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Abstract

Background: To assure the equivalence between new clinical measurement methods and the standard methods,
the four-quadrant plot and the plot’s concordance rate is used in clinical practice, along with Bland-Altman analysis.
The conventional concordance rate does not consider the correlation among the data on individual subjects, which
may affect its proper evaluation.

Methods: We propose a new concordance rate for the four-quadrant plot based on multivariate normal distribution
to take into account the covariance within each individual subject. The proposed concordance rate is formulated as
the conditional probability of the agreement. It contains a parameter to set the minimum concordant number
between two measurement methods, which is regarded as agreement. This parameter allows flexibility in the
interpretation of the results.

Results: Through numerical simulations, the AUC value of the proposed method was 0.967, while that of the
conventional concordance rate was 0.938. In the application to a real example, the AUC value of the proposed
method was 0.999 and that of the conventional concordance rate was 0.964.

Conclusion: From the results of numerical simulations and a real example, the proposed concordance rate showed
better accuracy and higher diagnosability than the conventional approaches.

Keywords: Clinical trial, Method comparison, Monte Carlo simulation, Trending agreement

Background
Introduction
New clinical measurements and new technologies such
as cardiac output (CO) monitoring continue to be intro-
duced. It is important that these new technologies are
verified to ensure their measurement methods are equiv-
alent to those of the standard measurement methods
before implementing them in clinical practice. For exam-
ple, an improved cardiac index (CI) tracking device was
compared with a traditional method for CI by transpul-
monary thermodilution to assess its reliability in accu-
rately measuring changes in norepinephrine doses during
operations (Monnet et al., [14]). In Cox et al.’s [11] study,
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bioimpedance electrical cardiometry, another experimen-
tal measurement device of CI, was examined using contin-
uous pulmonary artery thermoregulatory catheterization
as the gold standard before, during, and after cardiac
surgery.
Various statistical methods have been proposed to

assess the equivalence of the new testing measurement
methods with the gold standards (e.g., Carstensen, [7];
Choudhary and Nagaraja, [10]; Choudhary and Nagaraja,
[9]). In Altman and Bland [1], and Bland and Altman [4, 5],
the Bland-Altman analysis has been proposed to evaluate
the accuracy of a new clinical test based on its difference
from the gold standard measurement values and the mean
of the two tests values. Shieh [19] also proposes a new
method for calculating the sample size when conduct-
ing the Bland–Altman analysis during clinical trials. The
Bland–Altman analysis has also been expanded to cases of
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repeated measurement (e.g., Bland and Altman, [6]; Zou,
[21]) in clinical studies. Asamoto et al. [3] use this analy-
sis method to evaluate the equivalence of the accuracy in
a less-invasive continuous CO monitor during two differ-
ent surgeries. Meanwhile, the Bland–Altman plot cannot
describe the trending ability between the two compared
measurements, because this analysis does not consider the
order of the observed data. If the signs of the true mean of
the differences between each measurement methods’ val-
ues at one time point and at the subsequent time point
are the same, these two clinical methods are regarded as
containing the same trending ability. On the other hand,
if these signs are different, the two clinical measures have
different trending ability. For the evaluation of this trend-
ing ability, the four-quadrant plot is used to draw the
changes of the measurement results, and the concordance
rate (Perrino et al., [17]; Perrino et al., [16]) is accordingly
calculated along with the Bland–Altman analysis in the
equivalence comparative clinical trials (e.g., Monnet et al.,
[14]).
The four-quadrant plot and concordance rate focus on

the trending ability between each difference of two test-
ing values. In a four-quadrant plot, pairs of each difference
of two testing values at sequential time points are plotted.
For example, the plot draws the value at the second time
point minus the value measured at the first time point,
which are both measured by the gold standard on the hor-
izontal axis, while the difference value between the same
time points is measured by the experimental method on
the vertical axis.
The evaluation of the four-quadrant plot is based on

whether the trends for each difference between the new
experimental measurement and the gold standard are
concordant. When the trends between the two measure-
ments increase or decrease together, these points are
regarded as being in agreement (Saugel et al., [18]). The
values with small difference are not counted for the con-
cordance rate through the introduction of the “exclusion
zone”. The concordance rate in a four-quadrant plot is
calculated using the ratio of the number of agreements
to all data points. The conventional concordance rate
can be also regarded as a conditional probability under
the assumption of a binomial distribution, where a con-
ditional event is an event where the difference in mea-
surements values between the time points is not in the
exclusion zone. However, this gives the conventional con-
cordance rate difficulty of considering covariance within
an individual, despite one subject is commonly measured
multiple times in clinical practice. High covariance within
an individual may lead to incorrect results in a calculation
if the covariance is not considered in the calculation of the
concordance rate. In addition, when calculating the con-
cordance rate based on the conditional probability of the
binomial distribution, the difference values fell into the

exclusion zone is excluded. This reduces the sample size
and may affect the estimated concordance rate.
Our study proposes a new concordance rate for the

four-quadrant plot based on multivariate normal distri-
bution to take into account the covariance within each
individual subject. The proposed method is described as
a conditional probability based on a multivariate normal
distribution, while the conventional concordance rate is
the conditional probability based on a binomial distri-
bution. It means the proposed methods are essentially
the same framework, only with different assumptions.
In the proposed method, moreover, we can estimate the
parameters of the conditional probability with the val-
ues including those fell into the exclusion zone, in other
words, without reducing the sample size. Therefore, the
proposed concordance rate can overcome the difficulties
of the conventional concordance rate on correlation and
exclusion zone.
Through a numerical simulation and a real example,

we prove the superiority of the proposed method com-
pared with the traditional concordance rate in a practical
case. This new method can be applied to any number
of repeated measurements. In this study, we examine the
case of three time points in a numerical simulation. The
proposed method also has a parameter to set the mini-
mum concordant number m between two measurement
methods, which are regarded as being in agreement. For
instance, when the parameter m is 3 and T is 5, where T
is the number of the differences in measurement values,
the concordance rate evaluates the case of more than 3
agreements out of 5 times. This parameter analysis from
a clinical perspective. In general, T = m and the high
probability of the concordance are ideal, but the param-
eter can provide a more detailed interpretation of the
degree of agreement by adjusting the parameterm. In clin-
ical practice, it is more natural to assess the concordance
more than m out of T in the repeated measurements.
Here, the meaning of “agreement” differs from the assess-
ment of the conventional concordance rate. When the
conventional concordance rate is applied to the case of
repeated measurements, agreement in this sense cannot
be assessed. We will show the validitiy on the proposed
method through the numerical situations and the real
example.
The paper is organized as follows: the conventional con-

