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Abstract

Background: Traditional mediation analysis typically examines the relations among an intervention, a time-invariant
mediator, and a time-invariant outcome variable. Although there may be a total effect of the intervention on the
outcome, there is a need to understand the process by which the intervention affects the outcome (i.e., the indirect
effect through the mediator). This indirect effect is frequently assumed to be time-invariant. With improvements in
data collection technology, it is possible to obtain repeated assessments over time resulting in intensive longitudinal
data. This calls for an extension of traditional mediation analysis to incorporate time-varying variables as well as
time-varying effects.

Methods: We focus on estimation and inference for the time-varying mediation model, which allows mediation
effects to vary as a function of time. We propose a two-step approach to estimate the time-varying mediation effect.
Moreover, we use a simulation-based approach to derive the corresponding point-wise confidence band for the
time-varying mediation effect.

Results: Simulation studies show that the proposed procedures perform well when comparing the confidence band
and the true underlying model. We further apply the proposed model and the statistical inference procedure to data
collected from a smoking cessation study.

Conclusions: We present a model for estimating time-varying mediation effects that allows both time-varying
outcomes and mediators. Simulation-based inference is also proposed and implemented in a user-friendly R package.

Keywords: Ecological momentary assessment, Intensive longitudinal data, Local linear regression, Nonparametric
regression, Varying coefficient model

Background
Developments in mobile and wearable device technology
have enabled the collection of intensive longitudinal data,
[1] such as ecological momentary assessment (EMA), [2,
3]. EMA is particularly useful in health behavior change
studies, for example, smoking cessation studies (see e.g.,
[4]), in which data on variables such as craving, with-
drawal symptoms, or stress, are measured in real-time,
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real-world contexts. As the collection of data using EMA
has grown, so have methods for analyzing and making
the most of the temporal density of measurements, such
as the mixed-effects location scale model [5] and the
time-varying effect model [6]. EMA data captures tem-
poral changes and, therefore, allows the estimation of
time-varying effects. That is, the effect of one variable on
another can vary as a function of time.
Often, the variables that are collected during EMA are

variables that are targets of a behavior change interven-
tion and are also thought to affect the health outcomes
of interest. In other words, they are mediators, variables
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that lie on the pathway between the intervention and the
outcome. However, there have been very few proposed
methods for assessing mediation using this type of inten-
sively measured data. Extensions of time-varying (i.e.,
varying-coefficient) models to mediation analysis would
allow the estimation of time-varying mediation effects.
For example, a pharmacological intervention may have an
effect on cessation fatigue, defined as tiredness of trying
to quit smoking [7], via negative affect but this effect may
diminish as the time since quitting increases. As another
example, a smoking cessation intervention may have an
effect on remaining smoke-free via self-efficacy and this
effect may strengthen as the time since quitting increases.
Understanding time-varying mediation effects in treat-
ment response is critical, as it will allow for tailoring of
interventions, particularly as individuals transition from
initial behavioral change to behavioral maintenance. This
paper aims to propose an approach to mediation in which
data on both the mediator and outcome variables are col-
lected using EMA. Thus, values of the variables change
over time and the effects of one variable on another
may also change over time. Specifically, we propose a
two-step approach to estimate the time-varying media-
tion effect. We develop a simulation-based approach to
derive the corresponding point-wise confidence band for
making statistical inferences regarding the time-varying
mediation effect.
The rest of this paper is organized as follows. In Methods

section, we present relevant background material on
varying-coefficient models and the proposed model for
time-varying mediation, including estimation and boot-
strap inference. In Simulation studies section, we present
simulation studies to examine the performance of the
bootstrap confidence intervals. In Application: the Wis-
consin smokers’ health study 2 section, we apply the pro-
posedmethods to data from a smoking cessation interven-
tion study. In Discussion section, we discuss limitations,
future directions, and conclusions.

Methods
Time-varying coefficient models [8] have been used to
model time-varying effects of an independent variable
on a dependent variable [6, 9, 10]. These are essentially
varying-coefficient models [11] applied to intensive lon-
gitudinal data. For each individual, i, the independent
variable and the outcome variable are measured at mul-
tiple time points {tij, j = 1, 2, . . . ,Ti}. The data collected
are

{tij,Xi(tij),Yi(tij)}, for i = 1, 2, . . . , n, j = 1, 2, . . . ,Ti.

