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Abstract

Background: The statistical evaluation of aggregation functions for trauma grades, such as the Injury Severity Score
(ISS), is largely based on measurements of their Pearson product-moment correlation with mortality. However,
correlation analysis makes assumptions about the nature of the involved random variables (cardinality) and their
relationship (linearity) that may not be applicable to ordinal scores such as the ISS. Moreover, using correlation as a
sole evaluation criterion neglects the dynamic properties of these aggregation functions scores.

Methods: We analyze the domain and ordinal properties of the ISS comparatively to arbitrary linear and cubic
aggregation functions. Moreover, we investigate the axiomatic properties of the ISS as a multicriteria aggregation
procedure. Finally, we use a queuing simulation with various empirical distributions of Abbreviated Injury Scale (AIS)
grades reported in the literature, to evaluate the queuing performance of the three aggregation functions.

Results: We show that the assumptions required for the computation of Pearson’s product-moment correlation
coefficients are not applicable to the analysis of the association between the ISS and mortality. We suggest the use of
Mutual Information, a information-theoretic statistic that is able to assess general dependence rather than a
specialized, linear view based on curve-fitting. Using this metric on the same data set as the seminal study that
introduced the ISS, we show that the sum of cubes conveys more information on mortality than the ISS. Moreover, we
highlight some unintended, undesirable axiomatic properties of the ISS that can lead to bias in its use as a patient
triage criterion. Lastly, our queuing simulation highlights the sensitivity of the queuing performance of different
aggregation procedures to the underlying distribution of AIS grades among patients.

Conclusions: Viewing the ISS, and other possible aggregation functions for multiple AIS scores, as mere operational
indicators of the priority of care, rather than cardinal measures of the response of the human body to multiple injuries
(as was conjectured in the seminal study introducing the ISS) offers a perspective for their construction and evaluation
on more robust grounds than the correlation coefficient. In this regard, Mutual Information appears as a more
appropriate measure for the study of the association between injury severity and mortality, and queuing simulations
as an actionable way to adapt the choice of an aggregation function to the underlying distribution of AIS scores.
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Background
Overview
The Injury Severity Score (ISS) is a widely-used aggregate
indicator of the overall severity of multiple injuries to the
human body that was introduced in a study by Baker et al.
[1]. This score is calculated by summing the squares of the
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three highest values of the Abbreviated Injury Scale (AIS)
[2], a common evaluation scale for the severity of trauma
to individual body parts.
Since its introduction, the ISS plays an ambivalent role,

which the present manuscript aims at discussing. It acts as
both a clinical measure of the lethality of multiple injuries
(Baker et al. [1] conjecture that this score “models a fun-
damental aspect of the human body’s response to multiple
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injuries”), as well as an operational indicator for patient
triage. This ambivalence calls for two levels of analysis,
when it comes to evaluating the ISS and similar aggre-
gation procedures for AIS grades; a static study of their
association with mortality and a dynamic evaluation of
their axiomatic properties (i.e. how changes in AIS scores
are reflected in the ISS) and queuing performance. How-
ever, only the former level of analysis is favored in the
literature, with the correlation coefficient as sole asso-
ciation metric, and little is known about the axiomatic
properties and queuing performance of ISS and similar
aggregation functions.

Original data source and results
The seminal study by Baker et al. [1] considered a sam-
ple of 2,128 motor vehicles occupants who were victims
of accidents and admitted to one of 8 hospitals in the city
of Baltimore, Maryland, USA, over a period of two years
(1968-1969). For this sample, the study recorded a ratio of
hospital admissions to deaths of 8:1. For individual hospi-
tals, this ratio ranged from 5:1 to 60:1, indicating different
levels of severity of injuries for the typical patient that each
hospital received. Table 1 reproduces the distribution of
AIS for themain injury of each patient in the sample, while
Table 4 details the mortality rates corresponding to the
highest AIS grade of patients in [1]. The authors find that
the ISS explains 49% of the variance in mortality, in the
study sample.

Construction of the ISS
The severity of damage to each of nine body regions (head,
face, neck, thorax, abdomen, spine, upper extremities,
lower extremities, and external) is conventionally evalu-
ated on a scale of 0 to 51 by the AIS. This scale evaluates
individual injuries to a body region as follows:

0. No injury
1. Minor injury
2. Moderate injury
3. Serious injury
4. Severe injury
5. Critical injury

To compute the ISS, the nine previous body regions are
first grouped into six:

• R1 : Head or neck
• R2 : Face
• R3 : Chest
• R4 : Abdominal or pelvic contents
• R5 : Extremities or pelvic girdle
• R6 : External

1A grade of 6 additionally indicates untreatable injuries. This value being
immaterial to the purpose of this paper, we will omit it from our analysis

Table 1 Distribution of AIS grades over the sample of 2,128
patients in [1]

AIS Grade Dead on
arrival

Dead
later

Survived Unknown Percentage

1 0 0 80 1 4%

2 0 2 437 1 20%

3 0 23 997 20 49%

4 0 30 229 3 13%

5 93 80 97 3 13%

Unknown 1 0 12 0 1%

The ISS is then computed as the sum of the squares of
AIS scores of the three most severe injuries, and is thus
evaluated on a scale of 0 to 75.
Formally, let us denote AIS = {R1, . . . ,R6}, the AIS

scores of an injured patient over the previous six body
regions, which we will also refer to as the patient’s AIS
profile. The computation of the ISS aggregates these score
in two steps:

1. The three highest AIS scores, that is A = max(AIS),
B = max(AIS − {A}), and C = max(AIS − {A,B}),
are determined.

2. The sum of squares of A, B, and C is calculated, that
is ISS = A2 + B2 + C2.

The first step of the ISS aggregation procedure (use
of the three maxima) is justified in [1] by the fact that
considering the sum of squares of the AIS scores of the
three most severe injuries considerably improved the cor-
relation of the resulting score with mortality rates, when
including the fourth highest AIS score had no appreciable
effect.

