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Abstract 

Background:  Reliable evaluations of state-level policies are essential for identifying effective policies and informing 
policymakers’ decisions. State-level policy evaluations commonly use a difference-in-differences (DID) study design; 
yet within this framework, statistical model specification varies notably across studies. More guidance is needed about 
which set of statistical models perform best when estimating how state-level policies affect outcomes.

Methods:  Motivated by applied state-level opioid policy evaluations, we implemented an extensive simulation study 
to compare the statistical performance of multiple variations of the two-way fixed effect models traditionally used 
for DID under a range of simulation conditions. We also explored the performance of autoregressive (AR) and GEE 
models. We simulated policy effects on annual state-level opioid mortality rates and assessed statistical performance 
using various metrics, including directional bias, magnitude bias, and root mean squared error. We also reported Type 
I error rates and the rate of correctly rejecting the null hypothesis (e.g., power), given the prevalence of frequentist null 
hypothesis significance testing in the applied literature.

Results:  Most linear models resulted in minimal bias. However, non-linear models and population-weighted versions 
of classic linear two-way fixed effect and linear GEE models yielded considerable bias (60 to 160%). Further, root mean 
square error was minimized by linear AR models when we examined crude mortality rates and by negative binomial 
models when we examined raw death counts. In the context of frequentist hypothesis testing, many models yielded 
high Type I error rates and very low rates of correctly rejecting the null hypothesis (< 10%), raising concerns of spuri-
ous conclusions about policy effectiveness in the opioid literature. When considering performance across models, the 
linear AR models were optimal in terms of directional bias, root mean squared error, Type I error, and correct rejection 
rates.

Conclusions:  The findings highlight notable limitations of commonly used statistical models for DID designs, which 
are widely used in opioid policy studies and in state policy evaluations more broadly. In contrast, the optimal model 
we identified--the AR model--is rarely used in state policy evaluation. We urge applied researchers to move beyond 
the classic DID paradigm and adopt use of AR models.
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Background
Reliable evaluations of state-level policies are essential 
to identifying effective policies and informing poli-
cymakers’ decisions, yet the methodological rigor of 
published studies varies (see Schuler, et al. (2020) for a 
review of the opioid policy literature). State-level policy 
evaluations commonly use a difference-in-differences 
(DID) study design; yet within this framework, statis-
tical model specification varies notably across studies. 
The choice of model specification as well as other fac-
tors – including low outcome occurrence rates (e.g., 
opioid mortality), sample size (both the number of 
policy states as well as the number of time points avail-
able), and differences across states prior to policy adop-
tion – can impact the accuracy and precision of effect 
estimates. Although numerous publications provide 
analytic guidance for policy evaluations using longi-
tudinal data [1–5], applied researchers have not fully 
adopted methodological best practices. Furthermore, 
there have been no comprehensive examinations of 
the relative performance of commonly used statistical 
models under conditions that mimic those encountered 
in actual state policy evaluation settings.

A DID study design, broadly defined, has become 
dominant in the health care policy literature when lon-
gitudinal data are being used to evaluate the impact 
of state-level policies [6, 7]. A DID design compares 
the outcomes observed among a group exposed to the 
policy of interest (treatment group) and an unexposed 
comparison group across time  points prior to pol-
icy implementation (first difference) and after policy 
implementation (second difference). The policy effect is 
estimated as the difference between the first and sec-
ond differences, hence “difference-in-differences” [6]. 
However, a growing number of studies highlight chal-
lenges and limitations of a DID design, particularly 
when the key DID assumptions do not hold [3, 6, 8–10] 
or when sample size is limited [11]. Additionally, it has 
been well established that standard error corrections 
that adjust for violations of the assumed independence 
of the repeated measures in longitudinal datasets are 
needed to obtain accurate Type I error rates [12–16]. 
Despite the wealth of knowledge concerning chal-
lenges of and best practices for DID designs in various 
settings, the applied literature largely does not reflect 
these insights [17–20].

To promote adoption of more robust statistical 
methods in health policy research, our study empiri-
cally compares the performance of multiple variations 

of the two-way fixed effect model traditionally used in 
the context of a DID design for state-level policy eval-
uations. Our motivating context is the ongoing U.S. 
opioid crisis, which claimed over 50,000 lives in 2019 
alone [21] and has spurred states to adopt a myriad of 
opioid-related policies and initiatives. The urgency of 
the opioid crisis demands that accurate, robust statis-
tical methods are used to identify effective state poli-
cies, yet our recent review of the “state of the science” 
of the opioid-policy literature highlighted that meth-
odological rigor varied notably across studies [22]. 
Applied researchers would benefit from additional, 
accessible guidance regarding the multitude of analytic 
choices both in the context of opioid-policy evalua-
tions and state-level policy evaluations more generally. 
We are aware of only one other study considering rela-
tive performance across statistical methods in the con-
text of health policy – that study compared analytic 
approaches for evaluating state gun policy laws on gun-
related mortality, another high-stakes health policy set-
ting [18]. In some ways the settings are similar in terms 
of longitudinal state-level outcomes; however, the con-
clusions may differ due to differences in the underlying 
outcome distributions (e.g., opioid related mortality 
is a more highly skewed outcome than total firearm 
deaths).

Our study seeks to provide needed guidance about 
which set of statistical models commonly used in evalu-
ations of state-level opioid policies with a DID study 
design perform best when estimating the impacts of 
state-level opioid policies on opioid-related mortality. 
We also seek to provide lessons that may be applicable 
to state policy evaluations more broadly. Using a simula-
tion study based on observed state-level opioid mortality, 
we assessed statistical performance using various met-
rics, including directional bias, magnitude bias, and root 
mean squared error; we also reported Type I error and 
the rate of correctly rejecting the null hypothesis, given 
the prevalence of frequentist null hypothesis significance 
testing (NHST) in the applied literature.

Our findings indicate that some commonly used meth-
ods have poor statistical performance--an outcome that 
has implications for interpreting the existing literature 
as well as conducting rigorous future evaluation studies. 
Our discussion provides important insights for statisti-
cians and researchers regarding ways to estimate policy 
effects, and highlights the need for methodological devel-
opment to address the challenges of rigorously estimating 
policy effects in the context of complex policy settings.

Keywords:  Difference-in-differences, State-level policy, Policy evaluations, Opioid, Overdose, Simulation
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Methods
Below we describe the data structure, simulation condi-
tions, and empirical models considered in our simulation 
study.

Data structure
The data structure we considered in this study was longi-
tudinal, repeated annualized measures at the state level. 
The outcome considered was opioid-related mortality, 
measured annually in each state over 18 years, providing 
50*18 = 900 total observations, clustered within states. 
We did not consider individual-level data within the 
aggregate state level data.