The model can be written as

Yi(tij) = β0(tij) + Xi(tij)β1(tij) + εi(tij),

where β0(t) and β1(t) are time-varying coefficient func-
tions and are assumed to be smooth functions of time.
If needed, indicator functions can also be introduced to
model population-level jumps at specific given change
points. The error term ε(t) is a zero-mean stochastic
process with covariance function, γ (s, t), between time
s > 0 and t > 0. Not only are the effects (i.e., coef-
ficients) of the predictor variables time-varying, but the
values of the variables themselves also change over time.
This is distinct from the commonly used mixed effect
model which assumes a given functional form of the out-
come variable and usually does not allow the coefficients
expressing the effects of the covariates to change with
time in non-parametric way, although the value of the
covariates themselves may change with time [6, 8, 12].
The values of the variables themselves are not necessarily
smooth functions of time, especially in the case of vari-
ables that have discrete values, but it is generally assumed
to be so with continuous variables, such as the media-
tors and the outcome variables in the setting we introduce
later. There are essentially two estimation approaches for
time-varying effect models: splines and local smooth-
ing methods (for a summary see [13]). In this paper,
we focus on local smoothing methods, which locally
approximate coefficient functions by linear or polynomial
functions [14].
Fan and Zhang [15] proposed a two-step procedure that

uses kernel methods to estimate the time-varying coef-
ficients and their corresponding standard errors. Both
simulations and real data applications showed the effi-
ciency of their method over other previous proposals.
This two-step procedure is computationally simpler than
simultaneous estimation using spline methods, especially
with longitudinal data sets. It especially fits well in our
ILD setting, as the quality of the estimate in the smoothing
step benefits from frequent time observations. This two-
step procedure provides an important foundation for our
proposed estimation procedure for time-varying media-
tion effects which combines the traditional linear medi-
ation model estimation procedure and local polynomial
smoothing.
Although time-varying coefficient models are relatively

common for examining the time-varying effect of an
independent variable on a dependent variable, relatively
little work has examined time-varying effects for media-
tion. Lindquist [16] first introduced functional (or time-
varying) mediation effects in which the independent and
dependent variables were measured at a single point in
time but the mediator was measured intensively over
time using fMRI. More recently, VanderWeele and Tch-
etgen [17] proposed a mediation g-formula, which allows
time-varying treatments, time-varying mediators, and an
end-of-study point outcome. They mention the possibility
of time-varying effects, but did not directly address them.
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However, in our application to a smoking cessation study,
the mediator and outcome are both measured repeatedly
over time (i.e., time-varying mediator and time-varying
outcome) and the independent variable is random assign-
ment to the intervention (not a time-varying treatment).
An approach proposed by Bind et al. [18] uses the mixed-
effects model to capture the time-varying effect. However,
this still imposes some parametric restrictions on the
shape of the time-varying effect, whichmay not be flexible
enough and hence result in model misspecification. Thus,
none of these previous models and estimation approaches
apply directly to our smoking cessation study.
Traditional methods of assessing mediation, shown in

Fig. 1, generally specify the direct effect (i.e., the effect of
the intervention on the outcome that does not go through
the mediator) as γ , and the indirect or mediated effect as
the product of paths α (i.e., the effect of the intervention
on the mediator) and β (i.e., the effect of the mediator on
the outcome)[19]. Note that this definition holds only for
linear models in which the intervention does not interact
with the mediator [20]. To test the statistical significance
of the mediated effect, one can perform a Wald test using
the asymptotic standard error formula introduced in [21],
using the standard error calculated by a bootstrap proce-
dure, or alternatively, constructing a confidence interval
based on the percentiles of a non-parametric bootstrap
distribution. Several prior simulation studies have shown
bootstrap approaches to be superior, especially in smaller
samples because α̂β̂ may not be normally distributed [19,
22–25].
Mediation analysis has been extended to longitudinal

data in which the mediator and/or outcome is measured
repeatedly and therefore values on the variable itself may
vary over time (see e.g.[19, 26, 27]); however, these exten-
sions have not incorporated time-varying effects, which
allow the direct and indirect effects to be summarized
as functions of time rather than as a series or sum of
single estimates at each measurement occasion. Such

approaches work well for a few repeated measurement
occasions but are cumbersome for intensive longitudinal
data (ILD), such as that collected using mobile phones
or other such devices that have allowed researchers to
obtain more temporally dense data. For example, our
empirical data analysis example from a smoking cessation
study examines whether the intervention has an effect on
cessation fatigue that is mediated by negative affect. Par-
ticipants received morning and evening EMA prompts
everyday to assess smoking, negative affect, withdrawal
symptoms, and cravings over the course of 5 weeks.
This measurement provides temporally dense ILD, such
that mediation effects that vary as a function of time,
rather than a single (i.e., constant over time) estimate of
the effect, can be specified allowing for more complex,
dynamic, hypotheses. In other words, mediation models
can be specified that allow the effects of an intervention to
vary over time, including the direct effect and the indirect
effect.
Assuming linearity and no interactions between the

