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Abstract 

Background:  Mendelian randomization (MR) studies using Genetic risk scores (GRS) as an instrumental variable (IV) 
have increasingly been used to control for unmeasured confounding in observational healthcare databases. However, 
proper reporting of methodological issues is sparse in these studies. We aimed to review published papers related to 
MR studies and identify reporting problems.

Methods:  We conducted a systematic review using the clinical articles published between 2009 and 2019. We 
searched PubMed, Scopus, and Embase databases. We retrieved information from every MR study, including the tests 
performed to evaluate assumptions and the modelling approach used for estimation. Using our inclusion/exclusion 
criteria, finally, we identified 97 studies to conduct the review according to the PRISMA statement.

Results:  Only 66 (68%) of the studies empirically verified the first assumption (Relevance assumption), and 40 (41.2%) 
studies reported the appropriate tests (e.g., R2, F-test) to investigate the association. A total of 35.1% clearly stated and 
discussed theoretical justifications for the second and third assumptions. 30.9% of the studies used a two-stage least 
square, and 11.3% used the Wald estimator method for estimating IV. Also, 44.3% of the studies conducted a sensitiv-
ity analysis to illuminate the robustness of estimates for violations of the untestable assumptions.

Conclusions:  We found that incompleteness of the justification of the assumptions for the instrumental variable in 
MR studies was a common problem in our selected studies. This may misdirect the findings of the studies.
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Background
Understanding the causal associations between outcome 
and exposures is crucial in the health and medical sci-
ences for various reasons, including preventive meas-
ures, advanced detection and intervention, and better 

treatment and support. Observational studies are the 
most effective approach to investigate the causal rela-
tionships between exposures and outcomes since rand-
omized controlled trials (RCTs) studies are often ethically 
or practically unfeasible [1]. However, these relation-
ships may be confounded by associated components if 
treatments are not assigned at random [2–4]. There-
fore, analytical approaches which can minimize bias and 
evaluate the causal effects in the presence of confound-
ing that are not measured in observational studies can 
offer more convincing confirmation of causal inference. 
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An instrumental variable (IV) analysis is a technique for 
obtaining consistent causal estimates in the presence of 
unobserved confounding [4, 5]. Usually, an instrumental 
variable, also known as an “instrument,” is a variable that 
has a relationship with exposure of interest, i.e., exog-
enous variable, but does not have an association with the 
outcome, i.e., endogenous variable, except in the con-
text that it influences the exposure, which in turn affects 
the endogenous variable [6, 7]. Though an instrumen-
tal  variable  can  be  any  trait that  meets  these  cri-
teria,  the  genetic  variants are strong candidates for 
instrumental variables [2, 8]. This is because genetic vari-
ations are generally inherited independently, and more 
importantly, they are unlikely to be affected by confound-
ing variables as they are predetermined [2, 3]. For the 
last ten years, this approach of treating genetic variants 
as instrumental variables in observational data to explore 
the consequences  of  changeable  risk  factors  for  dis-
eases has been termed ‘Mendelian randomization’ (MR) 
[3, 9, 10]. Genetic risk scores (GRS), also called polygenic 
risk scores (PRS), genotype scores, gene scores, or allele 
scores, are a more straightforward means of summing up 
an enormous amount of genetic variants correlated with 
a potential cause.

The GRS, usually based on genome-wide single-nucle-
otide polymorphism (SNP) data, is constructed using a 
set of SNPs discovered in a discovery genome-wide asso-
ciation studies (GWAS) (usually from a different training 
sample) [11–15]. An unweighted score is calculated using 
the total number of risk factor-increasing alleles in a per-
son’s genotype. On the other hand, in a weighted score, a 
weight is assigned to each allele depending on the impact 
of the related genetic variation on the risk factor. These 
weights might be calculated internally from the examined 
data or externally from prior information or a separate 
data source. In this approach, multidimensional genetic 
variations associated with a risk factor can be reduced to 
a single variable and used in a Mendelian randomization 
study under the assumption that the GRS is an instru-
mental variable [16].

