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Abstract 

Background:  In the past few decades various methods have been proposed to handle missing data of clinical stud-
ies, so as to assess the robustness of primary results. Some of the methods are based on the assumption of missing 
at random (MAR) which assumes subjects who discontinue the treatment will maintain the treatment effect after 
discontinuation. The agency, however, has expressed concern over methods based on this overly optimistic assump-
tion, because it hardly holds for subjects discontinuing the investigational drug. Although in recent years a good 
number of sensitivity analyses based on missing not at random (MNAR) assumptions have been proposed, some use 
very conservative assumption on which it might be hard for sponsors and regulators to reach common ground.

Methods:  Here we propose a multiple imputation method targeting at “treatment policy” estimand based on the 
MNAR assumption. This method can be used as the primary analysis, in addition to serving as a sensitivity analysis. It 
imputes missing data using information from retrieved dropouts defined as subjects who remain in the study despite 
occurrence of intercurrent events. Then imputed data long with completers and retrieved dropouts are analyzed 
altogether and finally multiple results are summarized into a single estimate. According to definition in ICH E9 (R1), 
this proposed approach fully aligns with the treatment policy estimand but its assumption is much more realistic and 
reasonable.

Results:  Our approach has well controlled type I error rate with no loss of power. As expected, the effect size esti-
mates take into account any dilution effect contributed by retrieved dropouts, conforming to the MNAR assumption.

Conclusions:  Although multiple imputation approaches are always used as sensitivity analyses, this multiple imputa-
tion approach can be used as primary analysis for trials with sufficient retrieved dropouts or trials designed to collect 
retrieved dropouts.
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Background
In a randomized trial with a continuous primary end-
point, usually multiple visits are scheduled after the 
screening and randomization visits. For instance, in a 
26-week type 2 diabetes (T2D) randomized trial, Week 
6, 12, 18 and 26 are scheduled as post-baseline visits. 
Change from baseline in A1c (%) at Week 26 is cho-
sen to be the primary endpoint, because A1c has been 

chosen as the primary biomarker by regulatory agencies 
in evaluating treatment effect of antidiabetic medica-
tions since 1990 [1, 2], according to published guidelines 
[3]. Although every effort has been made to collect data 
and keep subjects remain in the trial, missing data still 
occurs inevitably [4] due to different reasons: lost to 
follow-up, withdrawal by consent, subjects move, site 
closure, collection error, missed visits and so on. When 
it comes to analyzing a continuous endpoint in a longi-
tudinal setting, the most commonly used primary statis-
tical method is mixed models repeated measurements 
(MMRM) or its variations like constrained longitudinal 
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data analysis (cLDA) [5]. This type of methods accounts 
for missing data in an implicit fashion that imputation of 
missing data is not needed due to its underlying assump-
tion of MAR. Since such assumption usually doesn’t 
hold in a real clinical trial, sponsors are also required to 
provide additional sensitivity analyses with missing data 
imputed based on the MNAR assumption [6, 7], as fur-
ther evidences to support the robustness of the primary 
conclusion. In terms of implementation, some sensitiv-
ity analyses are more complex requiring more computer 
resources than others (e.g. jump to reference based on 
multiple imputation [8, 9] vs. Last observation carried 
forward based on single imputation [10]). In the past 
few years, multiple-imputation (MI) based methods have 
been gaining more popularity and increasingly requested 
by regulatory agencies, because it can handle more com-
plex or user-defined distribution/assumption in the 
imputation. It’s well known that MI analyses based on 
MAR assumptions treat missing data as ignorable and 
therefore the impact of such implementations is ques-
tionable. Implementations based on MNAR assumptions 
are more widely used and acceptable from regulatory 
perspective [6]. Little first proposed pattern mixture 
model [11–13], a broad class of methods imputing miss-
ing data mainly based on MNAR. More specifically, 
each implementation is mainly driven by its underly-
ing assumption. For instance, if the missing data in the 
active group is assumed to have the same distribution 
as the control group after the subject’s discontinuation, 
jump to reference (J2R) or its variations [8, 9, 14] such as 
copy reference, copy increments in reference will apply. 
Whereas methods assuming that the treatment effect is 
expected to wash out after the subject’s discontinuation, 
and return to the baseline level, correspond to return 
to baseline (RTB) [15] or baseline observation carried 
forward (BOCF) [1–6, 8–10, 14–18]. Anther class of 
methods that have been proved useful is tipping point 
MI analyses [13, 19, 20] which use stress testing strate-
gies to identify tipping point by gradually increasing and 
adding MNAR penalties (i.e. more and more unfavora-
ble to the investigational product) to data imputed under 
MAR, until statistical significance vanishes. It usually 
needs to be interpreted under clinical context of the 
endpoint of interest, and a very large tipping point usu-
ally is a good indication of robust primary results. There 
have been debates on the rise between sponsor and reg-
ulatory agencies as which MNAR assumption should be 
used for a specific study: some of the very “conservative” 
approaches such as J2R, RTB will help regulators under-
stand if the drug will still work under very unfavora-
ble assumptions, but on the other hand it might not be 
convincing to have sponsors agree that these estimates 
should be used for drug labelling given that certain 

extreme assumptions might not hold for some missing 
data.