cordance rate for the four-quadrant plot is explained in the
following paragraph. In Methods, we introduce the new
proposed concordance rate and present the case wherein
the maximum number of agreements is two, then explain
the application of the proposed method to simulations
and to a real data of blood pressure. Results section shows
the findings of the simulation and the real data. We have
the further consideration in Discussion, and conclude this
paper in the last section.
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Conventional concordance rate for the four-quadrant plot
This subsection explains the ways to draw the four-
quadrant plot and calculate the concordance rate by using
the conventional method. The assessment method for the
trending agreement of two testing values using the four-
quadrant plot was first proposed by Perrino et al. [17]. The
four-quadrant plot uses each pair of differences between
the values measured by the two clinical methods being
compared. Point x∗

it(i = 1, 2, · · · , n; t = 1, 2, · · · , (T +
1)) indicates the value of a gold standard for individ-
ual subject i at time t, and y∗

it(i = 1, 2, · · · , n; t =
1, 2, · · · , (T + 1)) is the value of the experimental tech-
nique. Then, the t difference of the values measured by the
gold standard is

xit = x∗
i(t+1) − x∗

it (t = 1, 2, · · · ,T),

and the t difference of the values measured by the experi-
mental technique is

yit = y∗
i(t+1) − y∗

it (t = 1, 2, · · · ,T).

Plot 1 in Fig. 1 shows an example of the treatment values
in a time sequence that compares two tests for one sub-
ject. Focusing on the first two data points in Plot 1, the
difference between [2] and [1] can be described as [4] of
the four-quadrant plot in Plot 2. At this time, both x and
y increase, indicating that the direction of change in x and
y is the same. A point such as [4], plotted in the upper-
right of the four-quadrant plot, can be evaluated as being
in “agreement.” In contrast, the difference between [3] and
[2] is plotted as [5] in the lower-right section of Plot 2. In
this case, x increases but y decreases, that is, the trend of
x and y is recognized as being in “disagreement.” Similarly,
if the difference in both x and y is negative, as plotted in

the lower-left, the change is also in “agreement,” while the
data points in the upper-left can be assessed as being in
“disagreement.”
Figure 2 is a four-quadrant plot with artificial example

data. In the figure, the red points in the upper-right and
lower-left sections are counted as being in “agreement.”
The blue dots, on the other hand, signify “disagreement.”
When the difference value of the experimental technique
is equal to that of the gold standard, the data dot is on the
45◦ line (dotted lines in Fig. 2).
The concordance rate is calculated based on the idea

above. The conventional concordance rate (CCR) is
defined as follows:

CCR(a) = #SA − #AEz(a)
nT − #Ez(a)

, (1)

where

SA ={(xit , yit)|
(
(xit ≥ 0, yit ≥ 0) ∪ (xit < 0, yit < 0)

)
,

i = 1, 2, · · · , n; t = 1, 2, · · · ,T},
AEz(a) ={(xit , yit)|

(
(0 ≤ xit ≤ a, 0 ≤ yit ≤ a)

∪ (−a < xit < 0, −a < yit < 0)
)

i = 1, 2, · · · , n; t = 1, 2, · · · ,T}, and
Ez(a) ={(xit , yit)| − a ≤ xit , xit ≤ a, −a

≤yit , yit ≤ a, t = 1, 2, · · · ,T}.

SA is the set of “agreement” pairs of each difference
between the values of the gold standard and the exper-
imental technique. Ez(a) is the set of pairs plotted in
the exclusion zone. In the four-quadrant plot, the exclu-
sion zone (middle square in Fig. 2) is usually placed to
remove data plots close to the origin of the plot, because

Fig. 1 Plots for the step of drawing the four-quadrant plot. The horizontal axis is x and the vertical axis is y. Plot 1: Data plotted for three pairs of
values on Cartesian coordinates. Plot 2: Four-quadrant plot of the data in Plot 1
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Fig. 2 Four-quadrant plot with artificial example data

it is difficult to determine whether such small values have
occurred because of the examination or random errors
(e.g., Critchley et al., [12]). The gray points plotted in
the exclusion zone in Fig. 2 are excluded when calcu-
lating the concordance rate. The range of the exclusion
zone depends on a, which is set from a clinical point of
view (e.g., Saugel et al., [18]). AEz(a) is the set of the
“agreement” pairs in the exclusion zone. # signifies the car-
dinality of a set. The concordance rate in Eq. (1) is the ratio
between the number of data points in the “agreement”
sections, except the exclusion zone, with all data points
that fall outside the exclusion zone.

Methods
Proposed concordance rate for the four-quadrant plot
General framework of the proposed concordance rate
The proposed concordance rate evaluates the equivalence
between the experimental technique and the gold stan-
dard through a calculation that considers the individual
subjects. This proposed method includes the exclusion
zone as well and is defined as the conditional probabil-
ity. It corresponds to the event falling out of the exclusion
zone at all time points. We estimate the parameters of the
population with all the data.

The approach for calculation of the proposed method
starts with the four-quadrant plot per point t. First, the
quadrant sections are named At to Dt . The sample space
where the tth value falls in each section can be described
in four ways:

At ={ω| Xt(ω) ≥ 0,Yt(ω) ≥ 0},
Bt ={ω| Xt(ω) < 0,Yt(ω) < 0},
Ct ={ω| Xt(ω) < 0,Yt(ω) ≥ 0}, and
Dt ={ω| Xt(ω) ≥ 0,Yt(ω) < 0} (t = 1, 2, · · · ,T).

Here, Xt and Yt are random variables of each differ-
ence of the values of the gold standard and experimen-
tal techniques, respectively. Xt and Yt correspond to xit
and yit , respectively. X = (X1,X2, · · · ,XT ) and Y =
(Y1,Y2, · · · ,YT ) are assumed to be distributed from mul-
tivariate normal distribution. At in the upper-right and
Bt in the lower-left quadrants of the four-quadrant plot
(Fig. 2) correspond with “agreement,” whereas Ct in the
upper-left and Dt in the lower-right quadrants are in
“disagreement.”
Here, the family of sets is defined as follows:
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Wt = {At ∪ Bt ,Ct ∪ Dt} (t = 1, 2, · · · ,T).

