I —0,) +05(1-05)z,_, | /42

(2)
Here, the term
— 04 + 6

0 — % (3)

denotes the overall response rate [25].

Because this article is a continuation of previous work
[4], we have again formulated the methods for a binary
endpoint. However, they can be easily applied to continu-
ous endpoints. In this case, additional assumptions con-
cerning the variation of Y are needed, which is usually a
nuisance parameter in the context of blinded sample size
recalculation [21, 23, 26, 27]. The R-code for the example
is provided in the electronic supplement material.

Example study

In order to illustrate the sample size calculation in a ran-
domized test-treatment study, a multicenter RCT for the
evaluation of point-of-care Xpert MTB/RIF testing for
tuberculosis compared with smear microscopy is pre-
sented [28]. In total, 1502 adults with symptoms sugges-
tive of active tuberculosis from primary-care health-care
facilities in Africa were randomized to nurse-performed
Xpert MTB/RIF at the clinic or sputum smear micros-
copy. At recruitment, at least two spot expectorated
sputa were obtained sequentially from each patient. One
specimen, selected randomly, was used for smear micros-
copy or Xpert MTB/RIF. The other specimen underwent
culture. Culture for M tuberculosis was used as the refer-
ence procedure. If a positive smear microscopy or Xpert
MTB/RIF result was obtained, the patient was referred
to the tuberculosis treatment office at the same clinic.
Patients who were smear-negative or Xpert MTB/RIF-
negative were referred (with their chest radiographs) for
routine clinical review. The primary outcome was tuber-
culosis-related morbidity, measured with the TBscore
and Karnofsky Performance Score (KPS). A higher
TBscore and a lower KPS score indicate more morbidity.
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In the sample size planning, it was calculated that 63 cul-
ture-positive patients in each group are needed to detect
a statistical difference of 1 point in TBscore and a dif-
ference of 10 points in KPS between the two study arms
with a power of 80% and a two-sided type I error rate of
5%. Assuming a dropout rate of 30% and an overall study
tuberculosis prevalence of 15%, in total 550 patients were
to be recruited in each arm.

A hypothetical follow-up study

In the following, we consider a hypothetical follow up
study with a sample size calculation partially informed
by the results of by Theron et al. [28]: the sensitivity and
specificity for Xpert MTB/RIF are assumed to be 88 and
98%, ie. Sex,e;=P(Ryy,=+|D=+)=0.88 and Spy
pert =P(Rypery=—|D=—)=0.98, and for smear micros-
copy 50 and 96.5%, i.e. Se,,onr =P(Rypear=~+|D=-+)=0.
50 and Spsmmr=P(Rsmear= - | D=-)=0.965.

In the following, all considerations refer to a continu-
ous outcome, i.e. TBscore. We use formula (1) and com-
pare in the primary hypothesis the mean responses based
on the test-treatment strategy A and B. Accordingly to
the binomial case, the difference in mean responses is
A=0,— 05, where the hypothesis of interest is written
as Hy:A=0 vs. H:A=0. The formula for calculating
the sample size of a continuous outcome comparing two
independent means is used according to Chow et al. [25].

For both arms, we assume that, if a diagnosis is cor-
rectly made (true positive), then TBscore is 2 points. If
patients are correctly classified to be tuberculosis free
(true negative), then the TBscore is assumed to be 1
point. Among patients who are falsely diagnosed (false
positive), the TB score indicates 4 points. For those
patients in whom a diagnosis remains undetected (false
negative), the TBscore is estimated to be 5 points. The
overall rate of tuberculosis prevalence is assumed to be
15% in the study population, i.e. i.e. P(D=+)=0.15.
To test the null hypothesis of no difference in outcome
(TBscore) between the groups, we set the type I error at
5% and the power at 80%. Under the above assumptions
and assuming a common standard deviation of 2 points,
the Xpert MTB/RIF testing group is expected to have
a reduction in TBscore by 0.2 points compared to the
smear microscopy group. A two-sided t-test for compar-
ing two independent means is used to calculate the sam-
ple size. In total, N= 3,142 patients are needed to show a
difference in the TBscore between the two groups.