intervention and mediator [20], as in traditional media-
tion analysis with time-invariant effects, the time-varying
mediation effect can be defined as the product of two
coefficients, but in this case, both coefficients are time-
varying. That is, the two coefficients are no longer sin-
gle numbers such as α and β ; rather, they are func-
tions of time, and the product term is also a function
of time. Figure 1 is extended in Fig. 2 to include time-
varying effects. In this paper, we propose to estimate the
time-varying mediation model by extending the two-step
approach [15], followed by bootstrapping to obtain confi-
dence intervals for the indirect effect (i.e., the effect of the
intervention on the outcome through the mediator).

The proposedmodel
Extending the mediation framework in Fig. 1 to take
advantage of the temporal density of ILD allows esti-
mation of time-varying effects as shown in the dynamic

Fig. 1 The traditional mediation model with time-invariant effects
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Fig. 2 The proposed time-varying mediation model

mediation diagram in Fig. 2. In this model, we consider
the measurement timing of the variables consistent with
modeling mediation as a process that unfolds over time
(i.e., intervention must precede change on the mediator,
and mediator must precede change on the outcome). The
intervention or independent variable, denoted X, is time-
invariant, and assigned at time t0. Across time, the effect
of X on the value of the mediatorM at any time t > t0 (i.e.,
M(t)) is denoted by α(t). The value of the outcome vari-
able Y at time t (i.e., Y (t)) is affected by the value of the
mediator at a small window before time t, (i.e.,M(t−�t)).
Here �t is a small constant which represents the time-
lag of the effect of the mediator on the outcome. More
discussion of �t will be presented shortly.
The diagram in Fig. 2 leads to the following time-varying

mediation model:

M(t) = α0(t) + I(t ≥ t0)α(t)X + εM(t),
Y (t) = β0(t)+I(t ≥ t0) {γ (t)X+β(t)M(t − �t)} + εY (t),

where εM(t) and εY (t) are both zero-mean independent
stochastic processes. The time-varying mediation effect
of interest is α(t − �t)β(t). Because we do not impose
any shape constraints on the smooth coefficient functions
of the model, there are no restrictions on the functional
form (e.g., linear, quadratic etc.) of the time-varying medi-
ation effect. Suppose there are repeated measurements of
N subjects at multiple time points {tij}, then the observed
data are

{Xi, (tij,Mi(tij),Yi(tij))}, i = 1, 2, . . . ,N , j = 1, 2, . . . ,Ti,

and the model is

Mi(tij) = α0(tij) + I(tij ≥ t0)α(tij)Xi + εMi (tij)
Yi(tij) = β0(tij)+I(tij ≥ t0)

{
γ (tij)Xi + β(tij)Mi(tij − �t)

}

+εYi (tij).

Note that all effects of the intervention, Xi, are con-
trolled by a post-intervention indicator, I(tij ≥ t0),

because the intervention is assigned at time t0. We pre-
sented these first set of equations that can be applied
to a more general situation in which there may be
repeated measurements before and after the intervention
is assigned and the analyst may be interested in includ-
ing both in the model. Since the mediation (i.e., indirect)
effect is of primary interest, we focus on the time points
after the intervention is assigned; thus, the indicator term
can be dropped.

Mi(tij) = α0(tij) + α(tij)Xi + εMi (tij) (1)
Yi(tij) = β0(tij)+γ (tij)Xi+β(tij)Mi(tij−�t)+εYi (tij). (2)

Recall that �t is the time-lag in the mediator - outcome
relationship. Ideally, its value, which reflects the true time
difference in a mediation setting, should be determined by
subject-matter knowledge, and preferably be reflected in
the measurement timing in the design stage of the analy-
sis [28]. In this case, we assume a small time difference, i.e.
the value of the mediator right before time t predicts the
value of the outcome variable at time t. Since this value is
not observable, we use the value at the previous time point
to approximate it during our estimations. This is a reason-
able approximation in an ILD setting, where consecutive
time points are close together. Additionally, models (1)
and (2) are specified such that there are only two interven-
tion groups (e.g., treatment versus control). That is, Xi is a
binary indicator of the treatment condition, and the time-
varying effect is the effect of the treatment as compared
to the control group. For more than two intervention
groups, the proposed model can be easily extended by
adding more indicator variables (see the smoking cessa-
tion study in Application: the Wisconsin smokers’ health
study 2 section as an example). Without loss of generality,
we present the following proposed estimation procedure
and bootstrap inference for the models in Eqs. (1) and (2).
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Estimation of the time-varying mediation effect
We could estimate the time-varying effect models in
Eqs. (1) and (2) separately using the two-step esti-
mation procedure [15] but here we propose a variant
of that approach to estimate them simultaneously. Let
{t1, t2, . . . , tT } be the distinct time points when the data
are measured. For any fixed time point tj ∈ {t2, . . . , tT },
we observe complete data from Nj subjects (Nj does not
necessarily equal N).Then for any individual i at this fixed
time point tj, the observed data are