Then, exclusion zone at the tth time is

Ezt(a) ={ω| − a ≤ Xt(ω) ≤ a,−a ≤ Yt(ω) ≤ a} (t = 1, 2, · · · ,T).

Ez(a) is also divided into four-quadrant sections:

EzAt(a) ={ω| 0 ≤ Xt(ω) ≤ a, 0 ≤ Yt(ω) ≤ a},
EzBt(a) ={ω| − a ≤ Xt(ω) ≤ 0,−a ≤ Yt(ω) ≤ 0},
EzCt(a) ={ω| − a ≤ Xt(ω) ≤ 0, 0 ≤ Yt(ω) ≤ a},
EzDt(a) ={ω| 0 ≤ Xt(ω) ≤ a,−a ≤ Yt(ω) ≤ 0} (t = 1, 2, · · · ,T).

The assets of the random variables in At ,Bt ,Ct , and Dt ,
except the exclusion zone, are defined as follows:

A†
t =At ∩ EzAt(a)c,

B†
t =Bt ∩ EzBt(a)c,

C†
t =Ct ∩ EzCt(a)c, and

D†
t =Dt ∩ EzDt(a)c,

where Zc is the complement of arbitrary set Z. A†
t and

B†
t are the events of “agreement” that do not fall into

the exclusion zone, whereas C†
t and D†

t are the events of
“disagreement” out of the exclusion zone.
The proposed concordance rate is calculated in the con-

dition in which all pairs of (Xt ,Yt) are not in the exclusion
zone. That is, if any pair of events for that subject drops to
the exclusion zone at least once, these events are excluded
from the calculation of proposed concordance rate. This
can be described as

NEz(a) =
{
ω| ∀t (t = 1, 2, · · · ,T); ω /∈ Ezt(a)

}
.

Here, the two clinical testing methods are regarded as
equivalent if Xt and Yt show the same direction of trends
more thanm times out of T times per subject.m is deter-
mined from a clinical perspective. T is the number of
differences of measurement values. Given this idea, we
propose the new concordance rate, in which the probabil-
ity of “agreement” of more thanm times in T is defined as
follows:

P
[ T⋃

t=m
Ht|NEz(a)

]

=
P

[
(
⋃T

t=m Ht) ∩ NEz(a)
]

P [NEz(a)]

=
∑T

t=m P [Ht ∩ NEz(a)]

1 − P
[⋃T

s=1 Ezs(a)
] , (2)

where

Ht =
{

ω| (W1(ω),W2(ω), · · · ,WT (ω)) ∈
T∏

s=1
Ws,

T∑

s=1
I(Ws(ω)

= As(ω) ∪ Bs(ω)) = t
}

.

(3)

Ht in Eq. (2) is the subset of the sample space in which
the trend betweenX and Y agrees t times. I is the indicator
function in the condition in which the sth data fall in A†

or B†.
∏T

s=1 Ws in Eq. (3) indicates the product.

Example of the proposed index, t = 2
Next, we explain the proposed concordance rate in the
case of m = 1 and T = 2, that is, at three points in time.
The probability can be calculated as follows:

P
[ 2⋃

t=1
Ht|NEz(a)

]
=

∑2
t=1 P

[
Ht ∩ NEz(a)

]

1 − P
[⋃2

s=1 Ezs(a)
] . (4)

The reason why we show the example of the proposed
concordance rate in Eq. (4) is to show the way of calcu-
lating the proposed concordance rate in practical. At first,
the proposed concordance rate is calculated based on nor-
mal distribution. Therefore, it needs transformation of the
description of the proposed concordance rate to calcu-
late the probability by using integral calculus based on
the density function. Next, such the calculation becomes
a little complicated due to the combination. Through the
example of the case T = 2, we provide how to calculate
the proposed concordance rate.
We apply the definition atT = 2 to a four-quadrant plot.

There are three patterns in the case of T = 2: agreement
in t = 1, agreement in t = 2, and agreements in t = 1 and
t = 2. The probability of the numerator in the definition
formula is

P[H1 ∩ NEz(a)]=P[ (A†
1 ∪ B†

1) ∩ (C†
2 ∪ D†

2)]

+ P[ (C†
1 ∪ D†

1) ∩ (A†
2 ∪ B†

2)]
(5)

P[H2 ∩ NEz(a)]=P[ (A†
1 ∪ B†

1) ∩ (A†
2 ∪ B†

2)] . (6)

For the image of the proposed method described in
Eq. (5) and Eq. (6), see Fig. 3.
To describe each case, the range in which the data

point enters into each quadrant of the plot is set as
F = {[ 0,∞]T , [−∞, 0]T }, and the range of the exclu-
sion zone is E = {[ 0, a]T , [−a, 0]T }. The vectors to
describe the range for the probability calculations are as
follows:

v1 =
[
v11
v21

]
, v2 =

[
v12
v22

]
, z1 =

[
z11
z21

]
, z2 =

[
z12
z22

]
,

where v1, v2, z1, z2 are able to take the elements of F or
E. The first term of Eq. (5) is the probability with which
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Fig. 3 Image of the proposed concordance rate such that at least one agreement out of two times measurement

the trend of X1 and Y1 is in agreement, whereas that of X2
and Y2 is not. This can also be expressed as

P
[
(A†

1 ∪ B†
1) ∩ (C†

2 ∪ D†
2)

]

=
∑

v1=z1,v2 �=z2
v1,v2,z1,z2∈F

P(v11 < X1 < v21, v12 < X2 < v22, z11 < Y1

< z21, z12 < Y2 < z22)

+
∑

v1=z1,v2 �=z2
v1,v2,z1,z2∈E

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22)

−
∑

v1=z1,v2 �=z2
v1,z1∈F , v2,z2∈E

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22)

−
∑

v1=z1,v2 �=z2
v1,z1∈E, v2,z2∈F

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22).
(7)

Then, the second term of Eq. (5) is the probability
when the trend of X1 and Y1 is in disagreement, but

that of X2 and Y2 is in agreement. This can be rewritten
similarly as

P
[
(C†

1 ∪ D†
1) ∩ (A†

2 ∪ B†
2)

]