Blinded sample size recalculation

At the planning stage of a randomized test-treatment
trial, sample size calculation is based on essential infor-
mation that may not be available or highly uncertain. In
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case of unreliable assumptions made at the initial stage
of a clinical trial, it may be wise to check the validity of
those assumptions using interim data from the study.
The basic idea of a blinded sample size recalculation
is to conduct one interim analysis without unblinding
the test-treatment assignment to provide an estimate
of a nuisance parameter. In this context, the prevalence
nm=P(D=+) constitutes the nuisance parameter which
is used to adjust the sample size in order to preserve the
power without affecting the type I error rate and prevent
unblinding the study. For the estimation of the preva-
lence, the assessment of the reference standard for the
study population is required.
The following steps are considered [24]:

In the first step, using the sample size formula in
(2), the initial sample size N, is calculated based on
assumptions regarding the sensitivity and specificity
of the two diagnostic tests A and B, i.e. Se,, Sep, and
Sp4» Spp, respectively, as well as assumptions regard-
ing the expected outcome uﬁn(mrtd withr, de{+,—},
m(R,) €{L,II} and t<{A, B}. Additionally, an assump-
tion regarding the prevalence, 7,
sance parameter 7 is needed.

In the second step, patients are recruited until a pre-
determined fraction (f) of the initial sample size N,,
denoted by N;=N,-f, is obtained. At the interim
stage of the trial, the nuisance parameter is estimated.
Suppose that that n patients out of N, observations
are diagnosed as having the target condition defined
by the reference standard, so that

ssumed ON the nui-

7= VI/N1

estimates the prevalence m. The estimator represents
the maximum likelihood estimator of a binomial propor-
tion [29].

Substituting 7 for m in (2) provides the re-calculated
sample size N* that the current data suggest should
have been specified for the trial. If the re-calculated
sample size N* is larger than the already recruited sam-
ple size N, further patients will be recruited until the
adjusted sample size will be reached. Otherwise, no
further recruitment beyond Nj is necessary. Finally, the
study is analyzed based on the unadjusted type I error
level due to the blinded character of the recalculation
procedure.

Application to the hypothetical follow-up study

After 50% of all originally intended 3142 participants
have been recruited, a sample size recalculation based
on the estimated prevalence resulting from the refer-
ence standard information, i.e. the culture positivity for
M tuberculosis complex, is performed. Let us assume
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that we observe a prevalence 25%. Based on this, the
recalculated sample size is equal to 2012, i.e. distinctly
smaller than the intended sample based on an assumed
prevalence of 15%. This reflects that with a higher
prevalence, the advantage of Xpert MTB/RIF (the
much higher sensitivity) becomes more visible in the
study results. Therefore, based on these assumptions, a
remaining number of 441 patients need to be included
in addition to the number already recruited in order to
reach the trial objective.

Implementation of the simulation study

A simulation study was conducted to assess the method
of sample size recalculation in the context of a rand-
omized test-treatment study by investigating different
scenarios. For each scenario, we consider the bias, the
type I error and the actual power of the adaptive design
in order to examine, whether the adaptive design
achieves the pre-specified power and do not inflate the
type I error rate. In particular, the empirical type I error
rate is calculated as proportion of p-values from testing
the null hypothesis of no difference on each simulated
sample that are less than the 5% significance level, when
the null hypothesis is true. The power is determined as
the proportion of simulation samples in which the null
hypothesis of no effect is rejected at the two-sided 5%
significance level, when the null hypothesis is false. In
the Supplementary Material (see Additional file 1), we
report the calculated bias of the estimated prevalence
in the interim analysis as percentage of the true value,
ie. (f%”) -100% [30] to verify an unbiased estimation
of the prevalence in the interim analysis. In order to
examine the feasibility of the sample sizes, we show the
distribution of the true necessary, initial, and recalcu-
lated sample sizes across all scenarios. In addition, for
a selected scenario, we report how much the recalcula-
tion sample sizes deviate from the true necessary sam-
ple size as well as from the initial sample size across
all simulation runs. With respect to illustrate the gap
between nominal and actual power when not using an
adaptive design, we report also the power of the fixed
design. We present the distribution of these quantities
across all scenarios using boxplots stratified by selected
parameters.