(Xi,Mij,Yij), i = 1, 2, . . . ,Nj,

where Mij = Mi(tij) and Yij = Yi(tij). Similar to the
first step of the two-step procedure [15], at any fixed
time tj, model Eqs. (1) and (2) are equivalent to the tra-
ditional linear mediation model at a single time point.
Thus, we can estimate the value of the varying coeffi-
cient functions α(tj),β(tj), and γ (tj), which are treated
as three parameters rather than three functions, by the
least squaresmethod, namely, by solving the following two
optimization problems,

min
α

Nj∑

i=1
(Mij − α(tj)Xi)

2 and

min
β ,γ

Nj∑

i=1
(Yij − γ (tj)Xi − β(tj)Mi,j−1)

2.

Suppose the variables are mean centered or standardized
at the fixed time point so that the intercept terms may be
dropped. To derive a joint distribution of the estimated
coefficients, we propose to combine the two least squares
problems together to create a new least squares problem
given as

min
α,β ,γ

⎧
⎨

⎩

Nj∑

i=1
(Mij − α(tj)Xi)

2 +
Nj∑

i=1
(Yij − γ (tj)Xi − β(tj)Mi,j−1)

2

⎫
⎬

⎭

⇔ min
δ

2Nj∑

i=1
(Y ∗

ij − δ�(tj)X∗
ij)

2

(3)

where δ(tj) = (α(tj), γ (tj),β(tj))�, and Y ∗
ij , X∗

ij in matrix
forms are,

Y∗
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M1j
M2j
...

MNj ,j
Y1j
Y2j
...

YNj ,j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2Nj×1

X∗
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1 0 0
X2 0 0
...

...
...

XNj 0 0
0 X1 M1,j−1
0 X2 M2,j−1
...

...
...

0 XNj MNj ,j−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2Nj×3

Note that matrices X∗
j and Y ∗

j depend on values of the
mediators at both time tj and time tj−1. In the case where
not all Nj individuals observed at tj also have values of the
mediator observed at time tj−1, we will only use those with
complete data to make the estimation at tj.
Denote the solution to the least squares problem in (3)

as d(tj) = (a(tj), c(tj), b(tj))�, that is, d is an estimate of
δ and is a 3 × (T − 1) dimensional vector, which includes
values of the estimated time-varying coefficient functions
at all time points,

d = (a(t2), c(t2), b(t2), a(t3), c(t3), b(t3), · · · ,
a(tT ), c(tT ), b(tT ))�

Similar to the second step of the two-step procedure
[15], the coefficient functions α̂ and β̂ in model Eqs. (1)
and (2) are smoothed by local polynomial regression using
(a(tj), b(tj)) j = 2, 3, ...,T as,

α̂(t − �t) =
T∑

l=2
w(tl, t − �t)a(tl) (4)

β̂(t) =
T∑

l=2
w(tl, t)b(tl) (5)

where w(tj, t) may be weights from any linear smoothing
technique. Here, we use a local linear smoother, where the
weight is defined as follows [15]

w(tj, t) = e�
1,2(C�WC)−1CjWj, j = 2, 3 . . .T

where e�
1,2 = (1, 0), C = (C2, . . . ,CT )� with Cj = (1, tj −

t)� and W = diag(W2, . . .WT ) withWj = Kh(tj − t) =
K(

tj−t
h )/h. The kernel function K(·, ·) can be chosen to be

any commonly used kernel (e.g., Gaussian) and the esti-
mates are usually not sensitive to this choice [14]. The
kernel function decides the importance of each neighbor-
hood point (around the point to estimate) when fitting
linear regressions locally. For example, the Gaussian ker-
nel places more weight on the points which are closer
to the point to estimate. In practice, researchers usually
choose kernel functions with fast and easy computational
implementations, such as the Guassian kernel and the
Epanechnikov kernels [14]. The bandwidth h controls the
scale of closeness to be used for these weights. A small
bandwidth will produce a rough estimate which gives
unnecessary bumps in the estimates due to individual
data, while a bandwidth that is too large may over-smooth
the data and hencemiss important features or characteris-
tics of the underlying curve. The bandwidth h can be cho-
sen by an appropriate bandwidth selection method (e.g.,
rule of thumb) or other methods such as cross validation
[14]. Then the desired mediation effect is
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α̂(t − �t)β̂(t) =
{ T∑

l=2
w(tl, t − �t)a(tl)