MR studies must satisfy the assumptions of the instru-
mental variable since genetic variants are used as an 
instrumental variable in these studies. These assumptions 
for MR studies are [1, 8, 17, 18]:

	(i)	 Relevance assumption: There is an association 
between the genetic variants and the exposure. 
Even though the assumption simply needs the 
existence of an association, weak associations pro-
vide little statistical power for testing hypotheses 
and amplify the bias resulting from violations of 
the instrumental variable assumptions. F-statistics, 
R square, odds ratio, or the risk difference are usu-
ally used to assess the association.

	(ii)	 Exclusion restriction assumption: The influence of 
genetic variants on the exposure of interest is the 
only way through which they affect the outcome. 
More simply, genetic variants are not directly asso-
ciated with the outcome, but they do influence the 
exposure, and exposure affects the outcome. This 
assumption can be assessed by detecting horizontal 
pleiotropy.

	(iii)	 Independence assumption: This assumption is also 
known as the exchangeability assumption. Accord-
ing to this assumption, there is no confounding for 
the effect of genetic variants on the outcome. It 
may also be stated as the instruments do not share 
any causes with the outcome. The third assump-
tion can be assessed by checking for correlations 
between the genetic instrument and common 
confounders, bias component plots, covariate bal-
ance tests, adjustment for principal components of 
population stratification, and evidence from large 
GWAS on the association of the genetic variants 
used as instruments with other baseline factors [8].

An overidentification test, i.e., the Sargan or the 
Hansen test [19, 20], can be performed to determine 
if the parameters calculated by each IV individually are 
similar when using several instruments [21]. Failure of 
the test reveals variability in the effect estimates from 
each IV, implying that one or more genetic variants may 
violate IV assumptions. However, it is not possible with a 
single instrument [22].

The first three assumptions simply define the causal 
effect’s bounds independently derived by Robins and 
Manski (later Balke and Pearl derived smaller bounds) 
[23–27]. Thus, a fourth identifying assumption is often 
not mentioned and is required to obtain a point estimate 
[1, 4, 27, 28]. The assumption is based on effect homo-
geneity, which states that exposure’s effect on outcome 
should be consistent across the subjects. It is, neverthe-
less, infeasible. As a result, an alternative assumption that 
does not need effect homogeneity has been established. 
This assumption is known as the monotonicity assump-
tion or no defiers. For example, in a clinical setting, we 
can say that there are no defiers if no patients would be 
recommended treatment A when consulted by a doctor 
who generally recommends treatment B and would be 
suggested B by a doctor who normally suggests treatment 
A [27, 29]. In other words, according to this assumption, 
the proposed IV must only affect exposure in one direc-
tion, i.e., there should not be cases where the exposure 
level is increased by increasing the proposed IV and cases 
where the exposure level is decreased by increasing the 
proposed IV [18, 30]. In addition, the causal parameter 
of interest depends on the choice of this assumption[18]. 
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For example, the homogeneity assumption (4 h) for esti-
mating the Average Treatment Effect (ATE) and the 
monotonicity assumption (4 m) for estimating the Local 
Average Treatment Effect (LATE) is needed to be theo-
retically justifiable [5, 18, 31].

The goal of MR studies can be achieved only when the 
assumptions are met, and the authors provide adequate 
evidence for reviewers and readers to evaluate [6, 27] and 
to assess the efficacy of analysis in Mendelian randomiza-
tion studies, the assumptions must be presented. Studies, 
however, have shown that there is insufficient reporting 
of the credibility of MR assumptions as well as the sta-
tistical methods applied in MR studies [2]. Inadequate 
reporting of methodologies, validation of the assump-
tions, and sensitivity analyses can affect the result and 
the utilization of the study data. These problems may also 
lead the authors of MR studies to biased or false conclu-
sions [32]. Therefore, in this study, we focus on evaluat-
ing if the researchers have explained the assumptions of 
the MR studies. Additionally, we assessed if the applied 
statistical methods have adequately been defined, along 
with the derivation of the confidence interval for those 
studies.

Methods
We adopted the Preferred Reporting Items for Systematic 
Review and Meta-Analysis Protocols (PRISMA-P) 2009 
[33].