The approach we propose should serve as a good 
“trade-off” between “conservative” MNAR and “opti-
mistic” MAR assumptions. It assumes subjects who 
discontinue the trial tend to have similar values on 
the endpoint, compared to those in the same treat-
ment group who are already off treatment but remain 
in the study (“retrieved dropouts”) after adjustment of 
certain baseline covariates and last on-treatment visit. 
The concept of “Retrieved dropouts (RDs)” was first 
described as subjects with data collected after cessation 
of study treatment in the published guideline “Missing 
data in confirmatory clinical trials” [6] in 2010, but the 
guidance didn’t provide technical details of implemen-
tation. Several sponsors have estimated the difference 
of treatment effect solely based on RDs in their post-
hoc analyses [21]. Chen and colleagues [22] proposed 
a Bayesian method to estimate the difference of treat-
ment effect for each subset of the population including 
off-protocol subjects. Because their method couldn’t 
generate an estimate of the overall treatment effect dif-
ference as well as lack of type-I error validation, it has 
limited value in real application of clinical trials. Pam-
paka [23] imputed the missing data using RDs along 
with completers which on one hand led to better impu-
tation precision, but on the other hand might be overly 
optimistic to assume the treatment effect of missing 
data follows the distribution of pooled data of RDs and 
completers.

Our approach doesn’t have such obstacles. The basis of 
the multiple imputation in our approach is RDs defined 
as subjects off treatment but still in the study and have 
the primary visit measurements available. As for pre-
dictors of this regression-based multiple imputation, 
at least baseline and last on-treatment visit should be 
included for which more justifications are provided in 
the discussion section. A minimum of 100 imputations 
are recommended as more imputations can effectively 
prevent power falloff for small effect size [24]. Then each 
full dataset will be analyzed using analysis of covariance 
(ANCOVA) with baseline value, treatment as well as 
other pre-specified covariates as covariates. Results from 
these multiply imputed datasets will then be combined 
into a single estimate and statistical hypothesis testing 
can be conducted. From the perspective of estimands [7, 
25, 26], this method well aligns with the treatment pol-
icy (TP) estimand [26] as described in ICH E9(R1) [7], 
which includes data collected post occurrence of inter-
current events in the analysis, as opposed to the hypo-
thetical estimand [7, 26] excluding data collected post 
occurrence of intercurrent events. Treatment policy esti-
mand analyses have been requested by more than one 
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regulatory agency for labelling consideration in recent 
years [15, 27, 28].

In this manuscript, we first describe the statistical 
method. Then we will explore and answer the follow-
ing questions sequentially: 1) which scenarios does this 
method best apply to; 2) what is the type-I error rate of 
this method and how is it compared to the commonly 
used primary and sensitivity analysis methods? 3) what is 
the power rate of this method, compared to other meth-
ods? 4) how to apply this approach to a dataset contain-
ing few RDs?

Finally, we will illustrate this method by applying it to 
a real unblinded dataset from a Phase III lipid-lowering 
program as a post-hoc analysis.

Methods
Statistical methods
Assume a total of N subjects are randomized to two treat-
ment groups (investigational product and placebo) in 1:1 
ratio. Let Yi denote the longitudinal vector of a continu-
ous primary endpoint for the i-th subject (i = 1, …, N), i.e. 
Yi = (Yi0, Yi1, …, YiK) if a total of (K + 1) visits are planned 
including the baseline visit Yi0. YiK denote the primary 
visit. If some visits are missed or results are not available 
due to reasons such as laboratory sample analysis errors 
[29] they will be set to missing.

On- and off- treatment visits need to be pre-defined 
and their definition relies on the endpoint, the half-life 
of a drug and study design. The population of RDs form 

the basis of the imputation and is defined as the col-
lection of subjects whose primary visits have occurred 
off-treatment. Although primary analysis using on-
treatment visits based on “hypothetical” estimand [7] 
has been widely used by sponsors in the past, nowadays 
regulatory agencies have been increasingly requesting 
analyses based on the TP estimand [7] to align with the 
intent to treat (ITT) principle. This method is a good 
representation of the TP estimand by including RD’s 
off-treatment primary visits in the analysis because 
off-treatment visits are considered data collected post 
occurrence of treatment discontinuation, a type of 
intercurrent events.

To better illustrate this method, we decompose a data-
set into 3 subsets (Fig. 1): subjects with missing values of 
the primary visit, denoted by M =

{

Ym1
, . . . ,Ymnmiss

}

 , 
RDs (i.e. off-treatment “completers”) denoted by 
R =

{

Y r1 , . . . ,Y rnrd

}

 and the rest (i.e. on-treatment 
“completers”) denoted by C =

{

Y c1 , . . . ,Y cncom

}

 where 
nmiss + nrd + ncom = N. The proposed method consists of 
three sequential phases: imputation of missing data, esti-
mation and statistical hypothesis testing after combining 
estimates into a single estimate.

Imputation of missing data
The imputation of missing values is based on RDs 
(i.e. R), but the analysis is based on the full data-
set (i.e. M ∪ R ∪ C) regardless of occurrence of 

Fig. 1  Flow of steps in MI-RD implementation
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intercurrent events. Ideally, the multiple imputa-
tion is implemented in groups defined by treatment 
group and the last on-treatment visit (i.e. among 
subjects receiving the same treatment and discon-
tinuing the treatment at the same visit). This step 
requires further decomposition of M and R. Let 
M = Mp ∪ Md and R = Rp ∪ Rd where p and d represent 
placebo and investigational drug respectively. Then 
for each of Mp,Md,Rp,Rd, it will be further refined 
to Mp = Mp1 ∪ Mp2 ∪ … ∪ Mpj ∪ … ∪ Mpk assuming 
there are k post-baseline visits prior to the primary 
visit with j = 1, …k denoting last on-treatment visit. 
At the imputation step, each subset of M needs to 
be paired with the same subset of R such that they 
match on the treatment group and last on-treatment 
visit (i.e. Ωpj = Mpj ∪ Rpj, Ωdj = Mdj ∪ Rdj). For instance, 
there are two treatment groups and subjects’ last 
on-treatment visit is week 12 or week 18 in a clini-
cal study. Ideally the multiple imputation should be 
implemented in each of the 4 groups (Ωpj, Ωdj (j = 1, 
2)) respectively. The missing data of each Ωtj (i.e. 
Mtj) are imputed using model constructed from Rtj 
(t = p or d, j = 1, …k), adjusting for baseline and last 
on-treatment visit j as covariates, written as

where Y is the endpoint at primary visit, e.g. change from 
baseline in A1c at Week 26, Yb is the baseline, Yj denotes 
visit j which is the last on-treatment visit for subjects in 
Ωtj and ε is the random error term.