Empirical models considered
The focus of our simulation study was to compare per-
formance of multiple statistical models for estimating 
policy impact using annual state-level outcomes, given 
a policy landscape in which states implemented a given 
policy at different times. We compared the classic two-
way fixed effects DID model to three additional models, 
based on the previous gun policy simulation study [18] 
as well as a review of methods commonly used in opioid 
policy evaluations [22]. Specifically, we considered: (1) 
a “detrended” extension of the classic DID model that 
includes state-specific linear slopes; (2) a one-period 
lagged autoregressive (AR) model; and (3) generalized 
estimating equations (GEE) with an autoregressive cor-
relation structure.

To formalize the setting and inferential goal, we use 
potential outcomes notation for repeated measures 
data such that Yit1 denotes the potential outcome (e.g., 
opioid-related mortality rate) for state i (i = 1, …, 50) if 
the policy was in effect at time t while Yit0 denotes the 
potential outcome for state i if the policy was not in 
effect at time t. Thus, each state has two potential out-
comes at each time point, representing the outcomes 
that would be achieved with and without the policy 
in effect. Our primary treatment effect of interest is 
E[Y1 − Y0], averaging across both states and times, with 
each state and each time point equally weighted. Let Ait= 
{0,1} denote an indicator for whether or not state i had 
the policy in effect at time t (where t = 1, …, T). Then, 
Y obs
it = Yit1 ∗ Ait + Yit0 ∗ (1− Ait) denotes the observed 

outcome for state i at time t as measured longitudinally 
for state i over time t = 1, …, T.

Classic DID estimation compares the pre-policy to 
post-policy change in the treated group to the corre-
sponding pre-period to post-period change in the com-
parison group. This approach provides an estimate of the 
average policy effect, while controlling for time-invariant 
differences between treated and untreated states and for 

time-varying exogenous factors (i.e., those that affect 
both treated and untreated states equally). The classic 
DID specification is generally implemented as a two-way 
fixed effects model that includes both state- and time-
fixed effects, expressed as:

where g(.) denotes the generalized linear model (GLM) 
link function (e.g., linear, log), Xit denotes a vector of 
time-varying state-level covariates, and εit denotes the 
error term. State fixed effects, ρi, quantify potential dif-
ferences in the outcome across states, and time fixed 
effects, σt, quantify temporal national trends. The coef-
ficient estimate â represents the DID estimator, namely 
the policy effect of A after accounting for differences 
between states implementing and not implementing a 
policy and time trends.

Standard DID models assume that the difference in 
the outcomes of the treated and untreated groups would 
remain constant in the absence of the policy intervention 
(with magnitude equal to that observed pre-policy). In 
practice, this assumption is often referred to as the “par-
allel trends” assumption, although we note that “paral-
lelism” is actually a stronger assumption than necessary, 
as trajectories need only be equivalent, not necessarily 
parallel in the linear sense [23]. The outcome levels them-
selves are not assumed to be equivalent across groups; 
level differences are accounted for by the state fixed 
effects. A common misperception is that this assump-
tion can be tested by assessing whether pre-policy period 
trends are parallel; however, this assumption is inherently 
untestable as it involves the unobservable counterfac-
tual trends in the post-period. Indeed, conducting “tests 
of parallel trends” in the pre-period can lead to bias and 
misleading results [23].

The second model we evaluated is an extension of the 
classic DID model that includes state-specific slopes 
(referred to as “detrending” the data). The detrended 
model can be expressed as:

where ωs denotes the state-specific linear slope over time 
and υit denotes the error term. This model expands on 
Eq. (1) by adding state-specific linear trends (ωs ∙ t ). In 
this model, each state has its own fixed effect to account 
for its mean as well as a unique linear slope over time. 
Because the model also includes a national time trend 
(fit via year fixed effects), the state-specific linear trend 
is interpreted as the difference between the national time 
trend and the state trend. This model may be used as a 

(1)g
(

Y obs
it

)

= α • Ait + β • X it + ρi + σt + εit

(2)
g
(

Y obs
it

)

= α • Ait + β • X it + ρi + σt +
∑50

s=1
(ωs • t)+ υit
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robustness check to rule out differential state trajecto-
ries over time – i.e., if Eqs. (1) and (2) yield similar policy 
effects, this suggests the absence of differential trajecto-
ries (see Bilinski and Hatfield (2020) for a discussion of 
this approach).

In the presence of differential trajectories that are 
additive, Eq. (2) should offer an improvement over Eq. 
(1). However, caution must be used: the time trend 
terms may functionally “over control” and absorb part 
of the treatment effect in addition to pre-existing dif-
ferential trends, particularly in the presence of a time-
varying treatment effect [24].

Additionally, we considered an AR model. The gun 
policy simulation study found that AR models per-
formed especially well when estimating the policy 
effect on total firearms deaths [16]. AR models include 
one or more lagged measures of the outcome (e.g., 
Y obs
it−1

 ) as covariates to control for potential average dif-
ferences in outcome trends across treated and compari-
son states. These models can improve prediction when 
outcomes are highly autocorrelated, as is the case with 
annual measures of state-level opioid-related mortality. 
The AR model examined here included a single lagged 
value of the outcome (as this was identified as the top 
performing AR model in the prior gun policy simula-
tion study), expressed as:

Akin to Eq. (1), this model includes time fixed effects, 
σt, to quantify temporal trends across time, but adjusts 
for state-specific variability through the use of the AR 
term ( γ • Y obs

it−1
 ) rather than state fixed effects. Nota-

bly, inclusion of the AR term creates a “change” model, 
as the policy effect is defined as the expected difference 
in the outcome, given the prior year’s outcome. As such, 
we coded the policy variable (A) using change coding 
(Ait − Ai, t − 1), based on early work demonstrating that 
effect size estimates from AR models can be substantially 
biased when using standard effect coding (Ait) [25]. An AR 
model with a single lagged outcome is very closely related 
to the first-difference estimator, a commonly used alter-
native to the fixed effects estimator (e.g., Eq. (1)). Indeed, 
when there are only 2 time periods, a first-difference esti-
mator and fixed effects estimator are identical; with 3 or 
more time periods, the relative performance of these esti-
mators depends on the degree of autocorrelation in the 
outcome [17, 26].

Finally, we considered a fixed effect model using GEE. 
In the context of correlated outcomes (e.g., within states), 
GEE model parameters are estimated by specifying a 
covariance structure for the clustered outcomes [27]. 
This model can be expressed as:

(3)g
(

Y obs
it

)

= � ∙

(

Ait − Ai,t−1

)

+ � ∙ X it + � ∙ Y obs
it−1

+ �t + �it

which includes time fixed effects σt and time-varying 
state-level confounders measured in Xit. GEE is a semi-
parametric method that requires specification of the 
covariance matrix for within-subject observations (e.g., 
exchangeable, autoregressive, unstructured). We assume 
an autocorrelation structure of order 1 (AR1), which 
means that the correlation structure R for the repeated 
measures within each state is

for the t, m element of R.
In the context of a longitudinal policy evaluation 

study, the central challenge is determining to what 
degree, if any, the observed heterogeneity in outcomes 
across states is due to a true policy effect versus other 
factors. All models we considered included time fixed 
effects to account for state-invariant (i.e., national) 
temporal trends. Additionally, the classic DID and 
detrended DID both included state fixed effects in order 
to reduce bias due to time-invariant factors that vary 
across states.