}

{ T∑

l=2
w(tl, t)b(tl)

}

,

(6)

which can be rewritten as linear combinations of d,

α̂(t − �t)β̂(t) = (wT
a d)(wT

b d), (7)

where

wa =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

w(t2, t − �t)
0
0

w(t3, t − �t)
0
0
...

w(tT , t − �t)
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, andwb =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0

w(t2, t)
0
0

w(t3, t)
...
0
0

w(tT , t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Estimating a bootstrap point-wise confidence interval for
the mediation effect
To identify a statistically significantmediation effect in the
time-varying setting, we consider the following hypothe-
sis:

H0 : α(t − �t)β(t) = 0 for any fixed t
vs. HA : the mediation effect is not zero.

Since the distribution of the mediation effect is not nec-
essarily normal, we use a nonparametric percentile boot-
strap approach to construct confidence intervals at any
given t. Specifically, we sample individuals from the data
with replacement, and estimate the mediation effect at t
using our proposed estimation procedure for each boot-
strap sample. The lower and upper bounds of the 1 − α%
confidence interval are taken to be the corresponding
lower (α/2) and upper (1−α/2) percentiles of the distribu-
tion of the estimatedmediation effect from a large number
of bootstrapped samples [29].
For any fixed time t, the above bootstrap percentile

method creates a point-wise confidence interval for the
mediation effect at that t. Connecting all confidence inter-
vals yields a confidence band, but note that this is different
from a simultaneous confidence band throughout the
entire time interval, since the nominal confidence level is
only satisfied at each fixed time point t. We return to this
point in Discussion section. The estimation procedure
and bootstrapped confidence intervals are implemented
in an R package, tvmediation, that is available on CRAN.

Results
Simulation studies
To examine the performance of the proposed point-wise
confidence interval, we consider the following two simu-
lation models,

i. α1(t) = 10 + 12t3, γ (t) = −20 − 18t,
β(t) = 50 + 150t2,
γ (s, t) = 15 exp(−0.3|s − t|)

ii. α(t) = 15 + 8.7 sin(0.5π t), γ (t) = 4 − 17(t − 1/2)2,
β(t) = 1 + 2t2 + 11.3(1 − t)3,
γ (s, t) = 15 exp(−0.3|s − t|)

The first model includes polynomial functions of differ-
ent orders, and the second model incorporates a sin func-
tion to increase the complexity of the mediation effect.
The twomodels are similar to those in Fan and Zhang [15]
and Senturk and Muller [30].
Without loss of generality, observation times are gener-

ated as 50 equally spaced time points between 0 and 1.
To generate the simulated data, we first randomly assign
intervention and control group, each with probability of
0.5. The error term is generated from a multivariate nor-
mal distribution with mean zero and covariance function,
γ (s, t), between time s and time t. It is a decaying exponen-
tial stationary covariance function and assumes a decreas-
ing correlation with time. Similar covariance functions
were used in [31] and [15]. The value of the mediator and
the outcome variables are generated according to Eqs. (1)
and (2). In the second step of the estimation procedure,
local linear regression is used. We used the Gaussian ker-
nel and the bandwidth is chosen by the rule of thumb
formula in section 4.2 of Fan and Gijbels [14], where

ĥROT = Cν,p(K)

[
σ̂ 2
Q∑n

i=1{m̂Q(Xi)}2
]1/5

where m̂Q is a fourth-order global polynomial fit of the
data to be smoothed, σ̂ 2

Q is the standardized residual sum
of squares from this fit, and the constant Cν,p(K) = 0.776
for local linear regression with the Gaussian kernel.
We consider three sample size conditions of N =

100, 200, and 500. To verify the nominal level for 95%
confidence intervals, we calculated the coverage rate
of the proposed point-wise confidence interval at t =
0.2, 0.4, 0.6, and 0.8. Table 1 summarizes the results based
on 1000 simulation replications.
Except for a few settings, the coverage rates are all near

a 95% confidence level at these points. We also evaluated
the performance of the estimated time-varying mediation
effect by the mean absolute deviation error (MADE) and
weighted average squared error (WASE) [15, 30], defined
as follows,
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Table 1 Coverage rate for 95% confidence intervals