For better illustration of the imputation phase, the 
steps are summarized as below:

1.	 A linear regression model is fit using subjects in Rtj 
with the estimated coefficients and mean square 
error denoted as ˆ

βIMP and σ̂ 2
tj.

2.	 Then for each imputation (m = 1, …, M) assuming a 
total of M imputations, the regression parameters 
βIMP(m) =

(

β
IMP (m)
0,tj ,β

IMP (m)
1,tj ,β

IMP (m)
2,tj

)

 are ran-
domly generated from the posterior predictive distri-
bution of the regression coefficients, i.e. 
βIMP(m) ∼ MVN

( ˆ
βIMP

,V tj

)

 where 

V tj =
(

D′
tjDtj

)−1

σ 2
tj(m) , Dtj is the design matrix of 

the above regression model and 
σ 2
tj(m) = σ̂ 2

tj

(

#Rtj − 3
)

/c
(m)
tj  with #Rtj being the sam-

ple size of Rtj and c(m)
tj  being randomly generated 

from a χ2
#Rtj−3

 with a degree of freedom of (#Rtj − 3).
3.	 For each subject in Mtj, the imputed value of Y will be 

calculated using formula (1), σ 2
tj(m), β

IMP(m) and ε ran-
domly sampled from N

(

0, σ 2
tj(m)

)

.

(1)Y = βIMP
0,tj + βIMP

1,tj Y b + βIMP
2,tj Y j + ε

Estimation
Each set of imputed subjects M(m) = M

(m)
p ∪M

(m)

d  
(m = 1, …, M) will be analyzed together with completers 
C and RDs R using ANCOVA adjusting for baseline, 
treatment group as well as other pre-specified covariates 
if any, written as

Because we are primarily interested in estimation of 
treatment effect β1, all M sets of 
ˆ(

β
(m)
1

, var

(

ˆ
β
(m)
1

)

)

∣

∣

∣

∣

m=1,...,M

 will be generated.

Statistical hypothesis testing
ˆ(

β
(m)
1

, var

(

ˆ
β
(m)
1

)

)

∣

∣

∣

∣

m=1,...,M

 will be combined into a sin-

gle estimate following Rubin’s rule [30]:

The variance of the combined estimate is obtained as 
V = Vw +

(

1 +
1

M

)

Vb where 
Vw =

∑

var

( ˆ
β
(m)
1

)

M

 and 

Vb =

∑

�

̂
𝛽
(m)

1
−𝛽1

�2

M−1
 are referred to as within- and between-

imputation variance respectively. Rubin has demonstrated 
the test statistic β̂1√

V
 follows a t distribution with a degree of 

freedom of 

(

1+ 1
M

)

Vb

Vw
 under the null hypothesis that 

H0 : β1 = 0. As for the choice of M, M =100 is recommended 
because 1) this approach is not computationally intensive 
using any common statistical software such as SAS or R; 2) 
more imputations can prevent power falloff [24]; 3) regula-
tory agencies are generally supportive of 100 multiple 
imputations for analyses based on multiple imputations.

When the regression-based MI model is not estima-
ble due to non-sufficient RDs in at least one group, say, 
Ωp ∗ j ∗ ′ the imputation phase will be simplified and imple-
mented by treatment group only, i.e. within Ωp = Mp ∪ Rp 
and Ωs respectively. Given Ωt (t = p  or  d), a regression 
model based on Rt will be constructed as follows:

where YL denotes the last on-treatment visit, concatenated 
from Yj of Rtj (j = 1, …k). Then similar to the imputation 
steps above, 
βIMP(m) =

(

β
IMP (m)
0,t ,β

IMP (m)
1,t ,β

IMP (m)
2,t

)∣

∣

∣

m=1,...,M
 will be 

sampled from posterior predictive distribution of the 
regression coefficients so that subjects in Mt will be 
imputed. The same estimation and statistical hypothesis 
testing procedures that have been described will then follow.

(2)E(Y ) = µ+ β1trt + β2Y b

(3)β̂1 =
∑M

m=1

ˆ
β
(m)
1

M

(4)Y = βIMP
0,t + βIMP

1,t Y b + βIMP
2,t Y L + ε
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Obviously not every study is designed to collect 
retrieved dropouts. To make our proposed approach 
more generally applicable, we will implement this 
simplified imputation phase by treatment group in 
all subsequent sections. In the MI implementation, 
the coefficients are randomly drawn from the poste-
rior distribution of the regression coefficients and a 
large value of mean squared error (MSE) can lead to 
imputed values out of range, e.g. a negative imputed 
value is certainly inappropriate for a positive continu-
ous endpoint, therefore it’s no longer a trivial n > p 
problem in regression models. We will explore and 
answer the question that at least how many RDs are 
considered sufficient in part 1 of simulation studies. 
Since post-processing such as truncation or using 
truncated normal regression might cause biased esti-
mates of marginal mean when data are highly skewed 
[31], we won’t impose explicit post-processing steps 
in the simulations (except for section “No enough 
RDs”).