Search strategy
To evaluate the effectiveness of the research regarding 
the instrumental variables, we performed a systematic 
review using the studies published from 2009 to 2019 in 
PubMed, Scopus, and Embase. We searched articles for 
MR studies where the GRS is used as a covariate. The 
search terms were: “Mendelian randomization” AND 
“allele scores”, OR “genetic risk scores” OR “polygenic risk 
score” OR “gene scores”, OR “genotype scores”, OR “GRS”, 
OR “PRS”. We also checked the reference lists of the 
included articles and reached out to experts. To eliminate 
duplicates and to handle the records, Mendeley version 
1.19.8 software was used.

Inclusion and exclusion criteria
We selected an article that reported Mendelian Rand-
omization and polygenic risk score, or genetic risk score 
based on either individual level data or two-sample sum-
mary-data; used minimum 500 samples, and published 
in English in any country or region in the world. Reviews 
articles, short communications, editorials, case reports, 
letters to the editor were not considered in this study. 
Moreover, two papers were excluded as they used SNP as 
GRS.

Data screening and extraction
Following the duplicate articles’ removal, we screened the 
titles and abstracts and then assessed the remaining full-
text articles for inclusion. Discussions with co-authors 
were used to settle the differences of opinion. Data from 
all eligible studies were extracted using a standardized 
form. Information about instrumental variables, includ-
ing tests performed to assess the assumptions, were 
extracted for each included paper. A total of 97 research 
articles were included.

Software
For the data analyses, we used SPSS (v25) and Excel 2019.

Results
At first, we identified 143 unique studies. We reviewed 
all these identified studies and excluded 44 meta-analysis 
studies because of our exclusion criteria and selected 99 
articles for further investigation. Out of these 99 articles, 
we found that two studies had used a single SNP as GRS. 
Finally, after excluding those two studies, we included 97 
studies for the review (Fig. 1) and 16.49% of our reviewed 
articles used two sample MR approach.

Table 1 presents how the studies included in the review 
described the steps for reporting MR studies. The system-
atic review identified 32.0% included studies overlooked 
the first assumption. Furthermore, 40.2% of the studies 
had not provided any information regarding both the 
second and third assumptions. Moreover, only one study 
reported more than one type of falsification tests for the 
second and third assumption and 47.4% study investi-
gate directional pleiotropy. Only 8.2% of studies clearly 
stated the treatment effect to be estimated, though 81.4% 
of studies did not report the estimated bounds for the 
casual effect under 1st, 2nd, and 3rd assumption. There 
was no theoretical explanation for the fourth assump-
tion in approximately 89.7% of studies. A total of 44.3% of 
the studies conducted a sensitivity analysis, and 25.8% of 
studies discussed linkage disequilibrium.

A total of 30.9% of the studies used a two-stage least 
square method to estimate IV, whereas 11.3% of the stud-
ies used a Wald estimator for evaluation of the parameter. 
Moreover, 24.7% studies used inverse variance weighted 
method for estimating the parameters from IV models 
(Table 2).

Discussion
In this study, we evaluated the reporting problems of 
GRS as an instrumental variable in MR studies. Over-
all, consistent with previous studies [1, 2], we found 
that many studies did not report an adequate amount of 
information. Which lead to the problem of determining 
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if the authors’ inferences were supported by their evi-
dence. Though only the first assumption or the relevance 
assumption can be empirically verified, about two-third 
(68.0%) of the included studies reported checking this 
assumption [30]. However, less than half of the studies 
reported the appropriate tests for empirical verification 
of the 1st assumption. Moreover, almost all these studies 
reported an F-statistic or both the F-statistic and R2 for 
empirical verification of the 1st assumption.

According to the first assumption, a weak associa-
tion between the GRS and exposure can intensify biases 
caused by slight violations of the second or third assump-
tion, resulting in biased estimates [34, 35] and provide 
little statistical power to test hypotheses [8]. On the 
other hand, an extremely strong association would be 
far more likely to violate the second or third assump-
tion. Moreover, the GRS is suspected to be linked with 
about the same group of confounding variables (possibly 
unmeasured) as the exposure if the correlation is per-
fect [28]. Furthermore, while the first stage F-statistics 
is a well-established statistic for measuring instrument 

strength [36], providing both the F-statistic value and 
the association between exposure and IV using Pearson’s 
correlation, Odds Ratio, or point bi-serial correlation is 
suggested [37].