In total, 1620 scenarios were simulated, i.e. two sets of
the true prevalence, five sets of the assumed prevalence,
three sets each from the sensitivity and specificity of test
A as well as test B under the null and alternative hypothe-
sis, respectively, and two sets of the expected outcome in
diseased patients receiving treatment I. The variations of
the parameters are given in Table 1 in the Supplementary
Material (see Additional file 1). Per scenario, 10,000 repli-
cations were performed. In order to limit the complexity
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of the simulation study, we assumed that the expected
outcomesuﬁn(mrtd with r, de{+,—}, m(R)e{,1l} and
te{A, B} in the test-treatment arms were independent of
the applied tests, i.e. the effect of a correct diagnosis (and
consequently correct treatment) as well as a false diagno-
sis was assumed to be the same in both diagnostic groups,
respectively. Thus, we only considered the expected out-
come of treatment I and II in dependence of the true dis-
ease state of the patient, i.e. y,,; with d € {4+, —}, m e {L, II}.

Provided that decreasing effects are favorable (e.g.
lower mortality), we assumed that treatment I induced
a positive/curative effect in the diseased population, so
that the expected rate in this group should be considered
quite low, i.e. py, =0.05 or 0.1. Similarly, if the non-dis-
eased individuals received the treatment strategy that was
optimal for them, i.e., treatment II, a low event rate could
be expected, i.e. y;_=0.05. Patients who tested falsely
positive unnecessarily underwent an invasive treat-
ment, leading to potential complications or side effects,
resulting in a high event rate, i.e. 4;_=0.2. Patients who
tested falsely negative and did actually have the disease
did not receive the treatment they needed, which may
lead to disease-related complications and consequences,
suggesting a high event rate, i.e. y;;, =0.25. In addition,
it was defined in the simulation that under the alterna-
tive hypothesis, apart from prevalence, the true values
for the diagnostic accuracy parameters as well as the
true expected outcomes were assumed in the sample size
recalculation.

Statistical significance was assessed using the Wald-test
for comparing two independent binomial proportions
[31, 32]. The simulation was performed using R (Version
4.0.1) [33]. The simulation program as well as a list of R
packages used are given in the Supplementary Material
(see Additional file 2).

An alternative approach to estimate the prevalence

in a blinded manner

In case no reference standard is available for all study
participants or is not available at all and, additionally,
if we make reliable assumptions about the diagnostic
accuracy of the tests applied, the nuisance parameter
can be estimated by calculating the overall positive
rate in the interim analysis to then resolve the follow-
ing equation according to the nuisance parameter 7 for
de{+,—}:

Pt =

P(R, = +| Se,, Sp,, D = d)
t=A,B
(

=rx-Se,+(1—x —Spa)+7-Seg+(1—x)- (1—Spp)
(4)

where P is the probability of obtaining a positive test

result in the study based on the diagnostic accuracy of

test A and B and disease prevalence. It follows:
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v Pt + Spa + Spg — 2
- (Sea +Spa — 1)+ (Seg +Spp — 1)

(5)

with Se, +Sep+Sp, +Spg—2=0and 0 <P < Se, + Sep.
However, this approach is not investigated in this paper.

Results

In this section, we present the results of the simulation
study to illustrate whether the adaptive design reaches
the pre-specified power of 80% and controls the type
I error rate. With respect to illustrate the gap between
nominal and actual power when not using an adaptive
design, we also report the power and type I error rate of
the fixed design.