Sample Size
Coverage

t=0.2 t=0.4 t=0.6 t=0.8

Model i 100 0.95 0.95 0.94 0.94

200 0.95 0.94 0.95 0.95

500 0.94 0.94 0.94 0.95

Model ii 100 0.95 0.95 0.95 0.95

200 0.94 0.94 0.93 0.93

500 0.94 0.95 0.95 0.94

MADE = (4T)−1
T∑

j=1

|η(tj) − η̂(tj)|
range(η)

,

WASE = (4T)−1
T∑

j=1

{η(tj) − η̂(tj)}2
range2(η)

where η(t) = α(t−�t)β(t) is the time-varying mediation
effect. Figure 3 presents boxplots of these measurements
for the two models. Not surprisingly, both of them show
similar patterns with different sample sizes and models.
Specifically, both MADE and WASE decrease as sample
size increases for a particular model, and the error for
model ii is slightly higher than that of model i.
To present a typical fit of the proposed procedure, we

selected the simulation sample with MADE closest to the
median value among all 1000 replications. The estimated

time-varyingmediation effect and the corresponding con-
fidence intervals are plotted in Fig. 4, as compared to the
true effect.
The red solid line is the true time-varying mediation

effect, and the blue solid line is the estimated effect. For
both models, the estimated effect is close to the true
underlying effect. The blue dashed lines are the limits of
the point-wise confidence band estimated by the proposed
method. For both models, the width of the confidence
band is not constant throughout the whole time range, but
at each time, the true effect is fully contained in the confi-
dence band. As the sample size increases, the confidence
band becomes narrower.More simulation results to evalu-
ate the coverage rate at additional new and observed time
points, under different nominal confidence levels, and
using under- or over- smoothed bandwidth selections are
presented in the Supplementary material file. All results
show that our method is performing well under different
simulation settings.

Application: the Wisconsin smokers’ health study 2
We applied the proposed method to conduct an empir-
ical analysis of data collected from a smoking cessa-
tion study, the Wisconsin Smoker’s Health Study 2, [32]
which used EMA to assess negative affect and cessa-
tion fatigue during a smoking cessation trial. The study
was a randomized comparative efficacy trial [32] directly
comparing the two most effective smoking cessation ther-
apies (varenicline and combination nicotine replacement

Fig. 3MADE and WASE for two models with different sample sizes. In each graph, the left three boxplots are for model i and the right three
boxplots are for model ii
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Fig. 4 Point-wise confidence band of the time-varying mediation effect for the two simulation models. Plots in top row are for simulation model i,
where the sample sizes are 100, 200, and 500 from left to right. Plots in the bottom row for simulation model ii, where the sample sizes are 100, 200,
and 500 from left to right

therapy, which included use of nicotine patches and nico-
tine mini-lozenges) with one another and with an active
comparator treatment (nicotine patch only). This dataset
was also studied in [33] but with a different research
question and different model for estimation. In total,
1086 smokers recruited from Madison and Milwaukee,
WI were randomly assigned to one of the three 12-week
pharmacotherapies. Participants completed one morning
EMA prompt, and one evening prompt every day for one
week prior to the quit day and for two weeks after the
quit day and then every other day for the remaining two
weeks of the EMA period (i.e., total of one week pre-
quit and four weeks post-quit). Thus, there are 14 EMAs
prior to the quit day and 42 after the quit day. The goal of
our empirical analysis is to examine whether the interven-
tion has an effect on cessation fatigue that is mediated by
negative affect (see Fig. 5).
Cessation fatigue, defined as tiredness of trying to quit

smoking [7], and negative affect, measured by asking par-
ticipants if they were in a negative mood in the last 15

minutes, were both measured on 7-point Likert scales.
Previous studies have found that negative affect and cessa-
tion fatigue are positively related and related to cessation
failure [4].
We use data from the 42 EMAs post-quit day. Both

the time-varying outcome, cessation fatigue (denoted
CFij), and time-varying mediator, negative affect (denoted
NAij), are assessed at each EMA prompt. Unlike in the
simulation studies, and as is common in most empirical
studies, especially with wearable andmobile devices, there
are intermittentmissing values in the data. Excluding indi-
viduals with no data at all, we have 1047 individuals in
total, and the observed data are

{Vareni, cNRTi, (tij, NAij, CFij)}, i = 1, 2, . . . , 1047,
j = 1, 2, . . . , 42.