In contrast to fixed effects, the AR model adjusted for 
state-specific variability through the use of the lagged 
outcome term, and a GEE approach used an AR correla-
tion structure to account for correlation at the state level. 
The optimal model should be the one in which the under-
lying assumptions of the model match the true processes 
of generating the data. As it is impossible to test model 
assumptions in practice, we used a simulation study with 
a known data-generating process to assess the relative 
performance of these statistical models.

Statistical models tested via simulation
Within our four primary DID variations (i.e., classic two-
way fixed effect model, detrended model, AR model, 
and GEE model), we considered three other estimation 
aspects: GLM link function specification, standard error 
estimation, and weighting to account for state popula-
tion. We detail each below and summarize all candidate 
models in Table 1.

(1)	 GLM specifications:As opioid-related deaths are 
discrete and historically rare events, count models 
or models accounting for the skewed nature of the 
outcome may be more appropriate than traditional 
linear models that assume normality. We tested the 
relative performance of the following GLMs: lin-
ear, log-linear (a linear model with log-transformed 

(4)g
(

Y obs
it

)

= α • Ait + β • X it + σt + ζit,

Rt,m =

{

1 if t = m
∣

∣ρt−m
∣

∣ if t �= m
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outcome), and two log-link models (negative bino-
mial and Poisson).

(2)	 Standard error (SE) estimation: There are 3 com-
mon ways to estimate the SE of the effect estimate: 
[22] no adjustment [1]; Huber adjustment: robust 
estimators (also known as sandwich estimators, or 
Huber corrected estimates) that attempt to adjust 
the SE for violations of distributional assumptions 
[28, 29]; and [2] cluster adjustment: adjustments to 
account for possible violations of the assumed inde-
pendence of observations within states [28–30]. For 
each model (except the GEE model), we estimated 
the SE in these three ways. For the GEE models, 
we used the AR [22] covariance structure for our 
SE estimation. We also considered the Arellano 
method [31] as implemented in R’s vcovHC pack-
age; we do not report these results for parsimony, 
as they were very similar to the Huber method (see 
our Shiny tool for full details).

(3)	 Use of state population weights: Finally, we explored 
the impact of using state population as an ana-
lytic weight in the linear and log-linear models, 
an approach commonly used in state-level policy 
evaluations (e.g., within opioid-related policy stud-
ies [32–35]). For state-level analyses of opioid-
mortality rates, using population weights puts 
equal weight on each death, regardless of the state 
in which the death occurred; unweighted analyses 
put equal weight on each state, so a death in a small 
state will have much greater weight than a death in 
a larger state. Because we generated data so that the 
policy effects were constant across all states regard-
less of size or other characteristics, we did not 
expect weighting to affect bias; however, it could 
have substantial effects on the SE estimates. Given 

that log-link models (e.g., negative binomial, Pois-
son) are estimated using mortality counts (rather 
than rates) and do not need to be weighted to be 
nationally representative, we did not examine the 
impact of weighting in these models. Instead, these 
models include the logarithm of state population 
size as an offset, resulting in a model that is effec-
tively predicting the opioid-related death rate, such 
that exponentiated model coefficients can be inter-
preted as incident risk ratios.

Simulation details
This section describes our simulation study in detail, 
including the data sources used in the study, the data 
generation scheme, and the performance metrics used to 
compare the approaches.

Data sources and measures
The outcome of interest was the annual state-spe-
cific opioid mortality rate per 100,000 state residents, 
obtained from the 1999-2016 National Vital Statistics 
System (NVSS) Multiple Cause of Death mortality files. 
Consistent with other studies [36–38], we identified 
opioid related overdose deaths based on ICD10-CM-
external cause of injury codes X40-X44, X60-64, X85, 
and Y10-Y14, indicating accidental and intentional poi-
soning, with opioid overdose based on the presence of 
one of the following diagnosis codes: T40.1 poisoning 
by heroin, T40.2 poisoning by natural and semisynthetic 
opioids (e.g., oxycodone, hydrocodone), T40.3 poisoning 
by methadone, and T40.4 poisoning by synthetic opioids 
excluding methadone (e.g., fentanyl, tramadol).

Given concerns about model overfitting in the pres-
ence of numerous covariates [39], we included only a 

Table 1  Overview of statistical models evaluated in simulation study

Regression specification Link function SE estimation Population weighting

Classic 2-way Fixed Effects Linear none; Huber; cluster Population weighted; unweighted

Log-linear none; Huber; cluster Population weighted; unweighted

Negative Binomial none; Huber; cluster Unweighted, with log(population) used as an offset

Poisson none; Huber; cluster Unweighted, with log(population) used as an offset

Detrended Linear none; Huber; cluster Population weighted; unweighted

Negative Binomial none; Huber; cluster Unweighted, with log(population) used as an offset

Autoregressive Linear none; Huber; cluster Population weighted; unweighted

Log-linear none; Huber; cluster Population weighted; unweighted

Negative Binomial none; Huber; cluster Unweighted, with log(population) used as an offset

Poisson none; Huber; cluster Unweighted, with log(population) used as an offset

GEE Linear AR1 structure Population weighted; unweighted
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single covariate: state-level unemployment rate [40]. 
This covariate was selected because it is frequently used 
in opioid policy studies [22]. Sensitivity analyses includ-
ing a broader set of covariates (e.g., poverty rates, income 
levels, and percentages in defined race/ethnicity and age 
groups) resulted in no meaningful change to the general 
findings, with a slight increase in precision; as such, we 
present findings from the more parsimonious model.

Simulation data generation
The simulation design builds directly from prior work 
that compared statistical methods for evaluating how 
state laws affect firearms deaths [18]. For each simulation 
iteration we generated 5000 simulated datasets.

In each simulated dataset, we selected a random subset 
of k states to be the policy/treated group, with remaining 
states serving as the comparison/untreated. This simula-
tion represents the simplified scenario in which there is 
no confounding by observed or unobserved covariates 
or by lagged values of the outcome, Y obs

it−1
 . For each state 

and year, we generated a time-varying indicator A it to 
denote whether the hypothetical policy was in effect. For 
comparison states, A it = 0 for the entire study period. For 
policy states, the month and year of policy enactment 
were randomly generated, with year restricted to 2002-
2013 (inclusive) to ensure at least three years of outcome 
data both before and after enactment. In the first year 
of implementation, A it was coded as fractional value 
between 0 and 1, indicating the percentage of the year the 
policy was in effect. Once a policy was implemented, it 
remained in effect throughout the study period; thus, A 
it = 1 for all remaining years.