Simulation results presenting the distribution of the
achieved power and type I error rate are visualized by
means of boxplots stratified by different scenarios, in
particular depending on the difference between the
assumed and true prevalence as well as the difference
in diagnostic accuracy of the two tests applied. In addi-
tion, a distinction is made between an expected treat-
ment effect of treatment I in the diseased population by
setting p;, =0.05 and 0.1. Ideally, power and the type I
error should be maintained over all simulated scenarios.
In order to obtain an overview of the feasibility of the
design, i.e. whether the calculated sample sizes are real-
istic, the distribution of sample sizes for all simulated
scenarios, stratified according to the initial, adjusted
and true necessary sample size calculation, is also shown
graphically. In addition, the bias in estimating the preva-
lence is considered.

In Fig. 2, the results of the simulation study reveal that
the desired theoretical power of 80% was reached in the
adaptive design independently of the simulated scenar-
ios. The median power in the adaptive design across all
scenarios is 0.8032, and the power is generally located
tightly around the nominal level. The re-estimation of the
prevalence diminished the effect of an initially wrongly
specified prevalence.

In the fixed design, the calculated power varies in
relation to an over- and underestimation of the true
prevalence, the magnitude of the difference between
sensitivity and specificity of test A and B as well as the
choice of y;,. In case of y; =0.05, an underestima-
tion of the true prevalence leads to an underestimation
of the power in the fixed sample size design for more
than 50% of the scenarios, thus requiring subsequent
recruitment of further patients than originally planned
(Fig. 2a). Analogously, an overestimation of the true
prevalence resulted in the recruitment of fewer patients
than originally planned in the fixed design. The larger
the difference between the true and assumed preva-
lence, the greater the dispersion of the power around
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the median value in the fixed design. Similarly, the
results of the power were affected by the assumed dif-
ferences in sensitivity and specificity between Test
A and Test B. The larger the difference in sensitivity
between the two tests, the greater the variability of the
power and higher the median value in the fixed design
(Fig. 2b). Both an increasing difference in sensitivity
between the two tests and an underestimation of preva-
lence lead to a more pronounced overestimation of the
power in the fixed design. When considering the speci-
ficity of the two tests, the dispersion of the calculated
power in the fixed design as well as the median value

across all scenarios decreases as the difference between
test A and B increases (Fig. 2f). By choosing y#;,= 0.1
instead of 0.05, the patterns are reversed (Fig. 2d-f).

Supplementary Fig. 4 gives a more detailed look at the
power for one specific scenario.

Supplemental Fig. 2 illustrates the results of empirical
type I error rates for the adaptive and fixed designs for
all 1620 simulated scenarios. It reveals that in nearly all
scenarios the empirical type I error rate was controlled
in the adaptive design as well as in the fixed design. Only
for about 7% of the scenarios, the observed type I error
rate was outside of the 95% prediction intervals, which
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may be due to chance. In addition, the distribution of the
observed type I error rates did not depend on the sets of
scenarios and thus was not affected by an overestima-
tion or underestimation of the true prevalence nor by the
magnitude of the difference between sensitivity and spec-
ificity of test A and B as well as the choice of jr.

The sample size results shown in Supplementary Fig. 3
demonstrate that, regardless of variation in prevalence,
sensitivity, or specificity, the adjusted (recalculated) sam-
ple sizes tended to approach the true necessary sample
size. The distribution of the initial sample size varies in
dependence of the different parameters. Overall, sample
sizes varied between 900 and 4000 individuals.

In order to assess the magnitude of the gain from
recalculating the sample size in the interim analysis, we
look at how much the recalculated sample size devi-
ates from the true necessary sample size as well as from
the initial sample size across all simulation runs, when
Se,=0.95, Sp,=0.9, Sez=0.7, Spy=0.75 and 7=04,
T yeeumea=0.2. On average, the recalculated sample size
differs from the true necessary sample size by a factor of
0.99 (SD=0.0065) and from the initial sample size by a
factor of 1.13 (SD=0.0066) (Supplemental Fig. 5).

Supplemental Fig. 1 contains the results of the rela-
tive bias for the adaptive design of the scenarios with the
same parameters as described above in the context of the
Type I error rate and power. The prevalence of the re-
estimated prevalence is estimated with almost no bias,
and the median bias is approximately the same across all
simulated scenarios.