Scope of this study
In this work, we will not analyze the first steps of the
aggregation procedure and focus on the second. How-
ever, in The applicability of Pearson’s correlation to the ISS
section, we show that statistical measures such as the cor-
relation and standard deviation are not well suited for a
variable such as the ISS, because they incorrectly assign
it a cardinal value, which leads to inconsistent results. We
should also mention an existing variant to the first step of
the aggregation procedure, that questions not the use of
three maxima for the AIS but the choice of body regions
over which they are calculated. A widely-used such vari-
ant has been introduced under the denomination New
Injury Severity Score (NISS) [3]. Instead, of considering
the three most severely injured body regions, this variant
considers the three most severe injuries overall, the rea-
soning being that the original ISS method can potentially
disregard more severe injuries that happen to be in the
same body region as the most severe injury. This medical
modification is inconsequential to the analysis and claims
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made in this paper focusing on the intrinsic mathemati-
cal properties of the method. Our results apply to both
variants.
Thus the main focus of this study is the second step

of the aggregation procedure. Indeed, in [1] the choice of
aggregating the three maxima by summing their squares
was rather lightly justified as “the simplest nonlinear func-
tion”, without further explanations on the type of com-
plexity being referred to. This justification will be put to
question in the present work as the calculation of say the
sum of cubes, or any other polynomial function of A, B,
and C is no more complex than that of the ISS. As for
the use of linear functions (e.g. summing the three max-
ima), it is dismissed in similarly vague terms with the
sentence “the quantitative relationship of the AIS scores is
not known and is almost certainly nonlinear”. The authors
of the ISS further find that “the death rate for persons with
two injuries of grades 4 and 3 was not comparable to that
of persons with two injuries of grades 5 and 2 (sum = 7 in
both cases)”.
After reviewing past work on the ISS, and notably the

seminal study [1] that introduced this aggregation proce-
dure, this paper questions the choice of a quadratic proce-
dure relative to two other arbitrary aggregation functions
(the sum and sum of cubes of the three highest AIS
scores). Moreover, we study some axiomatic properties of
the ISS and its queuing performance. Based on our results
we propose that an injury severity aggregation procedure
should be seen as an adjustment lever to optimize target
criteria, rather than a rigid formula that seeks to capture
fundamental aspects of the response of the human body
to injuries with a quadratic formula (as has been wildly
conjectured in the original study in the face of the high
correlation of the ISS with mortality).

Methods
Measures of association between random variables
For the study of the association between injury sever-
ity scores and mortality, measures of correlation with

mortality are typically favored in the literature, and the
(Pearson product-moment) correlation coefficient is typi-
cally used to evaluate the adequacy of ISS and competing
proposals, as measurements of the lethality of injuries.
However, the ordinal nature of the ISS and similar aggre-
gation functions would naturally call for the use of rank
correlation. Spearman’s rank-order correlation coefficient
[4, 6] could be more appropriate measurements of the
association between ISS and mortality rates. Indeed, this
statistic evaluates the monotonic association between two
variables without utilizing ordinal information. However,
it cannot be precisely evaluated in the presence of ties,
which are common as seen in Figs. 1, 2, and 3. More-
over, this indicator would be sensitive to the intrinsic
variance of the ISS for consecutive values of the AIS,
illustrated with the example in Table 5. A more robust
measurement of the association between mortality and
ISS would be offered by Mutual Information [7]. This
more general indicator, which is less sensitive to the car-
dinal properties of random variables and is not limited
to linear relationships, compares probability distributions
as a whole and measures how different the joint proba-
bility distribution of two random variable is to the prod-
uct of their marginal distributions. An extensive review
and a general model for the use of mutual information
for clinical decision making can be respectively found in
[8] and [9].
Thus Mutual Information MI(X,Y ), given by MI(X,Y )

= H(X) − H(X|Y ), between two random variables X and
Y is the average amount of information (in bits) about
one random variable that is gained by knowing the value
of the other random variable. In this formula H(X) is the
marginal entropy of X, given by H(X) = − ∑

x∈DX

p(x) ·
log(p(x)), and H(X|Y ) the conditional entropy of X in
regard to Y, given by H(X|Y ) = − ∑

x∈DX ,y∈DY

p(x, y) ·

log
(
p(x,y)
p(x)

)
, where DX and DY are the respective support

sets of X and Y, p(x, y) the joint probability distribution

Fig. 1Mortality rates according to sum of the three highest AIS scores for the sample of 2,128 patients in [1]
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Fig. 2Mortality rates according to ISS (sum of squares of the three highest AIS scores) for the sample of 2,128 patients in [1]

of X and Y, and p(x) the marginal probability distribution
of X.
In its normalized form, mutual information quanti-

fies this amount of information relative to the intrinsic
entropy of each random variable. The normalized mutual
information NMI(X,Y ) between X and Y is thus given by
NMI(X,Y ) = 2·MI(X,Y )

H(X)+H(Y )
. We compare the ISS with a lin-

ear and cubic aggregation functions, namely the sum and
sum of cubes, using both Pearson’s correlation andMutual
Information.

Axiomatic study
Little is known about the axiomatic properties and queu-
ing performance of ISS and similar functions, including
in the Operations Research literature. For the analysis
of axiomatic properties, and given an AIS profile of the
form (A,B,C), we introduce the notation [ xA, xB, xC] such
that −A ≥ xA ≥ 6 − A,−B ≥ xB ≥ 6 − B, and
−C ≥ xC ≥ 6 − C indicate a change in the AIS profile

of a patient (i.e. an overall degradation or improvement
of their injuries), resulting in a new AIS profile (A +
xA,B + xB,C + xC). We assume, without loss of gener-
ality, that these changes maintain the three most severe
injuries located in the same three body regions (out of the
six AIS body regions previously grouped). For instance,
[−1, 0,+1] represents an improvement of the most severe
injury of a patient by one AIS point (e.g. following care),
and a degradation of their third most severe injury by
one AIS point, without any change to their second most
severe injury. These vectors can be conventionally added
with ISS profiles to obtain the resulting ISS profiles, e.g.
a patient whose ISS profile is (4, 3, 2) would see their
ISS profile become (4, 3, 2)+[−1, 0, 1]= (3, 3, 3), follow-
ing the above described change. Using this notation, we
study the axiomatic properties [10] of the ISS and test
the compensation effects, rank reversals and indepen-
dence property stemming from the use of the ISS as a
multicriteria aggregation procedure.

Fig. 3Mortality rates according to sum of cubes of the three highest AIS scores for the sample of 2,128 patients in [1]
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Queuing simulations
A queueing system is a general model of resource con-
sumption, in which patients arrive at random times and
require access to a healthcare resource (e.g. a physician
consultation or inpatient bed). If the resource is busy upon
a patient’s arrival, they are attributed a priority score and
join a waiting line. In the present instance of the model,
we consider the ISS, as well as the sum and sum of cubes
of the three highest AIS scores as possible priority score.
Other aggregation procedures, such as the NISS or the
wISS could also be used, without loss of generality.
Defining a queueing model requires making stochastic

assumptions about the nature of the arrival and service
processes, as well as the distribution of AIS grades. In
healthcare, the Poisson process has been verified to be
a good representation of unscheduled arrivals to various
healthcare units, including emergency departments [11].
The most common assumptions to make about arrivals

and service times are the following:

• Arrivals follow a Poisson process characterized by a
rate, that is the expected number of patient arrivals
per unit of, denoted λ. The Poisson process for
arrivals can also be conversely characterized by its
expected inter-arrival time, that is the average time
between two consecutive arrivals of patient, given by
1
λ
.