In our review, it was found that more than one-third of 
the studies did not even mention the theoretical justifica-
tion for the second and third assumptions. As opposed 
to the first assumption, second and third assumptions 
are not experimentally verifiable. Hence, an analyst uses 
subject-matter expertise to develop a case for why the 
offered instrument is considerately supposed to follow 
both assumptions. Even if the second and third assump-
tions cannot be proven to be true, it is frequently pos-
sible to falsify them [5, 38]. Regarding falsification tests 
for the 2nd and 3rd assumption, a negligible proportion 
(only 1.0%) reported two or more tests, and seven studies 
(7.2%) reported exactly one test. However, almost half of 
these studies investigate directional pleiotropy which can 
be used to assess the third assumption [1].

Under the first, second, and third assumptions, about 
one-fifth of studies estimated causal effect bounds. The 

Fig. 1  Flow diagram for the studies included in the systematic review
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importance of these bounds is that they indicate how 
much information is needed to fill in the as well as how 
much information is required to be given by a fourth 
assumption to express the inaccuracy regarding the 

causal effect when the data and all three assumptions are 
combined [5, 6, 27].

It is needed to determine the causal effect of inter-
est in estimating both bounds and effects. The average 

Table 1  Percentage Reporting According to Suggested Guidelines in a Review of IV Publications Assessing Effects of Medical 
Interventions (n = 97)

Guideline Count Percentage

Empirically verified 1st assumption

  Yes 66 68.0

  No 31 32.0

Strength of the 1st assumption

  Verified in data using F-statistic 28 28.9

  Verified in data using F-statistic and R2 11 11.3

  Verified in data using odds ratio 1 1.0

  Not reported 57 58.8

Provided theoretical justifications for 2nd and 3rd assumption

  Clearly Stated & Discussed 34 35.1

  Lacked Clear Discussion 24 24.7

  No Acknowledgment 39 40.2

Clearly reported falsification tests for 2nd and 3rd assumption

  Reported two or more types 1 1.0

  Reported exactly one type 7 7.2

  Did not report any tests 89 91.8

Detection of pleiotropy

  Yes 46 47.4

  No 51 52.6

Clearly stated the effect to be estimates

  The effect in the population (Average treatment effects, ATE) 1 1.0

  Effect in the compliers (Local average treatment effects, LATE) 6 6.2

  Both stated (ATE & LATE) 1 1.0

  Not stated 89 91.8

Estimated causal effect bounds, under the 1st, 2nd, and 3rd assumption

  Yes 18 18.6

  No 79 81.4

Discussed theoretical justification for the pertinent fourth assumption

  Stated and discussed homogeneity assumption (4 h) 1 1.0

  Stated and discussed monotonicity assumption (4 m) 4 4.1

  Stated and discussed both (4 h) and (4 m) 0 0.0

  Stated but not discussed (4 h) 3 3.1

  Stated but not discussed (4 m) 2 2.1

  No acknowledgment of the 4th assumption 87 89.7

Modeling approach for the estimation was clearly described

  The modeling approach clearly described 74 76.3

  Lack of adequate description of the modeling approach 23 23.7

Conduct Sensitivity Analysis

  Yes 43 44.3

  No 54 55.7

Discussed Linkage Disequilibrium

  Yes 25 25.8

  No 72 74.2
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treatment effect (ATE) in the population and the local 
average treatment effect (LATE) in the subpopulation 
are the two main options for determining the causal 
effect of interest. In general, the ATE and LATE can 
vary, so the analyst should define the purposes for pick-
ing one over another. Just one study out of ten in our 
analysis was explicit, and the majority of the studies did 
not mention anything about this topic.

Our review found that a majority of the studies 
(89.7%) did not acknowledge any fourth assumption, 
while about 4% stated and discussed homogeneity or 
a monotonic effect. As the choice of the causal effect 
of interest, i.e., ATE, LATE, depends on the theoretical 
justification of the (4  h) or (4  m) assumption, respec-
tively, calculating effect estimates may be appropriate 
if the first, second, and third assumptions, as well as 
either (4  m) or (4  h), are entirely justified [5, 18, 31]. 
Models that approximate these effects inside levels of 
calculated covariates can also be used, but the neces-
sary assumptions must hold conditional on these covar-
iates. Most of the studies stated the modeling approach 
for estimating the parameter from IV models. Sensi-
tivity analyses are used to illuminate the robustness of 
estimates for violations of the untestable assumptions. 
Furthermore, pleiotropy-tolerant MR techniques are 
sometimes referred to as sensitivity analyses. However, 
its implementation seldom includes implicit falsifica-
tion tests, such as the MR-Egger intercept, which may 
be used to test for violations of the exclusion restriction 
assumption. It was found that more than half of the 
studies did not conduct sensitivity analysis.