As we were considering models with different log links, 
we evaluated their performance using simulated data for 
which each model was correctly specified to facilitate 
comparison across models. We simulated outcome data 
as follows: For untreated states, outcome values were set 
equal to the actual observed state-specific, year-specific 
opioid overdose rates for all times t, namely Y obs

it = Yit0 . 
Similarly, for treated states in the pre-policy period, val-
ues were also equal to the actual observed values 
(

Y obs
it = Yit0

)

 . For treated states in the post-policy period, 
outcomes Yit1 were generated by augmenting the 
observed value Yit0 with an effect size of magnitude α as 
follows: Yit1 = Yit0 + αlinear for linear models; Yit1 = Yit0 
+ log(αlog) for log-linear models; and Yit1 = Yit0 *(αlog – 1) 
for log link models.

Simulation conditions varied the following factors:

(1)	 Effect size. We considered settings when the pol-
icy had a null effect, as well as a non-null effect of 
small, medium and large magnitude. For null effect 

conditions  (α = 0), post-policy observations were 
equal to actual observed values ,Y obs

it = Yit0 , for 
both treatment groups. When generating non-null 
effects, we tailored the magnitude of α with respect 
to link function (i.e., αlinear, αlog) to ensure that the 
magnitude of the resulting effect, calculated in 
terms of the mean number of additional deaths 
nationally (per 100,000 people), was comparable 
across models. Specifically, we started by generating 
data with an αlog = ±5% (small), ±15% (medium), 
and ± 25% (large) on the multiplicative scale and 
then empirically calculated the average excess mor-
tality count across simulated datasets for each effect 
size. We then specified the corresponding α values 
for the linear models such that they would yield 
an effect size of the same magnitude (i.e., αlinear = 
±0.23, ±0.70, and ± 1.16).

(2)	 Number of treated units. We also investigated the 
role of the number of policy states, simulating data 
in which 1, 5, 15 and 30 states implemented the pol-
icy. Note that the total sample size of treated and 
untreated states is always 50.

(3)	 Timing of policy effect. State policies often do not 
become 100% effective immediately after imple-
mentation, making it important to consider vari-
ation in the onset of policy effectiveness. We con-
sidered two possible conditions: an instantaneous 
effect and a 3-year linear phase-in effect. In both 
the data generating and analytic models, we speci-
fied an instantaneous effect as a simple step-func-
tion that has a value of zero when the policy is 
not in effect and a value of one when the policy is 
in effect (as described above). The gradual policy 
effect allows for the effect to grow linearly in the 
first 3 years after implementation, with values start-
ing at zero and reaching 1 after 3 years of imple-
mentation.

Metrics for assessing relative performance of candidate 
statistical methods
Performance metrics included directional bias, magni-
tude bias, and root mean squared error, as well as Type 
I error and rate of correctly rejecting the null hypothesis, 
given the prevalence of frequentist NHST in the applied 
literature.

(1)	Directional bias. Directional bias assesses the aver-
age difference between the estimated effect and true 
effect over all simulations for a given effect size (e.g., 
±5%), showing the tendency of the estimated effects 
from a given model to fall closer or further from the 
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true effect. We report directional bias summarized 
over both the positive effect size conditions (e.g., 
+ 5%) as well as the negative effect size conditions 
(e.g., − 5%) to quantify how the models are doing 
on average for a fixed effect size α, regardless of the 
direction. We define directional bias as the average of 
the sum of the bias across positive and negative effect 
simulations, as follows:

Additionally, we standardized bias by reporting it with 
respect to the mortality count for both linear and nonlin-
ear models to facilitate comparison across models. Then, 
we converted the standardized directional bias into per-
cent directional bias, dividing it by the expected change 
in mortality count that corresponds to the given α (e.g., 
when α = ±5% the expected change in deaths nationally 
will equal ±700, respectively).

(2)	Magnitude bias. Magnitude bias assesses whether 
the estimated effects are systematically too small or 
too large, relative to the true effect. Magnitude bias is 
computed by taking the average of the bias across the 
positive and negative effect simulations, after multi-
plying the bias from the negative effect simulations 
by negative one.

For example, with a model that shows a magnitude 
bias of + 0.1 with a true effect size of ±0.30, the model 
typically gives estimates of + 0.4 or − 0.4 for the positive 
and negative effect versions of the simulation, respec-
tively, exaggerating the true effect size in both cases. 
Conversely, a model that shows a magnitude bias of − 0.1 
would give estimates of + 0.3 or − 0.2 for the positive and 
negative effect simulation, respectively, underestimating 
the true effect size. As with directional bias, we standard-
ized magnitude bias so it represents mortality count and 
report percent magnitude bias below, dividing it by the 
corresponding expected change in deaths nationally that 
would correspond to the given α.

(3)	 Root mean squared error (RMSE). RMSE is calcu-
lated by taking the square root of the sum of the 
mean squared errors (e.g., 

�

∑5000

k=1

�

𝛼̂k − 𝛼

�2
∕5000 ). 

RMSE quantifies error for a given model specifica-
tion, taking into account both directional bias and 
variance.

(4)	 Type I error rate. In the context of traditional NHST, 
Type I error rate is the frequency of incorrectly 
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rejecting the null hypothesis (i.e., there truly is no 
policy effect). When data are generated such that 
there is no true policy effect (i.e., the null hypoth-
esis is true), the model should identify a statistically 
significant effect (i.e., reject the null hypothesis) no 
more than 5% of the time if tested with an 0.05 level 
of significance.

(5)	 Correct NHST rejection rates. We also assessed the 
ability of the model to correctly identify that the 
null hypothesis is false in the context of traditional 
NHST. We quantified the “rate of correct rejec-
tions” for each model by calculating the proportion 
of estimates that were both statistically significant 
and in the same direction as the true effect. When 
conducting this significance test, we used a SE cor-
rection factor to ensure comparability of correct 
NHST rejection rates across models with the exact 
same Type I error rate. Without applying the SE 
correction factor, models that underestimate the 
true error in their estimates would appear to have 
excellent statistical correct rejection rates, even 
though the actual sampling variability in their esti-
mates may be quite high, in which case the model 
may not actually be sensitive to detecting a true 
effect. Typically, analyses are considered to have 
adequate statistical correct rejection rates/power 
if the likelihood that they correctly reject the null 
hypothesis is 80% or higher.

We conducted all simulations in R, using the OPTIC.
simRM package which implements our simulation code 
on user-provided outcome data. The package is currently 
available on github https://​github.​com/​aesch​erling/​
optic-​core, including code to create the figures. Extensive 
results for all statistical models considered in our simu-
lation are available via a Shiny tool (https://​eliza​bethm​
cneer.​shiny​apps.​io/​statm​odels​im/).

Results
In each section below, we first compare results for the set 
of four linear models (i.e., linear two-way fixed effects, 
linear detrended, linear AR, and linear GEE models). 
We then discuss the relative performance across differ-
ent GLMs (i.e., negative binomial, Poisson, and log-linear 
models). For parsimony, all summary statistics are aver-
aged across simulation conditions with a gradual policy 
effect and an instantaneous policy effect.