• The service rate is also described by a Poisson
distribution with a mean service rate (i.e. number of
patients served per unit of time) μ. This means that
the service time for one customer follows an
exponential distribution with an average of 1

μ
.

The previous two assumptions are often called Marko-
vian, and the resulting queuing model denoted M/M/s,
where the two “M’s” stand for this adjective, and “s” for
the number of identical service resources that customers
queue to gain access to. For the sake of simplicity, we will
assume the existence of a single resource, that is a so-
called M/M/1 queue. An advantage of this model is that
it only requires two parameters (λ and μ), which can be
estimated empirically, in a fairly robust manner.
We conduct discrete-event simulations of an M/M/1

waiting line [11], with stochastic AIS grades, generated
according to various distributions reported in the litera-
ture. This simulation allows us to study the queuing per-
formance of the three aggregation procedures considered,
as well as their sensitivity to the underlying distribution of
AIS grades.

Results
On the use of a quadratic aggregation function
Table 2 describes the scales of the ISS (A2 + B2 + C2),
as well as the sum (A + B + C) and sum of cubes (A3 +
B3 + C3) functions. For A,B,C ∈ {0, 1, 2, 3, 4, 5}, such that

Table 2 Possible scores and their rank, for the sum, sum of
squares (ISS), and sum of cubes

Rank A + B + C A2 + B2 + C2 A3 + B3 + C3

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 8
5 5 5 9
6 6 6 10
7 7 8 16
8 8 9 17
9 9 10 24
10 10 11 27
11 11 12 28
12 12 13 29
13 13 14 35
14 14 16 36
15 15 17 43
16 - 18 54
17 - 19 55
18 - 20 62
19 - 21 64
20 - 22 65
21 - 24 66
22 - 25 72
23 - 26 73
24 - 27 80
25 - 29 81
26 - 30 91
27 - 32 92
28 - 33 99
29 - 34 118
30 - 35 125
31 - 36 126
32 - 38 127
33 - 41 128
34 - 42 129
35 - 43 133
36 - 45 134
37 - 48 136
38 - 50 141
39 - 51 152
40 - 54 153
41 - 57 155
42 - 59 160
43 - 66 179
44 - 75 189
45 - - 190
46 - - 192
47 - - 197
48 - - 216
49 - - 250
50 - - 251
51 - - 253
52 - - 258
53 - - 277
54 - - 314
55 - - 375
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A ≥ B ≥ C and excluding triplet (0, 0, 0), there are 55
possible (A,B,C) triplets, resulting in 44 distinct possible
values of the ISS (A2+B2+C2), as well as 13 and 55 distinct
values of (A + B + C) and (A3 + B3 + C3), respectively.
We have computed all cases of discordance between the

ISS, the sum, and the sum of cubes. In other words, the
number of pairs of injury profiles for which the rankings
provided by the two aggregation functions are reversed.
Among the C5

25 = 1485 distinct, non-ordered pair of pos-
sible AIS profiles, we have identified the pairs for which
there is discordance between A2 +B2 +C2, A3 +B3 +C3,
and A + B + C, regarding the comparison of the pair. In
other words, and for two patients x and y, let (Ax,Bx,Cx)
and (Ay,By,Cy) be their respective AIS profiles. We con-
sider that there is discordance between the ISS and the
sum of cubes aggregation function if (A2

x + B2
x + C2

x >

A2
y + B2

y + C2
y and A3

x + B3
x + C3

x < A3
y + B3

y + C3
y ) or

(A2
x + B2

x + C2
x < A2

y + B2
y + C2

y and A3
x + B3

x + C3
x >

A3
y + B3

y + C3
y ). There exist 84 pairs of profiles for which

there is such a discordance, which represents 5.6% of the
1485 possible pairs of profiles (i.e. for a uniform distribu-
tion of AIS scores, the ISS and sum of cubes aggregation
functions would disagree 5.6% of the time). The ISS and
the sum are in discordance for 8% of possible profiles,
whereas the sum of cubes and the sum are in discordance
for 14.81% of possible profiles. Although a minority, these
cases of discordance are non-neglectable, particularly for
large volumes of patients.

Association withmortality
The seminal work [1] relied on the data in Table 3, which
records the mortality rates for the AIS scores of the three
most severe injuries, which we denote A, B and C by
decreasing order of severity.
The use of the ISS was supported in [1] by the data

reproduced in Table 4, in which we have additionally
included the sums of the three most severe ISS, of their
squares (the ISS), and of their cubes, and calculated the
(Pearson product-moment) correlation and Mutual Infor-
mation of each profile with mortality rates. Figures 1, 2,
and 3 respectively plot mortality rates according to sum,

Table 3 Mortality by AIS scores of the three most severe injuries
in [1]

Number of
persons

102 78 38

Most severe
injury (A)

4 5 5

Second most
severe injury (B)

3 3 4

Third most severe
injury (C)

0-2 3 0-2 3 0-2 3

Percentage died 18% 43% 59% 86% 62% 92%

sum of squares (ISS), and sum of cubes of the three highest
AIS scores for the sample of 2,128 patients in [1].
The high (Pearson’s product-moment) correlation of

the ISS and mortality has led [1] to conjecture that this
score “models a fundamental aspect of the human body’s
response to multiple injuries”. Though it remains a prac-
tical heuristic for priority evaluation and patient triage,
the initial promise of the ISS as an indicator of the
mortality of multiple injuries, and the even more daring
conjecture of [1] that this quadratic function may cap-
ture fundamental properties of the response of human
bodies to injuries have been tempered down by more
mathematically rigorous, recent studies of the discrete
possible values taken by the ISS. In [12], it has been
found that mortality is non-monotonic with regards to the
ISS, that is, mortality does not necessarily increases with
successive values of ISS.
Following the same reasoning as [1], we use correlation

with mortality as a measure of the adequacy of the three
aggregation procedures. The sum of the three highest AIS
scores presents the lowest correlation with mortality with
77% and Fig. 1 conveniently illustrates the reason for the
inadequacy of this aggregation procedure. As indicated
by the number of vertical and horizontal segments in the
graph, the sum, which only offers 15 possible distinct
values represented in Table 2, is not discriminant enough
in relationship to mortality. However, the sum of squares
(ISS) and the sum of cubes present similar levels of cor-
relation with mortality rates, at 92% and as Figs. 2, and 3
show that the ISS (with 44 distinct possible value versus
55 for the sum of cubes, cf. Table 2) is less discriminant.
All three functions are non-injective as evidenced by the
existence of horizontal segments in the graphs. However,
the relationship between the sum of cubes andmortality is
of a functional nature (no vertical segments), as opposed
to that of ISS with mortality. For instance, an ISS of 34
corresponds to both mortality rates of 43% and 59%. No
such effects occur when considering the sum of cubes.
However such undesirable effects cannot be evaluated by
a coefficient of linear correlation, which would arbitrarily
consider that the mortality rate associated with an ISS of
34 is 52%, the average of 43% and 59%.