Simulation studies
We simulated a 26-week two-armed clinical trial with 
1:1 allocation ratio to placebo or antidiabetic medica-
tion. In addition to baseline, 4 post-baseline visits were 
simulated: Week 6, 12, 18 and 26 among which Week 
26 was the primary visit. The endpoint of interest 
was defined as the change in A1c (%) from baseline at 
Week 26 [32–35]. Using the formula below, longitudi-
nal A1c (%) values was simulated from a cLDA model 
[5], assuming the mean of A1c was the same between 
the two groups at baseline. Visits and treatment group 
were treated as categorical, with β0 =(8.25, 8.25, 8.2
5, 8.25, 8.25)′ and 8.25 denoting the mean A1c (%) at 
baseline.

βt = (0, −0.01, −0.05, −0.1, −0.2)′ denoted the main 
effect of visit, i.e. change from baseline at all time points 
for the reference treatment group and βI, the interaction 
term of treatment and visit, representing the difference 
of treatment effect between the test and reference treat-
ment groups over time would be specified in the follow-
ing sections. The first element of both βt and βI were set 
to 0 due to the correspondence with baseline. trti was 
the treatment assigned to the i-th subject (1 = active; 
0 = placebo). εi was the error term to account for the 
correlation among visits of the i-th subject (i = 1, …, N), 
which had a multivariate normal distribution of N(0, Σ) 
based on knowledge from a completed T2D study of a 

(5)Y i = β0 + βt + βI trti + εi

SGLT-2 inhibitor [35] (the diagonal elements were all 
set to 1, and the rest were all set to 0.6). Yi was the vec-
tor consisting of absolute A1c values from baseline to 
Week 26 of the i-th subject (i = 1, …, N).

Since not every clinical study is designed to collect 
RDs, the MI-RD approach in this manuscript is imple-
mented in the less granular way (4) with baseline and 
last on-treatment visit used as predictors in the regres-
sion-based MI.

The simulation studies consist of the following 4 parts: 
in part 1, the minimum number of RDs is identified for 
each scenario and then used as input for type-I error sim-
ulations (part 2) and power simulations (part 3). In part 
4, various strategies on how to handle non-sufficient RDs 
are explored and compared.

Part 1. Best applicable scenarios
The following effect size, βI, representing difference 
of treatment effect at all time points were considered. 
10, 20, 30, 40, 50 missing per Arm were explored and 
simulated. Retrieved dropouts’ last on-treatment visit 
was randomly selected from Week 6, 12 or 18. In this 
section, we want to answer the following question: 
given the absolute amount of missingness per arm, at 
least how many RDs are needed, so that all imputed 
values are within appropriate range (i.e. 3% [36, 
37] < A1c < 15%)?

For every scenario, a total of 5000 simulated datasets 
were generated. Since scenario a. and b. were simulated 
based on the assumption that the active group was supe-
rior to placebo, RDs of the active group were assumed 
to have an additional average increase/worsening of 
0.25 in A1c at Week 26 compared to completers of the 
same treatment group due to off-treatment period, i.e. 
βMNAR = (0, 0, 0, 0,   0.25)′

Where the indicator function I was 1 if the i-th sub-
ject was an RD, otherwise was 0. Such explicit adjust-
ments were not made to other post-discontinuation visits 
because those visits were not used in either imputation 
or analysis. Considering MAR assumption generally 
holds in placebo group, such explicit adjustments were 
not applied to placebo RDs.

a.βI = (0,−0.05,−0.1,−0.2,−0.25)′

b.βI = (0,−0.1,−0.2,−0.4,−0.5)′

c.βI = (0, 0, 0, 0, 0)′

Y i = β0 + βt + βI trti + βMNARtrtiI{i is RD} + εi
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A line search strategy on number of RDs was imple-
mented, to identify the minimum number of RDs 
needed per arm. The criterion was to locate the mini-
mum number of RDs with which the imputed values 
of all 5000 simulations are within defined range. The 
results were summarized in results section (Fig.  2, 
Table 1).

Part 2. Type‑I error
The maximum of the minimum RDs across scenario 
a-c was used as input for Part 3–4, given the num-
ber of subjects missing Week 26 per arm (column 
2 of Table  1). We evaluated the type-I error rate of a 
number of different scenarios (sample size, absolute 
amount of missing data and effect size) as summa-
rized in Table  2. The following two effect sizes were 
explored assuming there was no difference of treat-
ment effect at Week 26 (i.e. data were simulated under 
the null hypothesis):

1)	 no difference of treatment effect between the two 
treatment groups at all time points:

2)	 no difference of treatment effect between the two 
treatment groups only at Week 26:

We also considered 4 different sample size N rang-
ing from 150 to 400 per Arm (Table  2) for good rep-
resentation of different missing rate. In each scenario 
(N, amount of missing data, βI), 5000 datasets were 
simulated. The type-I error rate was defined as the 
proportion of simulations with one-sided p-value sig-
nificant at α = 0.025. Since at Week 26 subjects in the 
two treatment groups were simulated from the same 
normal distribution and MAR was assumed for sub-
jects discontinuing the two treatment groups at Week 
26, no additional worsening was applied to the off-
treatment Week 26 values of RDs in either group. i.e. 
Yi = β0 + βt + βItrti + εi. This method was compared to 
a couple of methods very commonly used as primary 
or sensitivity analyses in clinical trials: MMRM (using 
compound symmetry as the covariance structure), RTB 
[15], J2R [14], the adaptive trimming of trimmed means 
[38] and Mehrotra’s control-based method [39], with 
the off-treatment Week 26 values of RDs treated as 
missing in all methods except MI-RD (Tables 3 summa-
rizes how missing values were handled). Baseline eGFR 
levels were simulated from the eGFR distribution of 
Vertis CV [40] and was adjusted for along with baseline 