=
∑

v1 �=z1,v2=z2
v1,v2,z1,z2∈F

P(v11 < X1 < v21, v12 < X2 < v22, z11 < Y1

< z21, z12 < Y2 < z22)

+
∑

v1 �=z1,v2=z2
v1,v2,z1,z2∈E

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22)

−
∑

v1 �=z1,v2=z2
v1,z1∈F , v2,z2∈E

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22)

−
∑

v1 �=z1,v2=z2
v1,z1∈E, v2,z2∈F

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22).
(8)

Equation (6) is the probability that the trends of X1 and
Y1 and of X2 and Y2 are both concordant:
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P
[
(A†

1 ∪ B†
1) ∩ (A†

2 ∪ B†
2)

]

=
∑

v1=z1,v2=z2
v1,v2,z1,z2∈F

P(v11 < X1 < v21, v12 < X2 < v22, z11 < Y1

< z21, z12 < Y2 < z22)

+
∑

v1=z1,v2=z2
v1,v2,z1,z2∈E

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22)

−
∑

v1=z1,v2=z2
v1,z1∈F , v2,z2∈E

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22)

−
∑

v1=z1,v2=z2
v1,z1∈E, v2,z2∈F

P(v11 < X1 < v21, v12 < X2 < v22, z11

< Y1 < z21, z12 < Y2 < z22).
(9)

Finally, the probability of the denominator in T = 2 is

1 − P
[ 2⋃

s=1
Ezs(a)

]

= 1 − P(−a < X1< a,−∞ < X2< ∞,−a < Y1< a,−∞ < Y2 < ∞)

− P(−∞ < X1< ∞,−a < X2< a,−∞ < Y1< ∞,−a < Y2 < a)

+ P(−a < X1 < a,−a < X2 < a, −a < Y1 < a,−a < Y2 < a).

(10)

In the proposed concordance rate, we assume that all
random variables are distributed from multivariate nor-
mal distribution. Therefore, we must estimate the mean
vectors and covariance matrices to calculate the concor-
dance rate. The method of estimating these parameters is
described in the next subsection.

Estimation of the proposed concordance rate
First, we define Z = (X1, · · · , XT , Y1, · · · , YT ) =
(Z1, · · · , ZT ,ZT+1, · · · , ZT+T ). Since the proposed
method assumes that Z are distributed from T + T-
dimensional normal distribution, it is necessary to esti-
mate the T + T-dimensional mean vector and variance
covariance matrix to calculate the concordance rate. The
estimated mean vector in the proposed approach is z̄ =
(x̄1, · · · , x̄T , ȳ1, · · · , ȳT )T , where x̄t and ȳt are the
mean of the tth value of gold standard and experimental
technique, respectively. The covariance matrix based on
the differences between the times is S = (stt†) (t, t† =
1, 2, · · · ,T + T), where stt† is the covariance between t
and t†. By using these estimators, the proposed concor-
dance rate in Eq (2), defined as the conditional probability
P[

⋃T
t=m Ht|NEz(a)], can be calculated. When calculating

the mean vector and covariance matrix, data in the exclu-
sion zone are also used, while the effect of the exclusion

zone is considered under the conditional probability. The
estimation of the mean vector and the covariance matrix
in the proposed concordance rate is expected to be sta-
ble, therefore small sample sizesmay have less impact than
that of the conventional concordance rate.
Next, we show the practical procedure of calculating the

proposed concordance rate with T = 2 and m = 2 as an
example.

Estimation of the proposed concordance rate with T =
2 andm = 2

Step1: Set a.
Step2: From data of a gold standard x∗

i =
(x∗

i1, x∗
i2, x∗

i3)
T (i = 1, 2, · · · , n) and of a experimental

technique y∗
i = (y∗

i1, y∗
i2, y∗

i3)
T (i = 1, 2, · · · , n), each

difference vector is obtained as follows:

xi = (xi1, xi2)T = (x∗
i2, x∗

i3)
T − (x∗

i1, x∗
i2)

T

and yi = (yi1, yi2)T = (y∗
i2, y∗

i3)
T − (y∗

i1, y∗
i2)

T , respectively.

Step3: Let zi = (xTi , yTi )T (i = 1, 2, · · · , n) and calcu-
late mean vectors and covariance matrix as follows;

z = 1
n

n∑

i=1
zi and S = 1

n − 1

n∑

i=1
(zi − z̄)(zi − z̄)T .

Step4: Calculate the proposed concordance rate
P[

⋃2
t=2Ht|NEz(a)]= P[H2|NEz(a)]. First, Eq. (9) is

calculated as follows;

P
[
(A†

1 ∪ B†
1) ∩ (A†

2 ∪ B†
2)

]

=
∑

v1=z1,v2=z2
v1,v2,z1,z2∈F

∫ v21

v11

∫ v22

v12

∫ z21

z11

∫ z22

z12
f (z; z̄, S)dz

+
∑

v1=z1,v2=z2
v1,v2,z1,z2∈E

∫ v21

v11

∫ v22

v12

∫ z21

z11

∫ z22

z12
f (z; z̄, S)dz

−
∑

v1=z1,v2=z2
v1,z1∈F , v2,z2∈E

∫ v21

v11

∫ v22

v12

∫ z21

z11

∫ z22

z12
f (z; z̄, S)dz

−
∑

v1=z1,v2=z2
v1,z1∈E, v2,z2∈F

∫ v21

v11

∫ v22

v12

∫ z21

z11

∫ z22

z12
f (z; z̄, S)dz

(11)

where f (z; z̄, S) is described as density function of four
dimensional normal distribution with z̄ and S. For
example, each probability in Eq. (11) can be calcu-
lated by using the function pmvnorm with the package
mvtnorm of statistical software R. Next, as the same
manner of Eq. (11), Eq. (10) is calculated as follows;
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1 − P
[ 2⋃

s=1
Ezs(a)

]

=1 −
∫ a

−a

∫ ∞

−∞

∫ a

−a

∫ ∞

−∞
f (z; z̄, S)dz −

∫ ∞

−∞

∫ a

−a

∫ ∞

−∞

∫ a

−a
f (z; z̄, S)dz

+
∫ a

−a

∫ a

−a

∫ a

−a

∫ a

−a
f (z; z̄, S)dz.

(12)

Finally by using Eq. (11) and Eq. (12), the proposed
concordance is calculated as follows;

P
[
H2|NEz(a)

]
= P [H2 ∩ NEz(a)]

1 − P
[⋃2

s=1 Ezs(a)
] .