Discussion and conclusion

This paper shows a first approach of how an adap-
tive design, i.e. blinded sample size recalculation, can
be integrated within a randomized test-treatment trial.
Consequently, two important aspects are combined:
considerations concerning the sample size calculation in
randomized test-treatment studies and the application
of an adaptive design. Randomized test-treatment stud-
ies involve the use of a twofold intervention, i.e., first
the application of diagnostic tests and then the evalua-
tion of subsequent treatments. A crucial element in the
initial planning phase of a study is the sample size plan-
ning. In comparison to standard RCTs, parameters such
as prevalence and diagnostic accuracy of the respective
tests are required in addition to assumptions regarding
the expected patient outcomes in the study arms. Due
to lack of empirical information regarding these param-
eters, there is always a huge uncertainty at the planning
stage of the trial. An adaptive design with a recalculation
of the sample size as investigated here provides a first
minor step how to overcome a part of lack of information
regarding these parameters and may avoid unnecessarily
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recruiting too many patients at the end of the study — or
too few.

Our first stated objective (a) in Background section is
satisfied, i.e. the empirical power of the adaptive design
equals the desired theoretical one of 80%. The type I
error rate is not inflated and the prevalence is re-esti-
mated without any bias. This recalculation procedure
corrects a wrongly assumed prevalence and its conse-
quences on the initial sample size. However, the results
of our simulation studies demonstrate that an incorrectly
specified prevalence can lead to under- or overpowered
studies. The magnitude of this effect may be even larger
in studies with varying treatment effects only in the dis-
eased or non-diseased subpopulation, as this implies a
higher impact of a miss-specified prevalence. A differ-
ent set of scenarios, especially different treatment effects,
may imply that the calculated sample sizes are unrealisti-
cally large, thus the implementation of such studies is not
feasible and our second stated objective (b) is not always
fulfilled.

The performance gain resulting from the implemen-
tation of an adaptive design is guided by the difference
between the true necessary sample size and the recal-
culated as well as original sample size. When decid-
ing whether such a gain should be considered clinically
relevant and have an impact in practice, it requires to
take into account also the impact for the patients, both
in terms of outcomes and exposure to the interventions.
This should be considered alongside the cost and effort
involved in an adaptive design.

Further critical aspects arise that may complicate
the use of this method in practice and need to be con-
sidered first: recalculation of sample size based on the
prevalence as presented here involves the existence of
a reference standard, i.e. a third diagnostic procedure
has to be measured additionally. This requires the rapid
measurement and unblinding of the reference standard
test results, which may lead to an ethical problem in
some cases. In particular, it becomes difficult to justify,
in the knowledge of the reference standard, withhold-
ing the right treatment from patients who have tested
falsely negative.

In order to weigh this problem, one must distinguish
how severe the primary endpoint of interest is and
whether it occurs in short-term or long-term.

In case of a substantial time gap between the admin-
istration of treatment based on the results of test A and
B and the evaluation of the reference standard, the ethi-
cal problem mentioned could be circumvented. Here,
one treatment strategy could correspond to “waiting for
the reference result” and the other treatment is based
on test A or B aiming to compare immediate treatment
versus delayed treatment decision.
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In practice, however, it is often difficult to find studies
in which a reference standard is additionally obtained
to evaluate the tests under examination. If this is the
case, i.e. no reference standard can be additionally
obtained, the interim estimation of the prevalence may
be based on the proportion of all patients tested posi-
tive, provided that the test results are unblinded. Here
we can either assume that the sensitivity and specific-
ity of the tests under consideration are high allowing to
approximate the prevalence by the proportion of test
positives, or we can assume that sensitivity and speci-
ficity are known exactly allowing to use the approach
outlined in An alternative approach to estimate the
prevalence in a blinded manner section. The perfor-
mance of these alternatives has still to be investigated
in simulation studies.