Another common technical problem for MR analy-
ses is linkage disequilibrium which is relevant to the 
MR assumptions. However, twenty-five, i.e., 25.8% of 
the articles neither discussed this issue nor the possible 
impacts on the results.

While checking the standards of the study based on 
fulfilling the main three assumptions, we found that 

more than two-third (71.1%) of the included stud-
ies are not standard. About 30% of the studies fell into 
the standard category, i.e., these studies mentioned the 
assumptions, provided the empirical and theoretical 
justifications, investigated horizontal pleiotropy and 
reported falsification tests for the assumptions.

Lor et al. recently defined and assessed the reporting 
of MR analyses. They did, however, solely look at onco-
logical studies. Over half of the literature (51.9%) they 
reviewed did not mention the first three MR assump-
tions, and 14% of studies had inadequately stated pro-
cedures for IV analysis [1]. Boef et al. reviewed existing 
MR literature concentrating on the methodological 
procedures utilized in MR research, as well as discus-
sion of the assumptions and reporting of the statistical 
methods used. However, they included studies up to 
December 2013. According to their findings, less than 
half of the papers (44%) addressed the plausibility of all 
three MR assumptions [2].

The MR analyses field has evolved substantially in 
recent years as many different tools and techniques 
are available for carrying out MR studies comparing to 
the past. Therefore, updated knowledge is necessary to 
check if newer MR articles are more likely to follow the 
MR analysis criteria. As a result, we included articles 
up to 2020 and split them into two categories based on 
whether or not the publication was published before 
2017. However, we have failed to identify any signifi-
cant reporting quality difference (P-value = 0.746) in 
the current MR studies, i.e., studies published in 2017 
and later indicating that reporting quality of MR stud-
ies are still not up to the mark.

As a significant amount of the included studies did 
not report sufficient information, we suggest a checklist 
of information and specification tests for the investiga-
tors of MR studies:

•	 State explicitly the four MR assumptions along with 
any additional or sensitivity analysis assumptions.

•	 Describe any methods applied to evaluate or 
explain the assumptions’ validity in the study, as 
well as the possible effect of assumption violation 
and the evaluation and reduction of potential biases 
due to assumption violation.

•	 Discuss the MR estimator, such as two-stage least 
squares, two-stage residual inclusion, Wald ratio, 
bivariate probit method, or limited information 
maximum likelihood and related statistics.

•	 State the estimated causal effect between outcome 
and exposure, as well as report the MR analysis 
results with confidence intervals.

•	 Explain any sensitivity analyses or other analyses 
that were performed.

Table 2  Frequency of the modeling approach

Model Name Count Percentage

Two-stage least square (2SLS) 30 30.9

Inverse Variance Weighted Method (IVW) 24 24.7

Wald Estimator 11 11.3

Two-stage residual inclusion (2SRI) 2 2.1

Bivariate probit method (BPM) 2 2.1

2SLS and IVW 2 2.1

IVW and Wald Estimator 2 2.1

Limited information maximum likelihood (LIML) 1 1.0
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•	 Specify the genetic instrument’s strength and address 
the limitations of the study, considering sources of 
potential bias (i.e., linkage disequilibrium).

•	 Follow STROBE-MR: Guidelines for strengthening 
the reporting of Mendelian randomization studies 
[39].

Conclusions
We found that incompleteness of the justification for the 
assumptions of the GRS as an instrumental variable was 
a common problem in our selected studies. This may 
misdirect the quality of the study in the wrong way. So, 
we point out that the fundamental issue in MR studies 
is not the decision of technique but instead the selection 
of appropriate GRS as IV and the evaluation of the IV 
assumptions. Therefore, we recommend routinely evalu-
ate and justify the assumptions.
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