There are two indicator variables for the intervention:
Vareni indicates assignment to the varenicline group and
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Fig. 5 The time-varying mediation effect model for the smoking cessation study

cNRTi indicates assignment to the combination nico-
tine replacement therapy group. The nicotine patch only
condition is the reference group as it is considered the
standard of care. Additionally, the observation times are
not equally spaced (i.e., everyday for the first two weeks
and every other day for the remaining two weeks). The
previous proposed model can be modified to incorporate
the additional intervention condition as follows:

NAi(tij) = α0(tij) + α1(tij)Vareni + α2(tij)cNRTi

+ εNA
i (tij) (8)

CFi(tij) = β0(tij) + γ1(tij)Vareni + γ2(tij)cNRTi

+ β(tij)NAi(tij − �t) + εCFi (tij) (9)

Using the proposed method, the estimated mediation
effects, α1(t − �t)β(t) and α2(t − �t)β(t), and the

Fig. 6 Time-varying mediation effects and individual effects. The top two plots display the mediation effects with the corresponding point-wise
confidence intervals. Left panel is for the treatment varenicline, and the right panel is for the treatment combination nicotine replacement therapy,
both as compared to the treatment of nicotine patch alone. The red vertical lines are separation of weeks. The three plots on the bottom row
display the individual time-varying effects in the mediation model 8 and 9
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corresponding confidence bands are presented in Fig. 6.
As compared to the nicotine patch only, the effect of
varenicline on cessation fatigue that is mediated by neg-
ative affect becomes more negative shortly after quitting.
More specifically, the magnitude of this negative media-
tion effect increases quickly in the first week after quit
day, has a slower decrease in the second week, becomes
stable in week 3, and slightly increases in week 4. The
pattern for the effect of cNRT (vs. the nicotine patch
only) was similar although the initial increase in the mag-
nitude was not as pronounced but the mediation effect
was statistically significant throughout the four weeks
post-quit. Examination of the two time-varying effects
that make up the mediation effect are also informative.
Examination of the bottom row of Fig. 6 shows that
varenicline (vs. the nicotine patch only) has a negative
effect that becomes stronger over the course of the first
week. This effect then begins to diminish during the
following three weeks. In contrast, the strong negative
effect of cNRT (vs. the nicotine patch only) on negative
affect is apparent at the beginning of week one but then,
similar to the varenicline group, diminishes during the
following three weeks. Examination of the time-varying
effect of negative affect on cessation fatigue reveals that
there is a strong positive relationship (i.e., more negative
affect results in more cessation fatigue) initially during
the first week that diminishes over the following three
weeks.
Additionally, compared to using nicotine patch only, the

effects of varenicline and cNRT on cessation fatigue, as
mediated by negative affect, are not only negative, but
also, time-varying for the four weeks post quit day. Both
mediation effects have a narrow confidence band and
thus, we can rule out a constant mediation effect over time
because we would not be able to fit a flat line over time
within the confidence interval.

Discussion
We have described a model for assessing mediation in the
context of ILD in which both the mediator and outcome
variables are time-varying. This model allows for estima-
tion of time-varying mediation effects. ILD often arise
from the collection of EMA data but may also arise from
the collection of data from mobile devices, such as wrist-
worn or hip-worn accelerometers. The temporal density
of these data allow for more nuanced research questions
that cannot be addressed by, for example, averaging over
the EMA data and/or assuming that the mediated effect
does not vary as a function of time. By allowing mediated
effects to vary as a function of time, research questions
such as the timing of important mediation effects can be
assessed. Thus, our approach may prove useful to other
researchers who wish to conduct mediation analysis in the
context of ILD.

The simulation study showed that the proposed boot-
strap pointwise confidence intervals contained the true
time-varying mediation effect and that the estimated
time-varying mediation effect was close to the true time-
varying mediation effect. We then applied our approach
to examine the mediation effect of three smoking ces-
sation treatments (i.e., varenicline, cNRT, and nicotine
patch only) on cessation fatigue via negative affect. The
results indicated that the mediated effect 1) did indeed
vary as a function of time, 2) was statistically different
from zero throughout the four weeks post-quit day, and
3) that the effect was strongest in the first week post-quit
for the varenicline group (vs. nicotine patch only). That
is, the varenicline group experienced decreased negative
affect during the first week, leading to decreased cessa-
tion fatigue. Interestingly, the effect was also strongest in
the first week for the patch only group and the effect was
immediate whereas the varenicline effect improved over
the first half of the first week. The mediated effect for
both treatments, compared to the patch alone, appeared
to dissipate over the course of the first four weeks of the
quit attempt. This information may lead to modifications
and/or adaptations of the intervention to, for example,
implement a behavioral component to address negative
affect, with a specific focus on reducing negative affect in
the first week of the quit attempt. This information would
not have been evident had we assumed that the mediation
effect was invariant across the four week post-quit period.
There are several recent studies which also examine the