The AIS and ISS are not cardinal measures
Measurement theory [13] assumes that there exist some
empirical structure that one wishes to represent numer-
ically (e.g. the body’s response to multiple injuries) and
defines strict qualitative properties that the empirical
structure must verify in order to be represented numer-
ically. Such numerical artifacts are said to possess an
interval level of measurement if, throughout its scale,
equal differences in the measure reflect equal differences
in the empirical structure being measured. Nothing indi-
cates that the AIS and even less so the ISS possess such a
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Table 4 Mortality rates associated with the AIS profiles of the 2,128 patients in [1]

A B C (ISS) Mortality rate

A + B + C A2 + B2 + C2 A3 + B3 + C3

4 3 0 7 25 91 18%

4 3 1 8 26 92 18%

4 3 2 9 29 99 18%

4 3 3 10 34 118 43%

5 3 0 8 34 152 59%

5 3 1 9 35 153 59%

5 3 2 10 38 160 59%

5 3 3 11 43 179 86%

5 4 0 9 41 189 62%

5 4 1 10 42 190 62%

5 4 2 11 45 197 62%

5 4 3 12 50 216 92%

Correlation with mortality 0.77 0.92 0.92 1.00

Mutual Information with mortality 0.46 0.55 0.71 1.00

property. The AIS and ISS can be more modestly consid-
ered to possess an ordinal level of measurement, that is to
say as indicators allowing the ranking of patients, e.g. for
triage purposes. An ordinal measure is defined, by oppo-
sition to a cardinal one, as “a variable whose attributes
can only be ranked” [6, 14]. For instance, we know that an
underlying injury having an AIS score of 3 is less severe
than a 4, which in turn is less severe than a 5, but it
remains unknown whether the distance between a 3 and
a 4 is equal, greater, or smaller than the distance between
a 4 and a 5. It is the practice of assigning the numeri-
cal values to the severity of these three injuries that sets
the two numerical distances between them to be equal.
The interpretation of the distances between ISS scores is
similarly impossible. Indeed, the consecutive values in the
domain of the ISS, represented in Table 2 only reflect an
increase in the severity of the overall injury (ordinal infor-
mation), but the extent of that increase cannot be given
any interpretation (it contains no cardinal information).
For instance, 50, 51, 54 are three consecutive values in the
domain of the ISS, without any possible value between 51
and 54. A patient whose condition goes from an ISS of 50
to 51 and then from 51 to 54 would have seen the sever-
ity of their injury increase by two (ordinal) units, not four
(cardinal) units.
Giving a cardinal meaning to the ISS could have been

justified if the difference between two consecutive values
of this scale kept increasing, reflecting a higher level of
degradation as the severity of an injury increases, but this
is not the case. In Table 2, we can observe for instance that
the gap between the thirty-second and thirty-third grades
of the ISS (scores of 38 and 41, respectively) is wider than

between the thirty-fourth and thirty-fifth grades (scores
of 42 and 43, respectively).

The applicability of Pearson’s correlation to the ISS
The value of the ISS is only ordinal, that is the infor-
mation it provides is to rank the overall severity of
injuries to multiple body regions of patients, and not
measure any intrinsic property of these injuries. Fur-
ther, [15] warns against considering the ISS/NISS as con-
tinuous statistical variables in correlation analyses with
outcome measures (e.g. mortality), which has been the
approach initially used to justify the quadratic aggrega-
tion of AIS grades in the original version of the ISS. If
we accept the ISS as a purely ordinal indicator, a much
simpler argument can be made to show that the very con-
cept of measuring Person’s correlation of the ISS with
any other variable does not apply. Pearson’s product-
moment correlation is defined as the covariance of two
variables divided by the product of their standard devi-
ation [16]. Focusing on the ISS, we can observe that
the concept of standard deviation does not apply to this
variable.
Consider the toy example in Table 5 in which we mea-

sure the standard deviation of ISS, in three samples of
two patients each. The two patients in each sample are
of two consecutive ranks, with regards to the ISS (28th
and 29th, 32nd and 33rd, as well as 34th and 35rd ranks,
respectively). Note that the ISS profiles of a patient in con-
secutive samples only differs by one unit of AIS (e.g. the
three samples could correspond to a similar degradation
of patient 1 and of patient 2 injuries over three periods of
time).
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Table 5 The variance of the ISS arbitrarily increases because of the uneven gaps between consecutive grades of the ISS scale

Sample Patient 1 Patient 2 Patient 1 ISS Patient 2 ISS Variance of ISS
ISS profile ISS profile (and rank) (and rank) in sample

A (5,2,2) (5,3,0) 33 (28th) 34 (29th) 0.5

B (5,3,2) (5,4,0) 38 (32nd) 41 (33rd) 4.5

C (5,3,3) (5,4,1) 42 (34th) 43 (35th) 0.5

We observe a significantly higher standard deviation
and thus variance in sample B than in sample A, which is
not due to a wider dispersion of the severity of injuries in
sample B, but is solely due to the cardinal properties of the
ISS. There happens to be no possible ISS values between
38 and 41. The range of ISS goes back to one unit in sample
C, and we find the same variance as in sample A.
Thus, the very concept of a unit of deviation of the

ISS is meaningless and no interpretation can be made of
the standard deviation of this variable and hence of its
covariance or Pearson correlation with any other variable.
These concepts being based on that of a deviation of the
observed ISS values relative to the mean, it is impossible
to separate the amount of deviation that is due the obser-
vations and the amount due to the makings of ISS scale,
with its uneven distances between grades.
The calculations of the standard deviation and variance

of the ISS, as well as its Pearson’s correlation with mortal-
ity and the analysis of said correlation does not account
for the average and standard deviation of the distance
between two consecutive Injury Severity Scores (they are
not one and zero respectively). It implicitly consider this
score to be cardinal (i.e. a measure of the amount of
something).
However for measures of mortality the average and

standard deviation of the distance between two consecu-
tive possible values are respectively one unit (depending
on the decimal precision considered for mortality rates)
and zero.