In this example, we show the case of m = 2. The case
of m = 1 also can be calculated in the same manner. In
the case of m = 1, it needs to calculate the probability of
Eq. (7) and Eq. (8) as the same way of Eq. (11).

Numerical simulation design
In this subsection, we describe the simulation design
including several factor setting (Table 1). We generate
the artificial data with the true trend, and compare the
diagnosability between the proposedmethod and the con-
trol methods. The detail of the control methods will be
explained in Factor 7 below. The true trend is defined
as the labels in Table 2 determined by pair of popula-
tion means of each difference between two consecutive
measurements values. The evaluation in this numerical
simulation consists of two steps. First, we calculate the
ROC curves, and use Are Under the Curve (AUC) (e.g.,
Pepe, [15]) as the assessment of the diagnosability. In the
second step, the cutoff values of each method are com-
puted by Youden’s index (Youden, [20]), and the estimated
concordance rates are evaluated based on the cutoff val-
ues by factor mentioned below. In this simulation, we used
RStudio Version 1.1.453.
We set T = 2, and the data generation procedure is as

follows:

Z ∼ N(μz,�z)

Table 1 Factors of the simulation design

Factor No. Factor name Levels

Factor 1 Means 30

Factor 2 Covariance between the difference
values within each measurement
method

3

Factor 3 Covariance between X and Y 2

Factor 4 Number of agreements 2

Factor 5 Exclusion zone 2

Factor 6 Number of subjects 2

Factor 7 Methods 4

Table 2 Mean patterns in factor 1: label1 ◦ indicates the pattern
of agreement between μX and μY two times, otherwise ×. ◦ of
label2 means the pattern of agreement more than once in twice,
otherwise ×
Pattern No. μX1 μX2 μY1 μY2 Label1 Label2

Pattern1 -1.5 -1.5 1.5 1.5 × ×
Pattern2 -0.5 -0.5 0.5 0.5 × ×
Pattern3 -1.5 1.5 1.5 1.5 × ◦
Pattern4 0.5 -0.5 0.5 0.5 × ◦
Pattern5 1.5 1.5 1.5 1.5 ◦ ◦
Pattern6 0.5 0.5 0.5 0.5 ◦ ◦
Pattern7 -0.5 -1.5 0.5 1.5 × ×
Pattern8 0.5 -1.5 0.5 1.5 × ◦
Pattern9 -0.5 1.5 0.5 1.5 × ◦
Pattern10 0.5 1.5 0.5 1.5 ◦ ◦
Pattern11 -1.5 -1.5 -1.5 -1.5 ◦ ◦
Pattern12 -0.5 -0.5 -0.5 -0.5 ◦ ◦
Pattern13 -1.5 1.5 -1.5 -1.5 × ◦
Pattern14 0.5 -0.5 -0.5 -0.5 × ◦
Pattern15 1.5 1.5 -1.5 -1.5 × ×
Pattern16 0.5 0.5 -0.5 -0.5 × ×
Pattern17 -0.5 -1.5 -0.5 -1.5 ◦ ◦
Pattern18 0.5 -1.5 -0.5 -1.5 × ◦
Pattern19 -0.5 1.5 -0.5 -1.5 × ◦
Pattern20 0.5 1.5 -0.5 -1.5 × ×
Pattern21 -1.5 -1.5 -1.5 1.5 × ◦
Pattern22 -0.5 -0.5 -0.5 0.5 × ◦
Pattern23 -1.5 1.5 -1.5 1.5 ◦ ◦
Pattern24 0.5 -0.5 -0.5 0.5 × ×
Pattern25 1.5 1.5 -1.5 1.5 × ◦
Pattern26 0.5 0.5 -0.5 0.5 × ◦
Pattern27 -0.5 -1.5 -0.5 1.5 × ◦
Pattern28 0.5 -1.5 -0.5 1.5 × ×
Pattern29 -0.5 1.5 -0.5 1.5 ◦ ◦
Pattern30 0.5 1.5 -0.5 1.5 × ◦

where Z = (X1,X2,Y1,Y2)T . Xt is the difference in the
measurement values of the gold standard between the
tth and (t + 1)th times (t = 1, 2), and Yt is that of the
experimental technique.
In addition,

μZ =
[

μX
μY

]
, �Z =

[
�X �XY
�XY �Y

]
,

where μX = (μx1,μx2)T and μY = (μy1,μy2)T are
the mean vectors of the gold standard and experimental
technique, and �X and �Y are the covariance matrices,
respectively.



Hiraishi et al. BMCMedical ResearchMethodology          (2021) 21:270 Page 9 of 16

Here,

�X =
[

σx1 ρ

ρ σx2

]

, �Y =
[

σy1 ρ

ρ σy2

]

, and �XY =
[

ρXY ρXY

ρXY ρXY

]

.

We set σx1 = σx2 = σy1 = σy2 = 1.
Factors set in the simulation are presented in Table 1.

The number of patterns for m = 1 is 30 (Factor1) ×
3 (Factor2) × 2 (Factor3) × 1 (Factor4) × 2 (Factor5) ×
2 (Factor6) × 3 (Factor7) = 2160, and that for m = 2 is
30 (Factor1) × 3 (Factor2) × 2 (Factor3) × 1 (Factor4) ×
2 (Factor5) × 2 (Factor6) × 4 (Factor7) = 2880. Thus,
the total number of patterns is 2160 + 2880 = 5040. For
each pattern, corresponding artificial data are generated
100 times, and we evaluate the results. The levels of the
seven factors are set as follows.

Factor 1: Means
The mean is of 30 patterns, as shown in Table 2. The

setting depends on the combination of the magnitude of
the mean value and the direction of change in x and y.

Factor 2: Covariance between the difference values
within each measurement method
The covariance within eachmeasurementmethod of the

difference values, ρ, is set as 0, 1/3, and 2/3 in both X
and Y.

Factor 3: Covariance between X and Y
ρXY = 0 and 1/3.

Factor 4: Number of agreements
Factor 4 is the number of trending agreements between

X and Y. We set two different situations as follows: (1)
agreement more than once in T = 2, and (2) agreement at
both time points.

Factor 5: Exclusion zone
a of the exclusion zone Ez(a) is set as 0.5 and 1.0.

Factor 6: Number of subjects
The number of subjects is set as 15 and 40.