Another crucial aspect of the classical two-arm
design in general is that only those patients with dis-
cordant test results will actually affect the magnitude of
the effect size [34]. In this context, it is worth consid-
ering already during the study planning stage whether
it is practically possible and ethically reasonable to
choose an alternative design in which both tests are
applied in all patients and subsequently only patients
with discordant test results are randomized. This study
design can only be reasonably applied in a setting
where both tests can be performed simultaneously, or
where the application of one test would not influence
the other. Elsewhere, we have elaborated the advan-
tages and disadvantages as well as sample size planning
of the classical design and the so called discordance
design [4]. Based on the research question, one design
can be preferred over the other. The presented adap-
tive design here can also be applied on the discordance
design with additional assumptions regarding the dis-
cordance fraction.

In practice, it is difficult to find studies that provide
exactly the information needed for sample size calcula-
tion. The prevalence of a disease can be obtained from
empirical data as well as the diagnostic accuracy of a
test from diagnostic accuracy studies. It is more diffi-
cult to obtain information on the treatment effects in
the different subgroups of diseased and non-diseased
individuals, as corresponding RCTs are lacking or even
ethically not justifiable. In this work, we made already
the simplifying assumption of no interaction between
test and treatment.

In the simulation study, a simple comparison of rates
was assumed in the primary analysis. In practice, the pri-
mary analysis may be enhanced by further prognostic
factors that influence the overall outcome and/or have
informed the randomization process, resulting into the
use of some type of regression model.
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In general, we have to acknowledge that the simula-
tion study presented in this paper as well as the proposed
study concept of an adaptive design is based on several
simplifying assumptions and thus entails limitations.
First, for feasibility reasons, we did not assume any inter-
action between treatment and test results. Because the
simulation study and the associated results, which are
already very complex, would be even more extensive,
complex and difficult to present. Secondly, the procedure
proposed here assumes that all parameters except preva-
lence are exactly known. This is a limitation of a blinded
re-estimation of the sample size in favour of not risking
inflation of the type I error and still being allowed to use
additional useful information in the course of the study.
However, possible and realistic deviations of the remain-
ing parameters from the true value needs to be accepted.
On the other hand, to perform an unblinded re-estima-
tion of the sample size based on additional parameters
estimated in the study the type I error would have to be
adjusted for multiplicity. In practice, the benefits and
harms of the different designs must be weighed against
each other.

Further empirical and theoretical research is needed to
show that our conclusions are robust to deviations from
these assumptions and that generalizability of the set-
tings is achievable.

Finally, the presented design has the potential to be
applied in practice, although under certain limitations.
The special characteristics of randomized test-treatment
studies offer the possibility to use additional information
of nuisance parameters, like the prevalence of the dis-
ease, for the recalculation of the sample size to achieve
more accurate results.

For future work it would be desirable to see to what
extent one can overcome the above mentioned limita-
tions. Here, a blinded sample size recalculation based
on the pooled variance in case of a continuous end-
point (or pooled proportion in case of binary endpoint)
and an unblinded sample size recalculation based on
the treatment effects can be a compromise that does
not use as much information as the unblinded sample
size adjustment, but can use information of one more
nuisance parameter. In this context, it should be inves-
tigated how to deal with the type I error inflation, e.g.
by using already existing methods for the multiplicity
adjustment of the type I error level. However, in order
to use outcome data for the adjustment of the sample
size, the time period until measurement of the primary
endpoint in relation to the recruitment speed is crucial.
If the time until observation of the primary endpoint
is quite long, there is a risk that insufficient outcome
data will be available at the time of a possible interim
analysis or that recruitment will be completed before
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sufficient data have been monitored. In our example
study, the primary outcome is assessed 2 months and
6 months after randomization. In order to perform a
blinded re-estimation of the sample size based on the
pooled variation of the TBscore and KPS, it is neces-
sary to ensure that all outcome data are available at an
interim analysis after e.g. 50% of the intended patient
number and further recruitment is stopped until then,
probably leading to a delay in the study schedule.
Therefore, this option would not be advisable.
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