mediation effect in longitudinal settings. However, our
approach is distinct from them in the underlying goal
of estimating time-varying effects, and/or the method of
estimation. For example, [34] proposes a latent growth
curve model to study the mediation process but does not
allow estimation of time-varying effects. Goldsmith et al.
[35] proposed autoregressive and simplex models to study
the longitudinal mediation effect but again do not allow
estimation of time-varying effects. In contrast, our pro-
posed model assumes that the observations come from
continuous functions of time, and the effects are mod-
eled as a smooth function of time, instead of a time series.
We also distinguish our approach from that in Zhao et al.
[36] by emphasizing the order of the mediator and out-
come (i.e., mediator precedes outcome) in a longitudinal
setting and by using a computationally efficient two-step
estimation approach.
However, there are several limitations of the current

approach. First, the proposed method only constructs a
point-wise confidence interval. For inference at a fixed
time point, a point-wise confidence interval is useful.
However, a simultaneous confidence band is needed to
make inferences over the entire time span. Thus, an obvi-
ous future direction is developing and estimating a simul-
taneous confidence band. Second, although the current
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approach does not require observations from all partici-
pants at all time points [15], the algorithm will not work if
rank(X∗

j ) < 3 (or < d in the general case). In such cases,
one can implement the four methods discussed in Fan and
Zhang [15] (see their Remark 1), or simply drop the obser-
vations at that time point. Third, the two-step method
works well in the ILD setting. If there are data available
from a very limited number of distinct time points, or
the times of observation do not align well among subjects
in the study, the estimates from the two-step procedure
may not be appropriate or accurate. Finally, our proposed
model does not include a lagged dependency on past val-
ues of the response variable to adjust for (time-varying)
confounding. This is because in a longitudinal study, dif-
ferent subjects may be observed at different times, and the
values of the response variable at the previous time point
may not be well-defined, or have a different meaning for
different individuals.
Mediation is inherently about causal pathways - the

intervention has an effect on the mediator, which in turn
has an effect on the outcome. In our particular applica-
tion, individuals were randomly assigned to the smoking
cessation treatments; however, they are not randomly
assigned to the mediator and therefore, there may be
confounders of the mediator and the outcome. In addi-
tion, due to the intensive longitudinal nature of the study,
we cannot rule out the possibility of time-varying con-
founding. Of particular concern is the possibility of time-
varying confounders of the mediator and outcome that
have themselves been affected by the smoking cessation
treatments. For example, the smoking cessation interven-
tion may affect whether an individual smokes on a given
day, which in turn affects both negative affect and ces-
sation fatigue at a later time resulting in time-varying
confounding. To infer causality, we would need to assume
that there are no time-invariant unmeasured confounders
of the mediator and outcome, additivity (no interactions
or non-linearities), and no time-varying confounders of
the mediator and outcome that have been influenced by
the intervention. In addition, we assume temporal order-
ing such that the intervention occurs before the mediator
which occurs before the outcome. These are the standard
assumptions needed for a linear structural equationmodel
to estimate a “causal" effect [16]. These are strong assump-
tions which investigators should consider the plausibility
of in any particular application. Recent work in the causal
inference literature has relaxed the time-varying con-
founding assumption to varying degrees - for example, by
assuming the mediator depends only on recent values of
a time-varying confounder [18]. Nevertheless, in our par-
ticular case, causal inferences regarding the total effect
and the effect of the intervention on negative affect is
possible due to randomization of the smoking cessation
interventions.

Conclusion
In conclusion, we have presented a model for estimating
time-varying mediation effects which builds on previous
work [15–17] to allow a time-varying outcome as well as
a time-varying mediator. We also presented a method for
obtaining point-wise confidence intervals for the product
of two time-varying coefficient functions (i.e., a time-
varying mediation effect), evaluated its feasibility in a
small simulation study, and applied the method to eval-
uate the time-varying mediation effects of three phar-
macotherapy smoking cessation interventions. We have
implemented the estimation and bootstrap procedure in a
user-friendly R package, tvmediation, available on CRAN.
Although we cannot share the actual data, the R pack-
age contains data simulated to mimic the real data along
with tutorials on how to use the functions to fit the model
described above. We believe that this approach will be
useful to those collecting ILD using mobile devices or
self-reported EMA and who wish to examine mediation
effects.
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