Mutual Information as amore appropriatemeasure of the
association between injury severity andmortality
We have computed Mutual Information with the data
in Table 4 as input, for the three considered aggrega-
tion procedures and with p-values of order of magnitude
10−6, we find normalized amounts of Mutual Informa-
tion of 0.46, 0.55, and 0.71 between mortality rates in
Table 4 and the sum, sum of squares, and sum of cubes
of AIS scores, respectively. For this data-set, there is thus
a significantly higher amount of information concerning
mortality rates contained in the sum of cubes than the
sum of squares, which confirms and quantifies the visual
insight gained from Figs. 2 and 3 and suggests Mutual
Information as a more appropriate measurement of the
association between aggregate scores based on the AIS
and mortality rates.

Axiomatic properties
Arbitrary compensation
A multicriteria aggregation procedure is said to be com-
pensatory if it allows for trade-offs between criteria, i.e.
the possibility of compensating a disadvantage on some
criteria by an advantage on other criteria [17]. The ISS
being a simple sum of squares, it is a fully compensatory
procedure, in that any disadvantage on any criterion (a
lower AIS score) can be compensated by an advantage
on any other criterion (a higher AIS score). For instance,
improving the secondmost severe injury by one AIS point,
while degrading the third most severe injury by two AIS
points would bring the same change to the ISS, no matter
its initial value.
Should a patient accept a medical procedure that

improves your second most severe injury by one AIS
point, but degrades your third most severe injury by two
AIS points (for instance during transportation or waiting
for said procedure)? Let us consider the toy example in
Table 6.
An improvement in Patient 2’s condition (decrease in

ISS) is a degradation in Patient 1’s condition (increase
in ISS).
This property of the ISS function is arbitrary. It does

not have anything to do with the fact that Patient 1
was initially in a slightly worse state than Patient 2. It is
due to the fact that trade-offs between AIS scores A, b
and C in the calculation of the ISS do not obey a fixed
compensation rate. The very notion of improvement or
degradation of the AIS score is thus meaningless. It should
be noted that weighted aggregation procedures, such as
the recently introduced weighted ISS (wISS) by Shi et al.
[18] do not suffer from this inconsistency, as the trade-off
rates between criteria would be constant and defined by
their weights.

Table 6 An improvement for Patient 2 (decrease in ISS) is a
degradation for Patient 1 (increase in ISS)

Patient Patient 1 Patient 2

Initial ISS Profile (5, 4, 3) (4, 4, 4)

Initial ISS 50 48

Change [ 0,+1,−2] [ 0,+1,−2]

Resulting ISS Profile (5, 5, 1) (5, 4, 2)

Resulting ISS 51 45
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Arbitrary rank reversals for identical changes
Table 7 shows a toy example in which Patient 1 and Patient
2 receive twice the same procedure (an improvement of
their most severe injury by one AIS point followed by
an improvement of their second most severe injury by
one AIS point). Initially, the overall condition of Patient
2 (ISS of 33) is worse than that of Patient 1 (ISS of 32).
However, after the first procedure the order of severity
of the conditions of the two patients alternates to Patient
1 (ISS of 25) being worse off than patient 2 (ISS of 24)
and then back to Patient 2 (ISS of 21) being in a worse
condition than Patient 1 (ISS of 20), after the second pro-
cedure. Moreover, Table 8 shows a similar alternation of
priority but with the condition of the two patients pro-
gressively degrading over time). In a situation where the
ISS is used as a triage rule, the order of priority between
the two patients would arbitrarily alternate, although the
degradation of their states would be identical.

Independence
The independence property states that identical perfor-
mance on one or more criteria should not influence the
way two alternatives compare [10]. A transformation that
maintains the value of the criterion equal should not
change the way alternatives compare. In Table 9, we con-
sider two pairs of ISS profiles, Patient 1 and Patient 2 ver-
sus Patient 3 and Patient 4. The only difference between
these two pairs concerns the AIS score of the most severe
injury (3 and 4 for patient 1 and patient 2 respectively, 4
and 5 for patient 3 and patient 4 respectively). An identi-
cal change, [ 0,+1, 0]. is applied twice to the second most
severe; it gains one point of severity. The two pairs of
patients show an identical level of severity, in their second
and third most severe injuries before and after the trans-
formation, respectively (., 2, 0) and (., 0, 0). However, the
change leads to two different outcomes. Patient 1 condi-
tion (ISS = 13), which was initially less severe than that
of Patient 2 (ISS = 16), becomes more severe (18 > 17),

Table 7 The order of priority of the two patients arbitrarily
alternates despite an identical improvement of one of their AIS
grades

Patient Patient 1 Patient 2

Initial ISS Profile (4, 4, 0) (5, 2, 2)

Initial ISS 32 33

Change [−1, 0, 0] [−1, 0, 0]

Resulting ISS Profile (4, 3, 0) (4, 2, 2)

Resulting ISS 25 24

Change [ 0,−1, 0] [ 0,−1, 0]

Resulting ISS Profile (4, 2, 0) (4, 2, 1)

Resulting ISS 20 21

Table 8 The order of priority of the two patients arbitrarily
alternates despite an identical degradation of one of their AIS
grades

Patient Patient 1 Patient 2

Initial ISS Profile (4, 4, 0) (5, 2, 2)

Initial ISS 32 33

Change [ 0,+1, 0] [ 0,+1, 0]

Resulting ISS Profile (5, 4, 0) (5, 3, 2)

Resulting ISS 41 38

Change [ 0, 0,+1] [ 0, 0,+1]

Resulting ISS Profile (5, 4, 1) (5, 3, 3)

Resulting ISS 42 43

whereas the order of priority of Patient 3 and Patient 4
remain unchanged (20 < 25 and 25 < 26).

Queuing simulation
Settings
Viewing AIS aggregation procedures, such as the ISS,
as priority indicators for access to healthcare resources,
rather than fundamental measures of the body’s response
to multiple injuries, one can focus on evaluating their
operational performance. Queuing theory is an important
tool in the Operations Research toolset with fruitful appli-
cations in healthcare, a systematic review of which can be
found in [19]. It can offer valuable insights on the dynamic
properties of triage rules, when deployed for large-scale
patient flows, and help inform the choice of an appropriate
priority regime. However, to the best of our knowledge,
little is known in the literature about the queuing per-
formance of the ISS and similar trauma indicators. This
section proposes a model for their evaluation, based on a
discrete-event simulation of a M/M/1 queuing system.
Throughout the present simulation, we consider an

average service time of μ = 1. In other words, we take
one time-unit to represent the average service time of a
patient. For instance, if the resource under study is a hos-
pital bed, and the average length of stay is one week, one
unit of simulation time would correspond to one week.
If, on the other hand, it is access to a physician, with an
average consultation duration of ten minutes, one unit of

Table 9 An identical change to the second most severe injury
ceteris paribus leads to different outcomes

Patient Patient 1 Patient 2 Patient 3 Patient 4

Initial ISS Profile (3, 2, 0) (4, 0, 0) (4, 2, 0) (5, 0, 0)