Directional bias
Figure  1 shows percent directional bias as a function 
of both effect size magnitude and the number of policy 

https://github.com/aescherling/optic-core
https://github.com/aescherling/optic-core
https://elizabethmcneer.shinyapps.io/statmodelsim/
https://elizabethmcneer.shinyapps.io/statmodelsim/
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states for the four different linear models (using popu-
lation weights). In all cases, percent directional bias 
decreased both as effect size increased and the number of 
policy states increased. Most notably, the linear two-way 
fixed effects model (the classic DID model) had high per-
cent directional bias when the number of treated states 
was lower than 15 (e.g., ranged from 22 to 291%) (Fig. 1a). 
The linear GEE had similar directional bias to the linear 
two-way fixed effects (ranged from 0 to 305%) (Fig. 1d). 
Directional bias was much lower for the detrended model 
and AR models compared to the two-way fixed effects 
and GEE models (ranging from ±3% to − 21%) (Fig.  1b 
and c).

Figure 2 shows the percent directional bias for all mod-
els under the small effect size condition. Notably, the 
majority of models had positive directional bias, suggest-
ing that estimated effects tend to be numerically larger in 
a positive way on average, regardless of the direction of 
the true policy effect. The large majority of models had 
very high rates of directional bias. For example, non-
linear models yielded directional bias ranging from 64 
to 162%, which translates into excess mortality estimates 
that are off by 448 to 1134 more deaths. Directional bias 
was smallest in the linear models (ranging from − 2% to 

− 12%), with the exception of the weighted linear two-
way fixed effects and weighted GEE models, where direc-
tional bias was quite large (116 and 109%, respectively).

The directional bias was relatively similar between 
weighted and unweighted versions of both the linear AR 
and linear detrended models. In contrast, directional bias 
was significantly larger for the weighted version, com-
pared to the unweighted version, for both the traditional 
DID model (unweighted = − 2%; weighted = 109%) and 
linear GEE model (unweighted = − 3%; weighted = 116%). 
Further, directional bias was notably larger when there 
was a gradual versus an instantaneous policy effect, 
although the magnitude of this difference varied by 
model.

Magnitude bias
Broadly, as seen with directional bias, magnitude bias 
decreased as both effect size and number of policy 
states increased. We present magnitude bias results for 
all models under the small effect size condition (Fig. 3). 
Magnitude bias was less than 10% for most models, with 
the exception of the four non-linear AR models (14-25% 
for the negative binomial, Poisson, and log-linear AR 

Fig. 1  Percent directional bias for the four different linear models considered, all with population weights: (1a) the two-way fixed effects model, (1b), the 
detrended model, (1c) the AR model, and (1d) the GEE model 
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models). Most of the models with non-zero magnitude 
bias had positive magnitude bias (i.e., overestimating the 
true policy effect), ranging from 4% (negative binomial 
2-way fixed effects and detrended models) to 25% (Pois-
son AR model). In contrast, the linear AR model had neg-
ative magnitude bias (i.e., underestimating the true policy 
effect), ranging from − 4% (with population weights) to 
− 2% (no population weights). For each GLM type, mag-
nitude bias was greater for the AR model compared to 
the two-way fixed effect or detrended models.

The use of population weights in the linear and log-lin-
ear models did not consistently or notably influence mag-
nitude bias. Furthermore, the magnitude bias remained 
essentially 0% for the linear two-way fixed effects, linear 
GEE, and linear detrended models for both the gradual 
and instantaneous policy effect conditions. For all the 
other models, magnitude bias was consistently higher for 
the gradual versus the instantaneous effect conditions 
(e.g., for the negative binomial AR model, magnitude bias 
was 10% for the instantaneous condition and 23% for the 
gradual condition).

Root mean square error
Figure  4 shows the average RMSE for simulation con-
ditions with a null treatment effect. Among linear 
models, AR models had the lowest RMSE (1.08-1.12) 
compared to the two-way fixed effects models (1.67-
1.78), detrended models (1.63-1.69), and GEE mod-
els (1.37-1.92) (Fig.  4a). For the two-way fixed effects, 
detrended, and GEE models, RMSE was lower for the 
unweighted models than the corresponding weighted 
models; however, for the AR models, population weight-
ing yielded slightly lower RMSE. Among non-linear 
models, the negative binomial models had consistently 
lower RMSE compared to the Poisson and log-linear 
models (Fig.  4b). For the negative binomial model, the 
detrended and two-way fixed effects models had the 
lowest RMSE (0.22) while the AR model had the highest 
(0.31). Finally, as expected, RMSE was larger for simula-
tion conditions with a gradual policy effect relative to an 
instantaneous effect (e.g., for the linear population two-
way fixed effects model, RMSE = 1.58 for instantaneous 
and RMSE = 1.95 for gradual).

Fig. 2  Percent directional bias for all models considered in settings with small effect sizes. Note: AR = autoregressive, FE = fixed effects, 
GEE = generalized estimating equation
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Type I error rates
Figure 5 presents the Type I error rates for the four lin-
ear models using population weights. Type I error rates 
were very high for the classic DID two-way fixed effects 
model (Fig. 5a), ranging up to 67%. Cluster SE adjustment 
greatly reduced the Type I error rates for this model when 
5 or more states implemented a policy, but they were still 
2 to 3 times larger than the traditional target of 5%, rang-
ing from 9 to 17%. The detrended model (Fig. 5b) gener-
ally had slightly lower Type I error rates than the two-way 
fixed effects model, with Type I error rates mostly less 
than 40%. Notably, the AR model (Fig. 5c) did not require 
use of any SE adjustment to obtain appropriate Type I 
error rates for conditions with 5 or greater policy states 
(e.g., Type I error rates ranged from 4 to 6%); in fact, SE 
adjustments in the AR models tended to inflate the Type 
I error rates. For linear GEE models (Fig. 5d), Type I error 
rates were 18% or less for simulation conditions with 
at least 5 policy states, though rates were still 2-3 times 
higher than the traditional target of 5%. As in the case of 

linear models, AR models performed best, followed by 
detrended models, then two-way fixed effects models. 

For linear models, population weighting yielded slightly 
higher Type I error rates for the two-way fixed effects, 
detrended, and GEE models compared to the corre-
sponding unweighted models (see Shiny Application). In 
contrast, for the AR models, population weighted mod-
els did not consistently perform better or worse than 
unweighted models. Additionally, Type I error rates were 
higher (by approximately 8 percentage points) for simula-
tion conditions with a gradual relative to an instantane-
ous effect.