βI = (0, 0, 0, 0, 0)′

βI = (0,−0.2,−0.4,−0.8, 0)′

Fig. 2  How Minimum Number of Rds Correspond with Absolute Number of Missing per Arm: the one on the left, middle and right correspond to effect 
size a, b, c 

Table 1  Minimum Number of RDs Derived from Simulations of 
Best Applicable Scenarios

Number of Subjects 
missing Week 26 per 
Arm
nM

Minimum Number 
of RDs per Arm
nR

Number of subjects 
missing Week 26 Per 
Arm (Methods except 
MI-RD)
nM + nR

10 24 34

20 24 44

30 26 56

40 32 72

50 32 82



Page 7 of 15Wang and Hu ﻿BMC Medical Research Methodology           (2022) 22:82 	

A1c level in all models. One hundred imputations were 
utilized in all MI-based methods. The type-I error sim-
ulation results were summarized in Results section and 
Fig. 3.

RTB  Missing Week 26 value is imputed using normal 
distribution with baseline value as the mean and the 
mean square error (MSE) from ANCOVA model based 
on completers as variance. Its underlying assumption is 
that subjects who discontinue from treatment will expe-
rience a washout of treatment effect and therefore their 
value will eventually return to baseline level.

Where Yj5 and Yj1 denote Week 26 and baseline value. 
ϵ is randomly sampled from standard normal distribu-
tion N(0, 1). σ 2

ANCOVA is the MSE from ANCOVA model 
based on completers adjusting for the same covariates, 
i.e. treatment and baseline for simulation studies.

J2R  For subjects in the study medication with missing 
Week 26 values, the visits before and after treatment dis-
continuation are modelled as a joint normal distribution 

Yj5 ∼ N
(

Yj1, σ
2
ANCOVA

)

(6)Yj5 = Yj1 + σANCOVAǫ

with a mean of E
(

Y j

)

=
(

µj1, . . . ,µjD−1, µ
p
jD, . . . ,µ

p
j5

)

 
and a covariance matrix such that

•	 the covariance up to last on-treatment visit, denoted 
as D − 1 is the same as the original covariance matrix 
of the study medication.

•	 The covariance of post-discontinuation visits condi-
tional on observed data (i.e. visits prior to the treat-
ment discontinuation) will be the same as the pla-
cebo group.

The imputation of the placebo group will follow MAR 
assumption and therefore no tweak on the joint distribu-
tion is needed for subjects with missing Week 26 values 
in the placebo group. However, the covariance matrix of 
subjects with missing Week 26 in the active group need 
to be derived using the constraints above.

The approach can be implemented by using the 5 macros 
[41] available on https://​www.​lshtm.​ac.​uk/.

Trimmed means  ANCOVA with adaptive trimming 
described in Permutt’s paper [38] is applied. Let nmp and 
nmd denote number of subjects with missing Week 26 in 
placebo and investigational drug respectively. After the data 

Table 2  Sample Size Scenarios of Type-I Error and Power Simulations

Number of 
Subjects missing 
Week 26 per Arm

Minimum 
Number of RDs 
per Arm

Number of 
subjects missing 
Week 26 Per Arm 
(Methods except 
MI-RD)

Missing rate 
(methods except 
MI-RD) 150 
subjects per arm

Missing rate 
(methods except 
MI-RD) 200 
subjects per arm

Missing rate 
(methods except 
MI-RD) 300 
subjects per arm

Missing rate 
(methods except 
MI-RD) 400 subjects 
per arm

10 24 34 0.23 0.17 0.11 0.09

20 24 44 0.29 0.22 0.15 0.11

30 26 56 0.37 0.28 0.19 0.14

40 32 72 0.48 0.36 0.24 0.18

50 32 82 0.55 0.41 0.27 0.21

Table 3  Comparison of methods

Method Missing data Imputation 
of missing 
data

MI-RD Off-treatment visits are used Yes using MI

MMRM Off-treatment visits are set to missing No

RTB Off-treatment Week 26 values are set to missing. Yes using MI

J2R Off-treatment visits are set to missing Yes using MI

Trimmed means Off-treatment Week 26 values are set to missing. No

Mehrotra’s control-based Off-treatment Week 26 values are set to missing. No

https://www.lshtm.ac.uk/
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are ranked within each group, max(nmp, nmd) observations 
with missing Week 26 or lowest scores will be trimmed from 
each group. This type of trimming leads to minimal loss of 
information as well as removing all missing values. p-value 
and 95%CI are calculated using 10,000 permutations.

Mehrotra’s control‑based method  Assuming the mean 
of subjects in the investigational drug group with missing 

Week 26 can be represented by the overall mean of pla-
cebo group, the treatment effect difference at Week 26 
between investigational drug and placebo is written as

Where pd, com is the proportion of subjects in the investi-
gational drug group with non-missing Week 26, µ̂d,com is 

(7)δ = pd,com
(

µ̂d,com − µ̂p

)

Fig. 3  Type-I error rate and average bias of all 6 methods with respect to different sample size, missingness and effect size: M_control denotes 
Mehrotra’s control-based method; effect size 1 and 2 denote the effect size 1) and 2)
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the MMRM mean at Week 26 among completers in the 
investigational drug group and µ̂p is the MMRM mean at 
Week 26 among placebo subjects. The variance and df are 
calculated using Kenward-Roger method.