Initial ISS 13 16 20 25

Change [ 0,+1, 0] [ 0,+1, 0] [ 0,+1, 0] [ 0,+1, 0]

Resulting ISS Profile (3, 3, 0) (4, 1, 0) (4, 3, 0) (5, 1, 0)

Resulting ISS 18 17 25 26
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Table 10 Distributions of AIS grades reported in five select
studies

Data source AIS=1 AIS=2 AIS=3 AIS=4 AIS=5

Baker et al., 1974 [1] 42% 20.2% 4.92% 13.2% 13.2%

Lopes et al., 2014 [21] 36.57% 29.73% 27.81% 3.54% 2.32%

Deng et al., 2018 [22] 60.85% 15.46% 14.46% 6.73% 17.5%

Awoleke et al., 2019 [23] 40.06% 48.6% 8.30% 25% 0%

simulation time would correspond to ten minutes. More-
over, and in order to create a congested waiting line, we
consider an average inter-arrival time of 1

λ
= 0.1, meaning

that, on average, ten patients arrive in the queue during
the time it takes to deliver the service to one patient.
Since the focus of this study is on priority regimes and

their impact on queuing performance, we additionally
need to make assumptions regarding the distribution of
AIS grades of arriving patients. We have conducted our
simulations with respect to different distributions of AIS
grades reported in the literature. In addition to the distri-
bution for victims of motor vehicles accidents, reported
by Baker et al. [1] and reproduced in Table 1, we consider
the distributions of AIS grades for 174 adult victims of fall
accidents reported by Lopes et al. in [21], 451 patients with
tornado-related injuries reported by Deng et al. in [22]2,
and 278 victims of traumatic maternal injuries reported by
Awoleke et al. in [23]. The details of each distribution are
reproduced in Table 10 and the code in Appendix A.
For the three aggregation procedures considered in this

study (ISS, sum and sum of cubes), we are interested in
evaluating discrepancies in the average waiting time for all
patients and for patients with critical injuries (i.e. patients
presenting AIS scores of 5 on some body regions), as
a proxy for mortality. These discrepancies would result
from the cases of discordance between the three aggrega-
tion procedures, discussed in On the use of a quadratic
aggregation function section.
For each distribution of AIS grades in Table 10, we con-

duct 100 simulation, each simulation having a duration of
1000 discrete time-units. We estimate the average wait-
ing times per patient, resulting from each of the three
aggregation procedures. The commented source code for
these simulations and their evaluation is provided in the R
language, in Appendix A.

Results
Figures 4 and 5 respectively detail the average wait-
ing times for all patients and critical patients, in each
simulation, for the four AIS distributions considered,
while Table 11 presents their averages over the 100
simulations.
2This study also included 0.75% of cases presenting fatal injuries (AIS=6), this
grade being immaterial to the purpose of the waiting line simulation
conducted herein.

It should be noted that, since the AIS distribution
reported by Awoleke et al. [23] does not include any crit-
ical patients, this distribution is excluded from the com-
putation of waiting times of critical patients. As per the
setup of these simulations, the time-unit of average wait-
ing times corresponds to the service time. For instance,
if the resource under study is a hospital bed, with aver-
age length of stay of one week, an average waiting time
of 39.14 would correspond to 39.14 weeks. If, on the
other hand, it is access to a physician, with an average
consultation duration of ten minutes, it would correspond
to an average waiting time of 391.4 minutes.
These simulations confirm the inefficiency of the sum

as an aggregation procedure. Indeed, it results in signifi-
cantly longer average waiting times, and only outperforms
the ISS in some rare simulations. However, the compar-
ison of queuing performance is more nuanced between
the ISS and the sum of cubes. The two aggregation proce-
dures show identical performance for the AIS distribution
of Awoleke et al. [23], which can be explained by the rel-
atively lower AIS scores in this distribution, and the fact
that cases of discordance between the ISS and the sum
of cubes (14.81% of possible AIS profiles, as discussed in
On the use of a quadratic aggregation function section)
mainly occur for higher AIS values. However, on average
over the 100 simulations, there is a non-negligible advan-
tage to using the sum of cubes, in terms of minimizing
average waiting for all patients and critical patients alike.
For the distribution of Lopes et al. [21], this advantage is
as significant as 2.86 units of time, on average, for criti-
cal patients. This advantage can be explained by the that
the sum of cubes offers a broader set of possible scores
than the ISS (55 vs 41, as shown in Table 2), thus allow-
ing it to convey more information. This fact was also
reflected in its higher mutual information with regard to
mortality in Table 4. However, these results should not be
interpreted as the sum of cubes being a universally better
aggregation procedure than the ISS, as these simulations
were only conducted under specific simplifying assump-
tions and for a select set of AIS distribution. For different
queuing settings and empirical AIS distributions, the ISS
may very well be the best performing aggregation proce-
dure. Indeed, the most general and robust conclusion we
can draw from the results of these simulation is that the
operational performance of an aggregation procedure is
sensitive to the underlying AIS distribution and thus the
choice of the “best” procedure can only bemade on a case-
by-case basis, with respect to empirical estimates of this
distribution in a healthcare unit.

Discussion
Aggregation procedures for AIS grades, such as the Injury
Severity Score and similar, competing indicators (New
Injury Severity Score [3], Exponential Severity Score [20],
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Fig. 4 Average waiting time per patient, for 100 simulations with different AIS distributions. One time-unit corresponds to the average service time
of a patient

etc.) have important operational applications as wait-
ing line priority regimes. Therefore, their design is a
highly sensible one that impacts mortality rates. However,

the evaluation of these indicators typically relies on a
static, linear evaluation of their association with mor-
tality rates, and proposals typically compete on which
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Fig. 5 Average waiting time per critical patient, for 100 simulations with different AIS distributions. One time-unit corresponds to the average
service time of a patient

Table 11 Overall average waiting times for all patients and critical patients, over 100 simulations, where A, B, and C are the three
highest AIS grades, in decreasing order

Data source Average waiting time for all patients Average waiting time for critical patients

A + B + C A2 + B2 + C2 A3 + B3 + C3 A + B + C A2 + B2 + C2 A3 + B3 + C3

Baker et al., 1974 [1] 71.48 39.14 38.49 71.47 39.12 38.45

Lopes et al., 2014 [21] 61.11 41.58 40.31 61.80 42.03 39.17

Deng et al., 2018 [22] 72.56 42.71 42.42 58.89 42.39 42.15

Awoleke et al., 2019 [23] 134.90 91.93 91.93 N/A N/A N/A
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function achieves the highest Pearson correlation. In this
paper, we put forward the idea that curve-fitting and
the evaluation of correlation with mortality rates are
insufficient evaluation methodologies for the operational
performance of these aggregation procedures. We have
shown correlation-based measurements (as well as mea-
surements of the standard deviation/variance of the ISS)
to be largely unfounded, and proposed Mutual Informa-
tion as a more adequate and more general measure of
association. Moreover, by attempting to be two things at
once (a cardinal measure of the human body’s response to
multiple injuries as well as an ordinal triage rule present-
ing good association with mortality), the ISS may achieve
sub-optimal results in both regards. A complex, funda-
mental property such as the physiological response to
injury is unlikely to be universally captured by a simple
mathematical function (the ISS) of ordinal mathemati-
cal measures (the AIS). Thus, there can be no universally
best aggregation function. We recommend viewing the
ISS, and similar aggregation procedures for multiple AIS
grades, as purely operational triage indicators, rather than
cardinal measures of the response of the human body to
multiple injuries. As such, the choice of such an aggre-
gation function should be made according to the distri-
bution of AIS grades in a healthcare unit, to optimize
queuing performance.