Given the top performance of the AR model, we also 
present the relative performance of the AR model across 
four different GLMs: linear (unweighted), log-linear 
(unweighted), Poisson, and negative binomial (Fig.  6). 
Similar to the results seen for the linear AR weighted 
model (Fig. 4), very good Type I error rates are obtained 
in the absence of SE adjustment for linear AR unweighted 
model, the log-linear AR unweighted model, and the 

Fig. 3  Percent magnitude bias for all models considered in settings with small effect sizes. Note: Results showing very small grey line at 0 are equal to 
0. The statistics shown will slightly favor linear over non-linear models since we have to convert magnitude bias into a total count of deaths. When 
magnitude bias measures are converted into the native units of the negative binomial models (log risk ratios), the negative binomial models tended 
to show slightly better performance relative to the linear models (as seen here)
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Fig. 4  Root mean squared error for (4a) the linear and (4b) nonlinear models under the null effect simulation condition. We present this graph stratified 
by linear and non-linear models, as there is no method to compare RMSE across linear and nonlinear models that yields a fair comparison

Fig. 5  Type I error rates for linear model specifications: (5a) the two-way fixed effects model, (5b), the detrended model, (5c) the AR model, and (5d) the GEE 
model. Horizontal line denotes the target Type I error rate value of 0.05 
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negative binomial AR model, regardless of the number 
of policy states. We note that this does not hold for the 
Poisson AR model.

Correct NHST rejection rates
Figure  7 shows correct NHST rejection rates as a func-
tion of both the effect size and the number of policy 
states for the linear models (using population weights). 
In all cases, as expected, correct rejection rates increased 
both as the effect size increased and the number of pol-
icy states increased, with maximum values obtained 
for the simulation condition with 30 policy states and 
a large effect size. For the two-way fixed effects model 
(Fig. 7a), correct rejection rates were low across all effect 
sizes, with a maximum value of 27%. In contrast, correct 
rejection rates were highest for the AR model (Fig.  7c), 
which achieved a maximum value of 73% (nearly the 
desired 80% rate). Relative to the two-way fixed effects 
model, correct rejection rates were similar for the GEE 
model (maximum value = 30%) and slightly higher for 
the detrended model (maximum value = 41%). Impor-
tantly, all models considered had extremely low correct 

rejection rates for simulation conditions with a small 
effect size – e.g., the rate of correctly rejecting the null 
hypothesis was 8% for negative binomial models and 
ranged from 4 to 11% across linear models.

For linear and log-linear models, correct rejection 
rates tended to be higher for unweighted models rela-
tive to weighted models. Specifically, the linear two-
way fixed effects model yielded a correct rejection rate 
of 40% for the unweighted model compared to 27% for 
the unweighted model for the simulation condition 
with 30 policy states and a large effect size. Similarly, 
the unweighted linear AR model yielded the correct 
rejection rate of 81% (compared to 72% for weighted) 
and the unweighted GEE model yielded the correct 
rejection rate of 67% (compared to 30% for weighted). 
Correct rejection rates were consistently smaller (by 3 
percentage points on average) for simulation conditions 
with a gradual relative to an instantaneous policy effect.

Figure 8 presents correct rejection rates averaged across 
all simulation conditions in order to highlight relative per-
formance across models. Correct rejection rates were low 
across all models but were highest for linear AR models 
(ranging from 22 to 24%) and negative binomial models 

Fig. 6  Type I error rates for the AR models for four different GLMs: (6a) linear (unweighted), (6b) log linear (unweighted), (6c) Poisson, and (6d) negative 
binomial. Horizontal line denotes the target Type I error rate value of 0.05
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(ranging from 20 to 23%). The worst performing models 
were the linear and log-linear two-way fixed effects mod-
els and the linear weighted GEE model (correct rejec-
tion rates ranged from 9 to 11%). Correct rejection rates 
for the Poisson models ranged from 12% (two-way fixed 
effects model) to 18% (AR model); we note that for all 
specifications, the Poisson model was outperformed by 
the corresponding negative binomial model.

Discussion
State-level policy evaluations commonly use a DID 
study design; however, model specification varies nota-
bly across studies, and the field lacks clear guidance on 
which models are optimal. We conducted a novel simu-
lation study to compare the relative performance of 
multiple variations of the two-way fixed effect model 
traditionally used for DID, using simulated data based 
on actual national opioid mortality data so as to mirror 
data features encountered in practice. Specifically, we 
compared the classic, linear two-way fixed effects DID 
model to three alternative models: a detrended model, an 
AR model, and a fixed effect model estimated with GEE 

with an AR correlation structure. Within these classes of 
models, we additionally compared link function specifi-
cations, SE estimation methods, and the use of popula-
tion weighting.

We found that the linear AR model was optimal when 
the outcome was specified as a mortality rate, and a nega-
tive binomial model was optimal when the outcome was 
specified as a mortality count. Our results highlighted 
that two widely-used linear DID models – two-way fixed 
effect and detrended – were consistently outperformed 
by the less commonly-used AR linear model, which was 
consistently optimal in terms of directional bias, RMSE, 
Type I error, and power. We urge applied researchers to 
move beyond the classic linear two-way fixed effect DID 
paradigm and consider the use of AR models. Overall, 
our results indicated notable differences in the perfor-
mance of the models considered—differences that have 
substantial implications for conducting and interpreting 
state-level policy evaluations.

Results from our study are highly consistent with find-
ings from a prior gun policy simulation study [18], as 
both studies identified AR models as top-performing for 

Fig. 7  Correct NHST rejection rates as a function effect size and number of policy states for linear models: (7a) two-way fixed effects DID model, (7b), 
detrended DID model, (7c) AR model, and (7d) GEE model. Note: All models were fit with population weights
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estimating state-level policy effects. We note that our 
current study considers a broader range of simulation 
conditions than the gun policy study (e.g., a range of pol-
icy effect sizes (5 to 25%) compared to a single effect size 
(3%)), strengthening the generalizability of the results. 
We emphasize that the optimal choice of the link func-
tion may vary by the characteristics of the outcome vari-
able: the gun policy simulations study, which examined 
firearm-related mortality, found that the negative bino-
mial AR model was optimal. Our study, which examined 
opioid-related mortality, identified the linear AR models 
as optimal, as the negative binomial AR model yielded 
higher directional and magnitude bias (relative to the 
linear AR model). This was likely due to the greater rela-
tive skew in the distribution of state-level opioid-related 
deaths compared to firearm-related deaths, suggest-
ing the benefit of running these types of simulations on 
specific outcome data to ensure selection of the optimal 
model for a given outcome. To this end, we have created 
an R package (OPTIC.simRM) for executing these simu-
lations on any repeated measures levels data.

We make recommendations for practice in Table  2. 
Many of these results have emerged from other studies. 

However, they have not been well appreciated in the sta-
tistical or applied literature, and questions have remained 
regarding best practices with real-world data like opi-
oid-related mortality rates. For example, with regard to 
standard error corrections, prior simulation studies [12, 
15] show that cluster adjustments are needed to reduce 
Type I error rates. Bertrand, et  al. (2004) showed that 
the classic sandwich estimator does poorly with small 
samples; that paper also shows DID without adjustment 
has high Type I errors (approximately 45%) in their case 
study data, where they randomly simulated random “pla-
cebo” laws, as done here. Our work extends prior work 
by highlighting the challenges specific to the context of 
evaluating state-level opioid policies with respect to opi-
oid-related mortality, a widely-used outcome in the field.