Factor 7: Methods
We calculate the concordance rate using four methods.

CCR, control1, control2, and the proposed method are
used in m = 2, and control1, control2, and the proposed
method are used in m = 1. We denote the proposed
concordance rate as “proposal.”
Both control1 and control2 are set by ourselves. The aim

is to calculate the probability of the agreement more than
m times out of T. The conventional concordance rate can
not be simply compared with the proposed method in the
case of m �= T , because it does not consider the repeated

measurements. When conditional probability based on
the binomial distribution, which is the formula of the con-
ventional concordance rate, extends to the probability of
the agreement more thanm times out of T, we can obtain
control1 and control2 as the natural extension.
Control1, based on binomial distribution, is calculated

as follows:
2∑

s=m
2Csps(1 − p)(2−s),

where 2Cs indicates binomial coefficient and

p = k1 + k2
n†1 + n†2

.

kt (t = 1, 2) is the number of data that show the same
trend between Xt and Yt out of the exclusion zone. n†t
is the number of subjects whose data points fall out of
the exclusion zone. The concordance rate in control2 is
calculated by the probability at each agreement: twice in
two time points is p1p2, and once in two time points
p1(1 − p2) + (1 − p1)p2, where

pt = kt
n†t

(t = 1, 2).

Subjects whose difference value falls in the exclusion
zone of the four-quadrant plot even once are excluded
from the calculation of the concordance rate in both con-
trol1 and control2 in the same manner as the proposed
method.
Next, we explain how to evaluate these results and how

to compare them. There are two evaluation indices in this
simulation. For the first evaluation index, we label each
pattern of means in Table 2. Label1 is the case of m = 2,
and Label2 as m = 1. In Label1, if μX and μY are con-
cordant two times out of two, we mark the corresponding
mean pattern as “◦”, and the rest as “×”. In Label2, the
corresponding mean pattern as “◦”, if μX and μY shows
same trend more than once out of two times, otherwise
labeled as “×”. Then, 1440 (30 (Factor1) × 3 (Factor2) ×
2 (Factor3) × 2 (Factor4) × 2 (Factor5) × 2 (Factor6))
×100 (the number of iterations) = 144000 data in total
have these two labels. That means, in the case ofm = 2, 48
×100 data in each pattern in Table 2 have the same trend
label as “◦” or “×” in Label1 of each pattern. Similarly, for
m = 1, the same data will be given the same label as Label
2. For 144000 data, the concordance rates are calculated by
the proposed method, CCR, control1, and control2. With
the results of the concordance rates and the labels given to
the data, we calculate ROC and AUC (e.g., Pepe, [15]) for
eachm, and compare the AUC values among the proposed
method, CCR, control1, and control2.
The second evaluation is the diagnostic performance of

the proposed methods and the control methods for each
factor. For the factors except Factor 1, the results of the
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concordance rate methods are compared in each level by
the AUC. 144000 data with Label1 and Label2 are split
by the levels in each Factor. Then, the AUC of the four
concordance rate methods are calculated in m = 2 and
m = 1. As for Factor 1, data is classified by pattern, which
means each level has only one label per m. The AUC of
Factor 1 can not be calculated, therefore we apply the
evaluation below to Factor 1. As the first step, the cut-
off value cmo(m = 1, 2; o = 1, 2, 3, 4) of the concordance
rate methods are calculated from ROC by Youden’s index,
where each o indicates the type of concordance method;
the proposed method, CCR, control1 and control2. ROC
for each m is same as the one in the first evaluation,
which computed by the estimated concordance rates and
the labels. For example, if the true trend is “◦”, the case
in that the estimated concordance rate is higher than cut-
off value cmo can be recognized as the proper diagnostic
performance. Conversely, if the true trend is “◦” and the
estimated concordance rate is lower than the cutoff value
cmo, the diagnosis is considered incorrect. The case of
the label “×” is opposite to “◦”; the case in that the esti-
mated concordance rate is lower than cutoff value cmo
can be appropriate if the true trend is “×”. Specifically, let
p†i∗o, (i∗ = 1, 2, · · · , n∗) estimated concordance rate, where
n∗ is the number of artificial data aggregated by factor.
Here, we set gi∗ such that gi∗ = 1 if the true trend of i∗ is
“◦”, and gi∗ = 0 if the true trend of i∗ is “×”.

qo =
∑n∗

i∗=1(gi∗ I(p
†
i∗o ≥ cmo) + (1 − gi∗ )I(p†i∗o < cmo))

n∗ , (o = 1, 2, 3, 4)

(13)

where I is Indicator function. The Eq. (13) for each
method is calculated in m = 2 and m = 1, and we com-
pare these results in Factor 1. The value of Eq. (13) closer
to 1 is regarded that estimated concordance rate has been
evaluated close to the true number of agreement, while
the value closer to 0 means that it has not been evaluated
correctly.

Application to sbp data
In this subsection, we show the usefulness of the pro-
posed concordance rate by diagnosability through a real
example. The AUC and the ROC curves of the proposed
method, CCR, control1, and control2 were compared to
evaluate diagnosability.
We applied the proposed concordance rate method and

the comparative methods to the blood pressure data of
package MethComp in R software (Carstensen et al.,
[8]). The data (Altman and Bland, [2]; Bland and Alt-
man, [5]) comprise the blood pressure measurement for
85 subjects based on 3 types of data: data named as J
and R were measured by a gold standard conducted by
2 different human observers, and S was measured by
an automatic machine as the experimental method. The

study was performed at three time points for each sub-
ject. The four-quadrant plots generated from the real data
are presented in Fig. 4. Comparing 2 of the 3 measure-
ment results to one another, we find that there are three
pairs, namely, J(observer1) and R(observer2), R and S(auto
machine), and J and S. Each pattern has two plots, (1)
t = 1 and (2) t = 2. We calculated the concordance rate
with the proposed method, CCR, control1, and control2
for each pair.
For the assessment of the methods, we compared the

diagnostic feasibility of the proposed and the conventional
methods of CCR, control1, and control2. Specifically,
10 subjects out of 85 were randomly selected as sam-
pling with replacement for calculation with the proposed
method, CCR, control1, and control2 in all three patterns.
The procedure was iterated 1000 times and the diagnos-
tic performances of eachmethod was evaluated.We chose
the parameter m = 2 in this example, because, in m = 1,
the proposed concordance rate cannot be directly com-
pared with CCR which does not deal with the repeated
measurements. As for Ez(a), a was set as the 10% quantile
point of the absolute values for both the gold standard and
experimental method (e.g., Critchley et al., [12]).
Each pattern of the four-quadrant plots in Fig. 4 shows