Part 3. Power
We considered the same scenarios (Table 2) as the type-I 
error simulations except that the following effect size were 
utilized in dataset simulations to generate datasets under 
the alternative hypothesis:

1)	

2)	

In each scenario, 1000 datasets were simulated under 
the alternative hypothesis that the active group was 
superior to placebo (i.e. the last element of βI < 0 in 
both 1) and 2)) in reducing A1c at Week 26. In addi-
tion, RDs in the active treatment group were assumed 
to have an additional average worsening of 0.25 at 
Week 26 due to off-treatment period, compared to 
completers. i.e. Yi = β0 + βt + βItrti + βMNARtrtiI{i  is 
RD} + εi. The power rate was defined as the propor-
tion of simulations with one-sided p-value significant 
at α = 0.025. The results were summarized in Results 
section and presented in Fig. 4.

Part 4. No enough RDs
If a study is not designed to collect the data of RDs, very 
likely it might end up with fewer RDs than the minimum 
cutoff identified in Part 1. We propose the following 
strategies for potential consideration. The type-I error 
rate and power rate were evaluated in contrast with RTB. 
Pros and cons will be further compared in the discussion 
section.

Approach 1: The response variable in this case is 
transformed to log(y-a) (a > 0; pre-specified) first and 
the multiple imputation is implemented on the trans-
formed scale. The imputed values are then trans-
formed back to the original scale and hence they are 
ensured to be greater than a. However, this approach 
might result in extremely large values due to large 
MSE and exponential transformation. In this case, 
some post-processing steps [42] are needed, e.g. right 
truncation or its variations.
Approach 2: Use the original MI-RD approach to 
impute missing values and then apply both left and 

βI = (0,−0.1,−0.2,−0.4,−0.5)′

βI = (0,−0.1,−0.2,−0.25,−0.3)′

right truncations or their variations to imputed val-
ues falling out of the range.

For the type-I error rate simulations, given an abso-
lute amount of missingness per arm (10, 20, 30, 40, 50) 
and sample size per Arm (150, 200, 300, 400), different 
number of RDs per Arm (8, 10, 15, 20) were explored. 
The effect size βI = (0, −0.2, −0.4, −0.8, 0)′ was uti-
lized. Results were presented in Fig. 5 and supplemen-
tary file.

For the power rate simulations, we explored the same 
scenarios as type-I error simulations, except that effect 
size βI = (0, −0.1, −0.2, −0.25, −0.3)′ was utilized to 
simulate data under the alternative hypothesis. In addi-
tion, an average worsening of 0.15 for the Week 26 val-
ues of RDs in the active treatment group was applied. 
i.e. Yi = β0 + βt + βItrti + βMNARtrtiI{i  is  RD} + εi where 
βMNAR = (0, 0, 0, 0,   0.15)′. Results were presented in Fig. 6 
and supplementary file.

Post‑hoc data analysis
Post-hoc analyses using this method, in contrast to 
MMRM, RTB, J2R, Mehrotra’s control-based and 
trimmed means were conducted on an unblinded dataset 
of a Pfizer phase III lipid-lowering study (NCT01968967). 
The primary endpoint of interest was change from base-
line in low-density lipoprotein (LDL) at Week 52. There 
were 2099 patients in total (1051 in placebo; 1048 in 
the active treatment group), out of which 332 were RDs 
defined as subjects whose Week 52 values were col-
lected at least 21 days after their last dose of treatment 
(166 in placebo; 166 in the active treatment group), 250 
had missing values at Week 52 (131 in placebo; 119 in 
the active treatment group). Results of all three methods 
were summarized in Table 4.

Results
Simulation results
Best applicable scenarios
Given an amount of missingness per arm, the conclusion 
on the minimum number of RDs per arm doesn’t quite 
differ by the magnitude of effect size (βI: difference of 
treatment effect between test and reference treatment 
group) as reflected in Fig. 2. Generally, more missing data 
require more RDs, as more missing data require higher 
precision of the regression model built from RDs, so as 
to ensure all imputed values would fall in the appropri-
ate range. Given the number of missing data per arm, 
the biggest minimum number of RDs across all three 
effect size scenarios was summarized and used as input 
for type-I error and power rate simulations (column 2 of 
Table 1).
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Type‑I error
Figure  3 shows the type-I error rate of MI-RD is well 
controlled across all scenarios. The MMRM has well-
controlled type-I error rate for most scenarios. Mehro-
tra’s control-based has slightly deflated type-I error 
rate for some scenarios. e.g., a study with more than 
30% missing data should be cautious about using this 
control-based method as it might lead to deflated 
type-I error rate. The rest of the methods (J2R, RTB, 

adaptive trimmed means) all have deflated type-I error 
rate with similar pattern: 1) given a sample size and 
an effect size, the type-I error becomes more deflated 
with more missing data; 2) It’s also evident that given 
an amount of missingness (e.g. 20 missing per arm), 
the deflation of type-I error has less impact on a big-
ger sample size (e.g. 400 per arm vs 150 per arm). Out 
of the three methods (J2R, RTB, adaptive trimmed 
means), adaptive trimmed means seems to be the most 

Fig. 4  Power rate and Effect size (difference of treatment effect at Week 26) of all 6 methods with respect to different sample size: m_control 
denotes Mehrotra’s control-based method; effect size 1 and 2 denote the effect size 1) and 2)
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conservative, followed by RTB and J2R. All 6 methods 
are considered unbiased in terms of the fact that data 
are simulated under the null hypothesis that there’s no 
difference of treatment effect between active and pla-
cebo at Week 26.