Conclusions
The present paper studied the Injury Severity Score
as a multicriteria aggregation procedure for operational
decision-making. We have highlighted some of its sta-
tistical and axiomatic properties that can lead to bias in
its large-scale usage as a patient triage indicator. These
properties therefore present areas of improvement for
future proposals of aggregation procedures. Moreover,
and although the addition of a degree to this quadratic
aggregation procedure (i.e. considering the sum of cubes
rather than the sum of squares) was found to convey more
information on mortality and improve waiting line per-
formance, the ISS was generally found to be a robust
triage rule that achieved decent waiting line performance.
However, we have shown this performance to be highly
sensitive to the statistical distribution of the AIS scores
of patients entering the waiting line. Thus, these find-
ings suggest that the choice of an aggregation procedure
for AIS grades (ISS, sum of cubes, or any other func-
tion) should be made on a case by case basis, with respect
to the empirical distribution of these grades in a trauma
department. This perspective notably permits the design
of aggregation procedures for AIS grades in a way that
explicitly optimizes operational criteria, such as the aver-
age waiting time of patients presenting critical injuries. In
our view, the ambiguous, classical view in the literature of
the ISS as a cardinal measure of the severity of multiple

injuries (besides its use as an ordinal triage indicator) and
the ensuing correlation analyses with mortality rates have
somehow hindered this actionable line of research.

Appendix A
R Script for queuing simulation

#The I n j u r y S e v e r i t y Score : A Dec is ion−
Theore t i c P e r s p e c t i v e

#M/M/1 queue with random AIS s co r e s

#AIS grade s d i s t r i b u t i o n .
#p [ i ] i s the p r o b a b i l i t y o f an i n j u r y

o f s e v e r i t y i = 1 . . 5 to a body reg i on
#p<−c ( . 0 4 2 , . 2 0 2 , . 4 9 2 , . 1 3 2 , . 1 3 2 ) #Baker

e t a l . 1975
#p<−c ( . 3 6 5 7 , . 2 9 7 3 , . 2 7 8 1 , . 0 3 5 4 , 0 . 0 2 3 2 )

#Lopes e t a l . 2014
#p<−c ( . 4 0 6 , . 4 8 6 , . 0 8 3 , . 0 2 5 , 0 ) #Awoleke

e t a l . 2019
p<−c ( . 6 0 8 5 , . 1 5 4 6 , . 1 4 4 6 , . 0 6 7 3 , . 0 1 7 5 ) #

Deng e t a l . 2018

average ISS <−c ( 100 ) #Average wa i t i n g
t imes (AWT) with the ISS .

averageSum <−c ( 100 ) #AWT with the sum
averageSumOfCubes <−c ( 100 ) #AWT with

the sum of cubes

a v e r a g eC r i t i c a l <−c ( 100 ) #AWT fo r
c r i t i c a l p a t i e n t s , with the ISS .

a v e r a g eSumCr i t i c a l <−c ( 100 ) #AWT fo r
c r i t i c a l p a t i e n t s , with the sum .

averageSumOfCubesCr i t i ca l <−c ( 100 ) #AWT
fo r c r i t i c a l p a t i e n t s , with the sum
of cubes .

t . end <− 1000 # dura t i on o f a
s imu l a t i on .

f o r ( number in seq ( 1 , 100 , by =1) ) #
number o f s imu l a t i o n s o f dura t i on t .
end

{
A <−0 #Highes t AIS sco re o f a p a t i e n t
B <−0 #Second h i gh e s t AIS s co re o f a

p a t i e n t
C <−0 #Third h i gh e s t AIS s co re o f a

p a t i e n t

ISS <−0 # ISS o f a p a t i e n t
Sum <−0 #Sum of the th r e e h i gh e s t AIS

s co r e s o f a p a t i e n t (A+B+C)
SumOfCubes <−0
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#Sum of the cubes o f the th r e e
h i gh e s t AIS s c o r e s o f a p a t i e n t (A
^3+B^3+C^3)

t . c l o ck <− 0 # cu r r en t s imu l a t i on
time

Ta <− 0 . 1 # i n t e r a r r i v a l t ime
Ts <− 1 # s e r v i c e dura t i on
t1 <− 0 # time f o r next

a r r i v a l
t2 <− t . end # time f o r next

depa r tu r e
tn <− t . c l o ck # tmp var f o r l a s t

event t ime
n <− 0 # number o f p a t i e n t s

in the system
p a t i e n t <−0 # Regu la r ISS l i s t
p a t i e n t 1 <−0 # Sum of AIS l i s t
p a t i e n t 3 <−0 # Sum of Cubes l i s t
t ime <−0 # A r r i v a l t ime o f the

cu r r en t p a t i e n t
wa i t i n g I SS <−0 # wa i t i n g t imes with

r e g u l a r ISS
waitingSum <−0 # wa i t i n g t imes with

sum
waitingSumOfCubes <−0 # wa i t i n g t imes

with sum of cubes
a r r i v a l <−0 # a r r i v a l t ime o f cu r r en t

p a t i e n t
c r i t i c a l <−NA # p a t i e n t s with c r i t i c a l

i n j u r i e s
s co r e <−c ( 6 ) #Array o f AIS s co r e s
i <− 0 # index o f cu r r en t p a t i e n t

wh i l e ( t . c l o ck < t . end ) {
i f ( t1 < t2 ) { # a r r i v a l event

i <− i +1
t . c l o ck <− t1
s <− s + n ∗ ( t . c l o ck − tn ) #

d e l t a time−weighted number in
queue

n <− n + 1

sco re [ 1 ] <−sample ( 1 : 5 , 1 , r e p l a c e =
TRUE, prob=p )

s co re [ 2 ] <−sample ( 1 : 5 , 1 , r e p l a c e =
TRUE, prob=p )

s co re [ 3 ] <−sample ( 1 : 5 , 1 , r e p l a c e =
TRUE, prob=p )

s co re [ 4 ] <−sample ( 1 : 5 , 1 , r e p l a c e =
TRUE, prob=p )

s co re [ 5 ] <−sample ( 1 : 5 , 1 , r e p l a c e =
TRUE, prob=p )

s co re [ 6 ] <−sample ( 1 : 5 , 1 , r e p l a c e =
TRUE, prob=p )

i f ( ( s co re [6 ]==5 ) | | ( s co re [5 ]==5 )
| | ( s co r e [4 ]==5 )

| | ( s co r e [3 ]==5 ) | | ( s co r e [2 ]==5 ) | | (
s co re [1 ]==5 ) )