the characteristics of the real example. The data of J and
R in Pattern 1 have many red points that show “agree-
ment” of the trend between two data points, and most of
these points lie close to the 45◦ line, because this tendency
naturally derives from the same established measurement
method. On the other hand, data of S, the experimen-
tal measurement, is collected differently, thus the plots
of Pattern 2 and Pattern 3 have more blue dots as “dis-
agreement” than the plots of Pattern 1, and the data are
distributed with variation. Then, Pattern 1 is set as the
“agreement” label, and both Patterns 2 and 3 are as the
“disagreement” label. The “agreement” label is given as
a true label to the concordance rates of the proposed
method, CCR, control1 and control2, calculated with 10
sampling data of Pattern 1, J and R. Similarly, “disagree-
ment” is assigned to each estimated concordance rate
using 10 sampling data of Pattern 2 (R and S) and Pattern 3
(J and R), respectively. Here 1000 concordance rates have
“agreement” and 2000 have “disagreement” per method.
Using these label and the estimated concordance rates of
the proposed method, CCR, control1 and control2, we
compare ROC and assess AUCwhichmethod has the high
rate of diagnosability.

Results
Simulation results
Diagnosability of the estimationof each concordancemethod
We described the ROC curves in Figs. 5 and 6, and calcu-
lated AUC in Table 3. Figure 5 is the ROC of the proposed
method, CCR, control1 and control2 in m = 2, and the
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Fig. 4 Four-quadrant plots with real example data. Pattern 1: J(observer1) and R(observer2), Pattern 2: R and S(automatic machine), and Pattern 3: J
and S
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Fig. 5 ROC curves of the proposed method, CCR, control1, and control2 for the simulation in the case ofm = 2

ROC of the proposed method, control1 and control2 in
m = 1 draw in Fig. 6. According to Table 3, the AUC
of the proposed method was highest among all compared
method including CCR in m = 2. It indicates that the
diagnostic capability of the proposed method was supe-
rior to the conventional methods in m = 2. In m = 2, the
AUC of CCR and control1 was the same, since control1
is an extension of CCR in m out of T, which is a natural
result. As for the case ofm = 1, the AUC of the proposed
method was higher than all control methods, control1
and control2. The proposed method in m = 1 showed
the higher diagnostic capability than the conventional
methods.

Diagnosability of the estimation of each concordance
method by factor
Here, we indicate the diagnosability by factor. qo in
Eq. (13) computed by the pattern of Factor 1 is compared
between the proposed method and the control concor-
dance rate methods. In m = 2 of Factor 1, qo of the
compared concordance rate methods are calculated for
48 × 100 data in each pattern in Table 2. qo in m = 1

is also obtained for the proposed method, control1 and
control2 from the same number of data. The results of
Factor 1 Means is described in Table 4. All the proposed
method outperformed than CCR in m = 2. In the pat-
tern 6, 12, and 29, the proposed method was almost same
as control2. In case of m = 1, many of the proposed
method had better results than control1 and control2,
while control1 was better than the proposed method in
the pattern 4, 6, 10, 12, 14, 22, and 26. The absolute values
of true mean in all these patterns includes small value, 0.5.
Next, in Factor 2, the AUC is calculated for 240 × 100

in each level per m (Table 5). The proposed method was
better than the control methods. In m = 2, the values
of the control methods were not changed, and the values
of the proposed method have been increased as covari-
ance rises. It showed that the diagnostic performance of
the proposed method improved with the rise of covari-
ance, while that of all control methods did not change.
In m = 1, the diagnostic performance of the proposed
method increased as covariance risen, while that of the
control1 and control2 decreased. The AUC of Factor 3,
5 and 6 were calculated by level as the same manner of

Fig. 6 ROC curves of the proposed method, control1, and control2 for the simulation in the case ofm = 1
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Table 3 AUC of the proposed method, CCR, control1, and control2 in the simulation

m = 2 m = 1

Proposal CCR Control1 Control2 Proposal Control1 Control2

AUC 0.967 0.938 0.938 0.947 0.945 0.888 0.920

Table 4 The result of the simulation for factor 1: means

m = 2 m = 1

Pattern No. Proposal CCR Control1 Control2 Proposal Control1 Control2

Pattern1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pattern2 0.929 0.920 0.920 0.879 0.693 0.475 0.671

Pattern3 1.000 0.995 0.995 1.000 0.997 0.884 0.967

Pattern4 0.812 0.766 0.766 0.701 0.714 0.812 0.640

Pattern5 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pattern6 0.652 0.551 0.551 0.656 0.880 0.947 0.861

Pattern7 1.000 1.000 1.000 0.999 0.983 0.960 0.969

Pattern8 1.000 0.997 0.997 0.996 0.304 0.213 0.253

Pattern9 0.588 0.374 0.374 0.398 0.998 0.992 0.988

Pattern10 0.951 0.933 0.933 0.942 0.998 1.000 0.997

Pattern11 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pattern12 0.654 0.540 0.540 0.659 0.883 0.951 0.861

Pattern13 1.000 0.997 0.997 0.999 0.998 0.893 0.975

Pattern14 0.810 0.780 0.780 0.695 0.703 0.806 0.648

Pattern15 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pattern16 0.931 0.922 0.922 0.873 0.700 0.454 0.677

Pattern17 0.958 0.938 0.938 0.945 0.999 0.999 0.997

Pattern18 0.605 0.385 0.385 0.413 0.998 0.986 0.986

Pattern19 1.000 0.996 0.996 0.996 0.302 0.223 0.252

Pattern20 1.000 0.999 0.999 0.999 0.986 0.967 0.969

Pattern21 1.000 0.993 0.993 0.998 0.999 0.895 0.970

Pattern22 0.791 0.765 0.765 0.697 0.683 0.794 0.616

Pattern23 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pattern24 0.941 0.901 0.901 0.855 0.654 0.432 0.640