Power
Generally, the MMRM has the highest power rate, fol-
lowed by Mehrotra’s control-based method and MI-RD. 
RTB and J2R are the most conservative. The difference 
gradually diminishes with bigger sample size. In terms 

Fig. 5  Type-I Error Rate and Average Bias with respect to Different Amount of Missingness and Different Number of RDs, for 150 Subjects per Arm

Fig. 6  Power Rate and Effect Size Estimates with respect to Different Amount of Missingness and Different Number of RDs, for 150 Subjects per 
Arm
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of effect size estimate, MMRM and trimmed means 
return the biggest effect size estimate due to the fact that 
retrieved dropouts’ off-treatment visits are not used in the 
analysis. Estimates of J2R, Mehrotra’s control-based and 
RTB are the smallest due to conservative assumptions of 
either returning to baseline or returning to distribution 
of control group. MI-RD falls in between (see Fig. 4). The 
benchmark for effect size (difference between active and 
placebo) at Week 26 is βI[5] + βMNAR[5]∗ proportion of 
RD, assuming missing data follows MAR pattern. But since 
our proposed method is based on one MNAR assumption 
leading to effect attenuation like other MNAR approaches 
(J2R, Mehrotra’s control-based, RTB), the estimated effect 
size at Week 26 is smaller than this benchmark, as reflected 
in Fig. 4. It’s noteworthy that our proposed method is the 
least conservative among all MNAR approaches explored. 
Because RDs in the active treatment group are assumed to 
have some level of worsening compared to completers in 
the same group after treatment discontinuation and their 
off-treatment primary visits are included in the analysis of 
MI-RD, an estimated effect size smaller than the simulated 
effect size is expected.

No enough RDs

Type‑I error rate  Approach 2 with no log transforma-
tion best preserves the type-I error rate among the three 
methods, while RTB is the most conservative in most 
scenarios (Fig.  5 and supplementary file). With bigger 
sample size, the difference in type-I error rate across all 
3 methods become smaller (e.g. 300, 400 vs 150 per arm). 
All three methods are considered unbiased.

Power rate  Approach 1 and 2 yield pretty much the same 
power rate and effect size estimates for each scenario. They 
approximately have higher power than RTB in scenarios 
with 150–200 subjects per arm and 15–20 RDs per arm. 
RTB can be slightly more powerful in scenarios with 150–
200 subjects per arm and 8–10 RDs or 300 subjects per arm 
(Fig.  6 and supplementary file). Consistent with previous 

findings, effect size estimates of RTB is smaller due to more 
conservative assumption. It is also self-explanatory that 
more missing data further attenuates the effect size.

Post‑hoc data analysis results
Consistent with simulation results: MMRM under hypo-
thetical estimand and trimmed means return the largest 
effect size estimate, followed by MMRM (TP estimand), 
MI-RD, RTB, Mehrotra’s control-based and J2R. RTB, 
Mehrotra’s control-based and J2R yield the most conserv-
ative estimate of effect size. All methods return p values 
of less than 0.0001.

Discussion
There have been considerable debates over the past few 
decades on which assumptions are generally acceptable 
for MI analyses or analyses that don’t need explicit impu-
tation of missing data such as MMRM. MAR assump-
tions do hold in certain scenarios while MNAR works 
better in other cases. For instance, a subject in the active 
group who discontinued the trial due to adverse events 
may no longer keep the treatment effect after discon-
tinuation, whereas it might be fine to assume MAR for 
another subject who discontinued the trial due to mov-
ing to another city. An overall assumption of MNAR is 
becoming the future trend because it can determine how 
robust primary conclusion is, by deviating from favorable 
assumptions. A very noteworthy feature of our proposed 
approach is it balances the controversy between the two 
totally opposite perspectives.

For our proposed method, we simulated different 
amount of missing data under different sample size, 
to account for different missing/discontinuation rate 
(ranging from 2 to 33%) with respect to trials in differ-
ent therapeutic areas /clinical stages. The rationale of 
simulating absolute missing data is that the minimum 
number of RDs is directly related to the absolute amount 
of missing data. Results of Part1 provide insights to 

Table 4  Application of the Following Methods to a Real Phase III Dataset

Method Difference of treatment effect
active vs placebo

95% CI p-value

MI-RD −40.58 [−43.92, −37.24] <.0001

MMRM (off-treatment visits were set to missing, i.e. "hypothetical") −50.33 [−53.23, −47.43] <.0001

RTB (off-treatment visits were set to missing and hence imputed) −38.97 [−41.90, −36.04] <.0001

MMRM (including off-treatment visits, i.e. "TP") −43.29 [−46.10, −40.49] <.0001

J2R −36.59 [−39.85, −33.1] <.0001

Mehrotra’s control-based −37.62 [−40.36, −34.88] <.0001

Trimmed Means −51.41 [−55.55, −47.27] <.0001
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sponsors interested in this approach so that a study can 
be designed to collect sufficient retrieved dropouts. 
It clearly has demonstrated minimum number of RDs 
are directly related to number of missing values. MI is 
not a new topic, but sometimes statisticians tend to 
skip checking the validity of imputed values (e.g. if an 
imputed value is in the right range), which can result in 
misleading and biased estimates when such values are 
included in the analysis. Some people may argue impos-
ing the criteria of having all imputed values within plau-
sible range is too strict and unnecessary. On one hand, 
extreme values certainly will distort the results if they 
are way too extreme (e.g. an imputed value of > 1000 
for A1c(%)). But on the other hand, I agree moderately 
increasing the tolerance with justification on unbiased 
estimates, no loss of efficiency, etc. can be considered. 
For pivotal trials, it’s good practice to obtain the nod 
from regulatory agency on the most appropriate strategy 
during protocol/SAP review.