{ c r i t i c a l <−append ( c r i t i c a l , i ) }

A <−max ( s co re )
B <− s o r t ( score , p a r t i a l =5) [ 5 ]
C <− s o r t ( score , p a r t i a l =4) [ 4 ]
ISS <−A^2 +B^2 +C^2
Sum <−A+B+C
SumOfCubes <−(A) ^3 +(B ) ^3 +(C) ^3
p a t i e n t <− append ( pa t i en t , ISS )
p a t i e n t 1 <− append ( pa t i en t 1 , Sum)
p a t i e n t 3 <− append ( pa t i en t 3 ,

SumOfCubes )
a r r i v a l <−append ( a r r i v a l , t . c l o ck )

t1 <− t . c l o ck + rexp ( 1 , 1/Ta )
i f ( n == 1) {

t2 <− t . c l o ck + rexp ( 1 , 1/Ts )
# e xponen t i a l i n t e r−a r r i v a l
pe r iod

}
} e l s e { # depa r tu re

event

t . c l o ck <− t2
n <− n − 1
p r i o r i t y <−which . max ( p a t i e n t )
p r i o r i t y 1 <−which . max ( p a t i e n t 1 )
p r i o r i t y 3 <−which . max ( p a t i e n t 3 )

wa i t i ng ISS <−append ( wa i t i ng ISS , ( t .
c lock−a r r i v a l [ p r i o r i t y ] ) )

waitingSum<−append ( waitingSum , ( t .
c lock−a r r i v a l [ p r i o r i t y 1 ] ) )

waitingSumOfCubes<−append (
waitingSumOfCubes , ( t . c lock−
a r r i v a l [ p r i o r i t y 3 ] ) )

p a t i e n t [ p r i o r i t y ]<−0
p a t i e n t 1 [ p r i o r i t y 1 ]<−0
p a t i e n t 3 [ p r i o r i t y 3 ]<−0
tn <− t . c l o ck
i f ( n > 0 ) {

t2 <− t . c l o ck + rexp ( 1 , 1/Ts )
# e xponen t i a l s e r v i c e
per iod

}
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e l s e {
t2 <− t . end

}
}

}
wa i t i ng ISS <−wa i t i n g I SS [− l e ng th (

wa i t i n g I SS ) ]
waitingSum<−waitingSum[− l e ng th (

wait ingSum ) ]
waitingSumOfCubes<−waitingSumOfCubes

[− l e ng th ( waitingSumOfCubes ) ]
a v e r age ISS [ number ]= mean ( wa i t i n g I SS )
averageSum [ number ]=mean ( waitingSum )
averageSumOfCubes [ number ]=mean (

waitingSumOfCubes )
a v e r a g e C r i t i c a l [ number ]= mean ( na . omit

( wa i t i n g I SS [ c r i t i c a l ] ) )
a v e r a g eSumCr i t i c a l [ number ]=mean ( na .

omit ( wait ingSum [ c r i t i c a l ] ) )
averageSumOfCubesCr i t i ca l [ number ]=

mean ( na . omit ( waitingSumOfCubes [
c r i t i c a l ] ) )

}
c r i t i c a l = c r i t i c a l [−1]
i <−min ( average ISS , averageSum ,

averageSumOfCubes )−1
j <−max ( average ISS , averageSum ,

averageSumOfCubes ) +1
p l o t ( ave rage ISS , cex . l a b = 1 . 3 , pch=19 ,

t ype ="b " ,
c o l ="#1874CD" , y l im=c ( i , j ) , x l ab ="

S imu la t i on number " , y l a b =" Average
wa i t i n g t ime " )

l i n e s ( averageSumOfCubes , pch=19 , t ype ="
b " , c o l ="#CD2626 " )

l i n e s ( averageSum , pch=19 , t ype ="b " , c o l
="#FFC125 " )

l egend ( x = " t o p l e f t " , l egend=c ( " Sum of
squa re s ( ISS ) " , "Sum of cubes " , "Sum
" ) ,

c o l =c ( "#1874CD" , "#CD2626 " , "#
FFC125 " ) , l t y =1 , cex =0 . 8 )

i <−min ( a v e r a g eC r i t i c a l ,
a v e r ageSumCr i t i c a l ,
averageSumOfCubesCr i t i ca l )−1

j <−max ( a v e r a g eC r i t i c a l ,
a v e r ageSumCr i t i c a l ,
averageSumOfCubesCr i t i ca l ) +1

p l o t ( a v e r a g eC r i t i c a l , cex . l a b = 1 . 3 ,
pch=19 , t ype ="b " , c o l ="#1874CD" ,
y l im=c ( i , j ) ,

x l ab =" S imu la t i on number " , y l a b =" Average
wa i t i n g t ime f o r c r i t i c a l p a t i e n t s

" )
l i n e s ( averageSumOfCubesCr i t i ca l , pch

=19 , t ype ="b " , c o l ="#CD2626 " )
l i n e s ( a ve r ageSumCr i t i c a l , pch=19 , t ype

="b " , c o l ="#FFC125 " )
l egend ( x = " t o p l e f t " , l egend=c ( " Sum of

squa re s ( ISS ) " , "Sum of cubes " , "Sum
" ) ,

c o l =c ( "#1874CD" , "#CD2626 " , "# FFC125 " ) ,
l t y =1 , cex =0 . 8 )

c a t ( " a v e r age ISS " , mean ( a ve r age ISS ) )
c a t ( " averageSumOfCubes " , mean (

averageSumOfCubes ) )
c a t ( " averageSum " , mean ( averageSum ) )
c a t ( " a v e r a g e C r i t i c a l " , mean (

a v e r a g e C r i t i c a l ) )
c a t ( " averageSumOfCubesCr i t i ca l " , mean (

averageSumOfCubesCr i t i ca l ) )
c a t ( " a v e r a g eSumCr i t i c a l " , mean (

a v e r a g eSumCr i t i c a l ) )
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