Pattern25 1.000 0.992 0.992 0.997 0.997 0.885 0.974

Pattern26 0.801 0.772 0.772 0.705 0.714 0.812 0.635

Pattern27 1.000 0.995 0.995 0.995 0.301 0.216 0.246

Pattern28 1.000 0.999 0.999 0.999 0.985 0.968 0.977

Pattern29 0.910 0.905 0.905 0.920 1.000 0.999 0.997

Pattern30 0.594 0.372 0.372 0.392 0.999 0.990 0.990

Table 5 AUC of the simulation for factor 2: covariance of the difference values within each measurement method

m = 2 m = 1

Proposal CCR Control1 Control2 Proposal Control1 Control2

ρ = 0 0.965 0.937 0.937 0.946 0.941 0.895 0.924

ρ = 1/3 0.968 0.939 0.939 0.949 0.947 0.889 0.921

ρ = 2/3 0.972 0.937 0.937 0.946 0.948 0.880 0.916
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Table 6 AUC of the simulation for factor 3: covariance between X and Y

m = 2 m = 1

Proposal CCR Control1 Control2 Proposal Control1 Control2

ρXY = 0 0.965 0.937 0.937 0.946 0.941 0.895 0.924

ρXY = 1/3 0.968 0.939 0.939 0.949 0.947 0.889 0.921

Table 7 AUC of the simulation for factor 5: exclusion zone

m = 2 m = 1

Proposal CCR Control1 Control2 Proposal Control1 Control2

a = 0.5 0.965 0.937 0.937 0.946 0.941 0.895 0.924

a = 1.0 0.968 0.939 0.939 0.949 0.947 0.889 0.921

Table 8 AUC of the simulation for factor 6: number of subjects

m = 2 m = 1

Proposal CCR Control1 Control2 Proposal Control1 Control2

n = 15 0.965 0.937 0.937 0.946 0.941 0.895 0.924

n = 40 0.968 0.939 0.939 0.949 0.947 0.889 0.921
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Table 9 AUC of the proposed method, CCR, control1, and
control2 in a real example

Proposal CCR Control1 Control2

0.999 0.964 0.964 0.965

Factor 2. The results of Factor 3, 5 and 6 are shown in
Tables 6, 7 and 8, respectively. The proposed methods
showed higher values of diagnosability than the control
methods in anym in these factors.

Results of sbp data
The AUC of the proposed method, CCR, control1 and
control2 is shown in Table 9. Each concordance rate was
estimated with high accuracy in m = 2 of the example
data, meanwhile the proposedmethod was better than the
comparative concordance rate methods. As for the ROC
curves in Fig. 7, the plot of the proposed method drew
a curve with an almost-right angle, while the curve was
more moderate in the ROC of CCR. These curves indicate
that the proposed approach has more accuracy than the
conventional concordance rates.

Discussion
The conventional concordance rate for a four-quadrant
plot is one of the methods for evaluating the equivalence
between a new testing method and standard measure-
ment method. In many clinical practices, these values are
observed repeatedly for the same subjects. However, the
conventional concordance rate for the four-quadrant plot
does not consider when evaluating the trend of measure-
ment values between the two clinical testing methods
being compared. Therefore, we proposed a new concor-
dance rate based on normal distribution that is calculated
using the difference in values of each measurement tech-
nique depending on the choice of m hyper parameter
as the minimum number of agreements to evaluate the
equivalence.
The diagnosability of the estimation of the proposed

method was superior to those of CCR, control1, and con-
trol2 according to the results of the numerical simulations.

The results for each factor were also better for the pro-
posed method than for the control methods. In Factor 2
covariance within the individuals, it confirmed that the
covariance affected the estimated results of the concor-
dance rate. The conventional concordance methods were
ineffective adequately in using information within indi-
viduals. We have shown that the proposed method had a
high diagnostic performance by using individual covari-
ance. In addition, through the real example using sbp data,
we confirmed the superiority of the proposed method to
facilitate diagnosability by the AUC values. While we have
provided only the results of the numerical simulations and
a real example for the case of time point T = 2 in this
study, this proposed concordance rate can be calculated as
a case of any T. Therefore, researching further properties
of the proposed method requires simulations for the case
of T > 2.
In the proposed method, we assumed that these data

are distributed as a multivariate normal distribution. For
actual use in clinical settings, the concordance rate is
used along with the Bland–Altman analysis to evaluate the
equivalence of two measurement methods. The Bland–
Altman analysis assumes normal distribution (e.g., Bland
and Altman, [6]; Zou, [21]). Therefore, the assumption
of the proposed method is consistent with that of the
Bland–Altman analysis.
Finally, we outline the scope of four more points of

future work to expand this study. First, there are no abso-
lute criteria for the values of the proposed concordance
rate, same as the conventional concordance rate. Although
various criteria have been proposed, there are no common
acceptable criteria for the conventional concordance rate
(e.g., Saugel et al., [18]). Therefore, it is difficult to deter-
mine if the result is good, acceptable, or poor. Second, the
results of the proposed concordance rate may also face
problems at the time intervals between the measurement
values, similar to the conventional concordance rate (e.g.,
Saugel et al., [18]). Therefore, the relationship between the
results and length of time intervals needs to be studied
further. Third, the criteria for setting the parameters of
the exclusion zone have to be determined (e.g., Critchley

Fig. 7 ROC of the proposed method, CCR, control1, and control2 in a real example
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et al., [13]). The shape of the exclusion zone may also be
considered as well, for the exclusion zone is described as
a rectangle such that the center of gravity is zero, other
shapes should be considered as well. Fourth, while the
Bland–Altman analysis is sometimes used in confirma-
tory clinical trials based on the statistical inference (e.g.,
Asamoto et al., [3]), our proposed concordance rate for
the four-quadrant plot has not been established yet in this
regard. Thus, concordance rate needs to be developed that
also reflects statistical inference.

Conclusion
We found that the conventional concordance rate was not
a proper indicator in repeated measurements. We pro-
posed the four-quadrant plot and its concordance rate
which take into account the influence of repeated mea-
surements within each subject. The proposed concor-
dance rate can enhance accuracy through a calculation
that depends on the numbers of agreement. The numer-
ical simulation and the application results showed that
the proposed concordance rate had more accuracy and
higher diagnosability than the conventional concordance
rate in T = 2. As the proposed concordance rate pro-
vides the trending agreement from various perspectives,
this newmethod is expected to contribute to clinical deci-
sions in exploratory analysis. Further consideration is thus
required from these points of view.
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