Furthermore, researchers and policymakers must rec-
ognize the inherent implications of a fundamentally 
limited sample size of 50 states (of which perhaps only 
a few, or even a single state, implemented the policy of 
interest) for continued reliance on p-values to deter-
mine statistical significance. Under traditional NHST, 
correct rejection rates for the majority of scenarios were 

Fig. 8  Average power across all simulation conditions for all models considered in this simulation 
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extremely low, lower than 25% across all scenarios con-
sidered. Rates were only above 50% for the best perform-
ing models and when there was a large effect size (25%) 
and the most balanced allocation to treatment versus 
control. Additionally, Type I error rates for the major-
ity of models relying on NHST were unreasonably high 
when fewer than 15 states are implementing a new policy, 
meaning that these models could yield a significant effect 
estimate when in fact such an effect does not exist. It is 
critical for researchers to use models that minimize Type 
I error rates whenever possible; using standard error cor-
rections to ensure a Type I error rate of 0.05 is necessary 
in this context when performing NHST. However, echo-
ing repeated calls from statisticians [41] to move beyond 
inferences based on p-values, we strongly recommend 
that the field overall reduce reliance on traditional NHST, 
given concerns across a range of scientific areas regarding 
the use of often arbitrary p-value thresholds within that 
framework [41]. The applied field of state-policy research 
is still overwhelmingly implementing traditional NHST 
-- all of the studies in our recent opioid literature review 
[22] relied on traditional NHST to determine if the effect 
of the primary policy was “statistically significant.” One 
alternative approach that holds promise is using Bayesian 
approaches to estimate state-level policy effects. Bayesian 
methods can be used to estimate effects that directly cor-
respond to the likely effects of the yes/no decisions facing 
policymakers considering such legislation (namely, the 
probability that a given law is associated with an increase 
or a decrease in firearms death), and can also more accu-
rately reflect the large amount of uncertainty in these 
analyses. For an illustration of an Bayesian approach in 
context of gun policy, see Schell, et al. (2018).

Fundamentally, longitudinal and panel data do not con-
form to the traditional regression assumption of inde-
pendent and identically-distributed (iid) residuals. When 
considering various modeling approaches, it may be help-
ful to distinguish between three distinct phenomena that 
contribute to departures from iid residuals and to have 
diagnostic checks for which deviation might be occurring 
in a given data set: outcome autocorrelation, clustering at 
the state-level, and departures from model distributional 
assumptions.

First, some degree of autocorrelation in the outcome 
timeseries is likely. Our results from both the current 
simulation, as well as the prior gun policy simulation, 
highlight that cause-specific mortality outcomes are 
likely to be highly autocorrelated. Similarly, autocorre-
lation is expected for other key health policy outcomes, 
such as disease-specific incidence rates and healthcare 
spending measures. The presence of autocorrelation 
following an AR1 structure can be assessed using the 
Durbin-Watson test; more generally, an autocorrela-
tion function (ACF) plot, also called a correlogram, can 
be used to assess the degree of autocorrelation across 
lagged time periods (Friendly 2002, Durbin and Watson 
1971). Autocorrelation is effectively addressed through 
the use of an AR model or GEE with an AR correlation 
structure. See Beard, et al. (2019) for a pragmatic discus-
sion of timeseries data analysis in the context of addition 
research.

With regard to state-level clustering, one can com-
pare cluster-adjusted versus unadjusted standard errors 
or compute intracluster correlation coefficients (ICC) to 
understand how strongly clustering will affect the study 
design. However, sample size is a key consideration and 
diagnostics such as ICCs are not reliable when sample 
sizes are less than 30 [42]. Our results indicate that when 
in the context of only a single treated state, cluster and 
Huber SE adjustments yield worse performance than 
no adjustment. While this has been previously demon-
strated in the literature [13], these insights are often not 
reflected in the applied literature.

Table  3 provides additional insights into how applied 
researchers might more readily adapt their current practice 
to include use of AR models. It lays out the analytic steps 
necessary for using an AR model in practice, including 
creation of lagged variables, assessing diagnostics regard-
ing the optimal number of lags, and recoding the policy 
indicator using change level coding. Critically, if Step 2 (i.e., 
using common diagnostics for the AR models) shows that 
lags are not correlated, the AR model will not be advanta-
geous, as leveraging correlated lagged values is key to the 
AR model’s ability to improve estimation precision in the 
context of time series data such as opioid mortality rates.

Table 2  Key Takeaways for the Practice

When modeling opioid-related mortality as a crude rate in a linear model, including an AR term significantly improves estimation performance with 
regard to RMSE.

When modeling counts of opioid-related mortality, a negative binomial model performs better than a Poisson model.

Linear AR models performed optimally with respect to bias, RMSE, Type I error, and correct rejection rates in the context of estimating state-level 
policy effects of opioid-related mortality

Sample size matters for SE estimation. For linear and log-linear models, clustered SEs significantly improved estimation when the treated group com-
prised 15+ states, yet they had worse performance than unadjusted SEs in the case of only a single treated state.



Page 16 of 19Griffin et al. BMC Medical Research Methodology          (2021) 21:279 

Fundamentally, both DID and AR models rely on the 
parallel counterfactual trend assumption. The two mod-
els differ in how they parametrically control for observed 
differences between the treated and control states -- the 
DID model relies on state and time fixed effects while 
the AR model relies on lagged outcomes and time fixed 
effects. We note that our data generating process only 
generated synthetic observations for the treated states 
in the post-period (in order to induce a policy effect of 
a known magnitude), rather than generating complete 
trajectories for both treated and untreated states. As 
such, we (like applied researchers) were not privy to the 
“truth” about whether the parallel counterfactual trend 
assumption (the core identifying DID assumption) was 
upheld. However, since our treated and control states 
were selected randomly, we do not expect these groups 
to exhibit systematically differential trajectories. We 
highlight that the parallel counterfactual trends assump-
tion is untestable, given that this assumption pertains 
to unobservable counterfactual outcomes. Yet in prac-
tice, researchers often conduct a so-called “partial test of 
parallel trends” by statistically testing whether the pre-
intervention trends differ across groups [5, 6]. We dis-
courage this practice: it is not informative regarding the 
actual underlying counterfactuals and indeed may induce 
a false sense of confidence in the validity of the common 
trends assumption. However, a detrended model may be 
used as a robustness check: if the classic two-way fixed 
effect model and a detrended model that allows for dif-
ferential state trajectories over time yield similar policy 
effects, this provides some evidence in favor of the com-
mon trends assumption. See Bilinski and Hatfield (2020) 
and Rambachan and Roth (2019) for further discussion of 
these issues and alternative strategies for assessing plau-
sibility of the parallel counterfactual trends assumption. 
We also note that if the parallel counterfactual trends 
assumption holds on one model scale (e.g. linear) it may 
not automatically hold on other scales (e.g., count).