Although traditional MAR-based MI usually includes 
all scheduled visits ranging from baseline to the pri-
mary visit in the imputation [43], we propose only 
baseline, last on-treatment visit are included as regres-
sors of the imputation, based on regulatory feedback. 
The rationale is with only a small subset (RDs) used as 
the imputation basis, it’s not very possible to keep all 
or majority of imputed values within plausible range 
if all intermediate visits are included. Our proposed 
imputation approach also simplifies the regression-
based imputation due to its inherent monotone struc-
ture [44]. We suggest a total of 100 imputations for the 
following considerations: more imputations can effec-
tively prevent power falloff [24], but more than 100 
imputations are usually not computationally affordable 
for large datasets. For some methods involving very 
intensive computation, regulatory agencies might even 
agree with < 50 imputations, based on our past regula-
tory interactions.

Classifying a subject as a RD or not directly relies on 
the definition of intercurrent events. Generally speaking, 
every clinical study defines intercurrent events some-
what differently. For instance, recent glycemic clinical 
studies primarily define treatment discontinuation or 
initiation of rescue therapy as intercurrent events [32–
35, 45]. Some lipid-lowering clinical programs might 
only define treatment discontinuation as intercurrent 
events [46], like the data analysis application. Therefore, 
in the former case, RDs are defined as subjects with pri-
mary endpoint collected off treatment or collected after 
initiation of rescue therapy. While in the latter, RDs are 
defined as subjects with primary endpoint collected off 
treatment.

With enough RDs, the MI-RD approach has quite a few 
advantages: 1) it includes more data in the analysis under 
the ITT principle, as opposed to approaches in the para-
digm of hypothetical estimand which excludes observa-
tions that occur post occurrence of intercurrent events. 
2) It well preserves the type-I error rate, compared to 
other commonly used MNAR methods. 3) the attenua-
tion effect of RDs are accounted for in the effect size esti-
mation, in contrast to hypothetical estimand approaches 
which exclude RDs’ off-treatment visits from the analysis.

As for the two modified approaches for scenarios with 
insufficient RDs, approach 2 has better performance than 
approach 1. They both have pretty much the same simu-
lation results but approach 2 preserves the original distri-
bution of the endpoint in the imputation of missing data. 
Furthermore, due to the log transformation in approach 
1, more extremely large values from imputation are 
generated and truncated. However, since the modified 
MI-RD approaches only work better in certain scenarios 
and there’s always concern that post-processing steps 
might lead to biased estimates [31], sponsors should be 
more open-minded to other approaches especially when 
the trial is not designed to collect retrieved dropouts.

Similar to power rate calculation using simulations, 
sample size can be estimated starting from an initial sam-
ple size along with the scheme of line/grid search. This 
will inform the sponsor as how many subjects need to be 
enrolled to achieve the pre-specified power, when MI-RD 
is planned as the primary analysis.

The less granular MI (i.e. implemented within groups 
defined by treatment group) is recommended, unless a 
trial has an enormous amount of RDs. Of all above meth-
ods that we have compared to, J2R is the most computa-
tionally intensive. MI-RD, however, can be implemented 
very efficiently in commonly used statistical analysis 
programs.

Using similar strategy, this approach can be extended to 
other types of endpoints, such as binary, multinomial or 
count endpoints. Like in generalized linear model theory, 
link function g(.) will be applied to eq. (1), (2), (4) which 
will cover imputation and estimation phases, in the form 
of g(E(Y)). It’s noteworthy if continuous endpoints are 
collected and available despite a non-continuous end-
point is of interest in the analysis, it’s recommended to 
use continuous endpoint for imputation phase (1)/ (4). 
For instance, an endpoint of interest is A1c < 7% with 
A1c data available. Then continuous A1c should be used 
for imputation phase although binary A1c < 7% will be 
used in estimation and hypothesis testing phases. This 
approach can also be extended to time to event endpoints 
with or without parametric assumptions. We applied it to 
time to event endpoints of an outcome trial in a recent 
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FDA submission. One advantage of such application is 
there will be very little concern on collecting sufficient 
retrieved dropouts due to relatively large sample size of 
an outcome trial. The statistical methodology details are 
being developed in a separate manuscript.

As shown in our simulation studies: results based on 
different assumptions don’t vary much when there are 
very few missing data. Any efforts of minimizing miss-
ing data for clinical trials should be encouraged such as 
developing strategies or surveys to collect post-discon-
tinuation information, because currently subjects’ behav-
ior after their discontinuation from the trials is largely 
unknown. Post-discontinuation information is critical in 
terms of predicting which assumption is the most appro-
priate for a particular clinical trial, and hopefully such 
improvements will be realized through scientific collabo-
ration in the future.

Conclusion
This proposed MI approach is best applicable to trials 
designed to collect retrieved dropouts. Because it fully 
aligns with the ITT principle and is based on very rea-
sonable MNAR assumption that the treatment effect of 
missing data follows the same distribution of retrieved 
dropouts in the same treatment group after adjustment 
for baseline and last on-treatment values, this approach 
can be used as primary analysis. The implementation 
is very straightforward and computer efficient, such as 
in SAS and R. Similar to power rate calculation, sample 
size can be estimated using simulation studies for stud-
ies interested in pre-specifying this approach as primary 
analysis. This approach can also be extended to survival 
and binary endpoints using parametric or semi-paramet-
ric models. When a trial doesn’t have enough RD, other 
approaches should be given priority to in terms of pri-
mary analysis especially when the power of transformed 
MI-RD is not satisfactory (reference the power plots in 
the supplementary files).
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