Our simulation design has several limitations and 
future research is needed to build upon this work. By 

randomly selecting states to enact a given policy, this 
simulation represents the simplified scenario in which 
there is no confounding by observed or unobserved 
covariates (including lagged values of the outcome). 
Future simulation work will consider more complex 
scenarios, including where such confounding exists 
given the likelihood that states implementing certain 
policies differ from states that do not. A growing set of 
methods aims to deal with potential confounding and 
need to be considered, including: incorporation of pro-
pensity score weighting into the DID framework [44], 
synthetic control methods [45–47] and augmented 
synthetic control methods [48], and doubly-robust 
DID estimators [49], as well as DID extensions that 
are robust to violations of the parallel trends assump-
tion [50]. More broadly, our simulation study did not 
exhaustively compare models used in practice: for 
example, we did not consider random effect models 
in this study, as prior work indicated that they are not 
commonly used in opioid policy evaluations [22]. Fur-
thermore, while the timing of policy enactment varied 
across treated states, our simulated data had a constant 
policy effect across states and across time, which may 
be an unlikely assumption in some contexts. Recent 
work has showed that in the presence of heterogeneity 
in policy timing and treatment effects, the classic linear 
two-way fixed effect DID model yields biased treatment 
effect estimates [10, 51, 52]. Future work is needed to 
investigate relative model performance in the context 
of treatment heterogeneity.

Overall, given the consistency of our current findings 
and those from the previous gun policy simulation study, 
it is likely that the advantages of AR models may gen-
eralize to contexts beyond opioid- and firearm-related 
mortality. In particular, many of the methodological 
considerations discussed in this paper are applicable to 
evaluation studies of Covid-19 policies, particularly state-
level policies. However, we highlight that the Covid-
19 context may pose unique complexities, including 
those introduced by the large number of heterogeneous 

Table 3  Key processing steps for implementing AR models in practice when using state-level data

Step 1: Create the needed lag terms for the outcome in the data; we recommend creating between 5 and 10 lags to assist in Step 2.

Step 2: Use common diagnostics for AR models to determine the optimal number of lags for your model; we have found using the partial autocor-
relation plot particularly helpful for detecting the optimal number of lags [43].

Step 3: Ensure that the policy variable/indicator is properly coded using change coding (e.g., (Ait − Ai, t − 1)).

Step 4: Ensure that the right-hand side of the regression model controls for the optimal number of lags, change coding of the policy variable, time 
fixed effects, and other key controls. Note – state fixed effects are not needed.

Step 5: Check to ensure that you have not overfit your model by confirming that you have at least 10 observations per control variable on the right 
hand side of the regression model.

Step 6: Do not include any cluster adjustment to the standard errors.
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Covid-19 policies implemented at the city and county 
levels, in addition to state and federal responses. As such, 
a thorough understanding of specific policy environ-
ments is essential for conducting rigorous policy evalu-
ations, as co-occurring policies and relative policy timing 
have important analytic implications. We refer readers to 
a recent methodological review of published Covid-19 
policy evaluation studies [53] for additional discussion 
regarding specific analytic considerations in the Covid-
19 context as well as Schuler, et al. (2020) which details 
additional methodological considerations relevant to the 
opioid policy context. Broadly, future work should extend 
this line of simulation research through careful consider-
ation of additional outcomes and policy contexts.

As noted by Schell, et al. (2018): “A scientific field built 
on studies with such low power (e.g., less than 0.20) will 
have a large fraction of significant results that are spuri-
ous, a substantial proportion of significant effects that are 
in the wrong direction, and significant effects that sub-
stantially overestimate the true effect size (56).” There is 
an urgent need for the field to develop more robust and 
powerful methods to help guide state policy decisions 
in the face of numerous, ongoing public health crises in 
the United States (e.g., opioid epidemic, gun violence, 
COVID-19). In particular, development and adoption of 
statistical approaches that improve accuracy while rig-
orously acknowledging uncertainty in policy effect esti-
mates are crucially needed to address the needs of policy 
researchers, key decision makers, and stakeholders.

Conclusions
Study findings highlight notable limitations of com-
monly used statistical models for DID designs--designs 
widely used in opioid policy studies and in state policy 
evaluations more broadly. In contrast, the optimal model 
identified (the AR model) is rarely used in state policy 
evaluation. We urge applied researchers to move beyond 
the classic DID paradigm and adopt use of AR models.

Appendix: Additional technical details and code
Standard error (SE) estimation: As noted, we estimated the 
SE in the three ways for each model (except GEE): (1) no 
adjustment; (2) Huber adjustment (robust estimators that 
attempt to adjust the SE for violations of distributional 
assumptions (White 1980; Zeileis 2004)); and (3) cluster 
adjustment ( adjustments to account for possible violations 
of the assumed independence of observations within states 
(White 1980; Zeileis 2004, 2006)). To illustrate the differ-
ences, we can write each adjustment in the following way 
(STATA Undated):

(1)	No adjustment: This is just the normal ordinary least 
squares (OLS) estimator. The generic formula for a 
regression model with covariate matrix X capturing 
all the needed data information from the sample of 
observations can be written:

VOLS = s2 ∗ (X′X)−1

where s2 =
(

1

N−k

)

∑N
i=1 e

2
i  , k denotes the number of 

parameters in a model and ei denotes the estimated resid-
ual for the i-th observation.

(2)	(2) Huber adjustment: This is the typical robust 
(unclustered) variance estimator and can be written 
as:

Vhuber = s2 ∗
�

X
�
X
�−1

∗

�

∑N

i=1

�

ei ∗ xi

��

∗

�

ei ∗ xi

�

�

∗

�

X
�
X
�−1

where xi denotes the i-th observation’s vector of covariate 
values going into the covariate matrix X .

(3)	Cluster adjustment: This can be written as:

Vcluster =
(

X
′
X
)−1

∗
[

∑nc
j=1

(

u′j ∗ uj

)]

∗
(

X
′
X
)−1

where uj =
∑

j cluster (ei ∗ xi) and nc denotes the number 
of clusters.

Our simulations were run in R so we used the vcovHC 
package (RDocumentation Undated) to estimate Huber 
adjusted SEs by running the following command on 
the model output (here denoted by m1): vcovHC(m1, 
type="HC0"). As noted in R, type = “HC0” corresponds 
to the traditional Huber-White robust SE estimator. We 
confirmed that this Huber SE adjustment is the same as the 
“robust” SE option used by Stata (vce (robust)). To estimate 
the cluster adjusted SE, we utilized the following code to 
obtain the needed sandwich adjusted SE:

We confirmed that the results from this function pro-
duces identical SE estimates as the cluster adjustment 
command used in Stata (vce (cluster state)).
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Weighting: State-population weights were treated 
as analytic weights, not survey weights, within the 
analyses.

Model differences: Note that since the AR models use 
lagged outcomes in the regression model, they utilized 
one less year of data from the time series than the other 
models considered.
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