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Abstract

Background: Multilevel logistic regression models are widely used in health sciences research to account for
clustering in multilevel data when estimating effects on subject binary outcomes of individual-level and cluster-level
covariates. Several measures for quantifying between-cluster heterogeneity have been proposed. This study
compared the performance of between-cluster variance based heterogeneity measures (the Intra-class Correlation
Coefficient (ICC) and the Median Odds Ratio (MOR)), and cluster-level covariate based heterogeneity measures (the
80% Interval Odds Ratio (IOR-80) and the Sorting Out Index (SOI)).

Methods: We used several simulation datasets of a two-level logistic regression model to assess the performance of
the four clusteringmeasures for amultilevel logistic regressionmodel.We also empirically compared the four measures of
cluster variation with an analysis of childhood anemia to investigate the importance of unexplained heterogeneity
between communities and community geographic type (rural vs urban) effect in Malawi.

Results: Our findings showed that the estimates of SOI and ICC were generally unbiased with at least 10 clusters and
a cluster size of at least 20. On the other hand, estimates of MOR and IOR-80 were less accurate with 50 or fewer
clusters regardless of the cluster size. The performance of the four clustering measures improved with increased
clusters and cluster size at all cluster variances. In the analysis of childhood anemia, the estimate of the
between-community variance was 0.455, and the effect of community geographic type (rural vs urban) had an odds
ratio (OR)=1.21 (95% CI: 0.97, 1.52). The resulting estimates of ICC, MOR, IOR-80 and SOI were 0.122 (indicative of low
homogeneity of childhood anemia in the same community); 1.898 (indicative of large unexplained heterogeneity);
0.345-3.978 and 56.7% (implying that the between community heterogeneity was more significant in explaining the
variations in childhood anemia than the estimated effect of community geographic type (rural vs urban)), respectively.

Conclusion: At least 300 clusters with sizes of at least 50 would be adequate to estimate the strength of clustering in
multilevel logistic regression with negligible bias. We recommend using the SOI to assess unexplained heterogeneity
between clusters when the interest also involves the effect of cluster-level covariates, otherwise, the usual intra-cluster
correlation coefficient would suffice in multilevel logistic regression analyses.
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Background
Biomedical research studies often collect binary outcome
data that have a multilevel structure. For example, in esti-
mating the efficacy of a new drug on the treatment of
patients with a viral infection (recovered or not), patients
could be nested within the admitting hospitals. Similarly,
for a public health specialist assessing the effect of a feed-
ing intervention on the growth of a child (stunted or not),
children could be nested within communities which are
also nested within districts. In both examples, patients or
children (level-1 units) may have little variation in back-
ground characteristics within each hospital or community
(level-2 units). On the other hand, hospitals or commu-
nities may have patients or children drawn from a wide
range of background characteristics, which may affect
the within-hospital or within-community homogeneity. A
standard logistic regression model, which assumes that
the individual outcomes are independent will not con-
sider the hierarchical structure of the data within hospitals
or communities, and will consequently fail to distinguish
between these two manifestations in each example. Ignor-
ing the dependence between the outcomes may result in
an exaggerated number of independent patients or chil-
dren within hospitals or communities. For the strong
homogeneity between patients in hospitals or children in
communities, the effect would be an underestimation of
the standard errors for the covariate effects, which may
lead to incomplete and misleading conclusions on the
association between the treatment and the viral infection
or the feeding intervention and child growth [1–3].
Multilevel logistic regression models [4], also called

hierarchical logistic models [5], are appropriate statistical
techniques for analyzing clustered binary outcome data.
The use of multilevel models for the analysis of multi-
level data structures has exponentiated since the 1990s
due to the rise in computational power [2]. The analysis
of multilevel data is undertaken mostly to serve two pur-
poses: to provide correct inferences by accounting for the
variation thatmay exist between level-2 units, such as hos-
pitals or communities, and to assess the effects of level-2
risk factors and the unexplained between-cluster (level-2
unit) variation in explaining differences between individ-
uals’ (level-1 units) proneness to the binary outcome [1,
6, 7]. Several techniques in multilevel logistic regression
have been proposed to explore whether the individual
binary outcomes are explained by cluster-level covari-
ates and the unexplained between-cluster heterogeneity.
Because of its simplicity in interpretation, especially in lin-
ear mixed models, the Intra-class correlation coefficient
(ICC) (also known as the variance partition coefficient
(VPC)) is commonly used to measure the unobserved het-
erogeneity between clusters in multilevel models [8, 9].
In multilevel logistic regression, the ICC loses its natural
interpretation which is easily understood and interpreted

in the linear mixed model. Thus, several approaches have
been developed to provide interpretable and meaningful
information regarding the between-cluster heterogeneity
and the effect of cluster-level covariates. These methods
include the Median Odds Ratio (MOR), the 80% Inter-
val Odds Ratio (IOR-80) and the Sorting Out Index (SOI)
[2, 10, 11]. Though they are rarely used, they have
nonetheless offered explanations for the unobserved vari-
ations between clusters and the contribution of cluster-
level predictors on the individual binary outcomes [3, 12]
.
This paper assessed the performance of the ICC, MOR,

IOR-80 and SOI in measuring the importance of cluster-
level covariates and unexplained between-cluster hetero-
geneity in the analysis of a two-level logistic regression
model. We compared the performance using simulation
studies as well as an empirical application to childhood
anemia data fromMalawi.

Two-level logistic regressionmodel
Suppose there areH clusters and each cluster hasNh indi-
viduals. Let Yhi be the binary outcome taking a value of 1
or 0 for each individual i in cluster h. Also, let us assume
that the probability of Yhi = 1 is πhi, and πhi/1 − πhi is
the odds of Yhi = 1, (i = 1, 2, . . . ,Nh; h = 1, 2, . . . ,H).
For each individual hi, there is a vector Xhi containing val-
ues of p predictors, including cluster-level covariates. The
equation of a two-level logistic regression model is given
as

log
(

πhi
1 − πhi

)
= β0 + β1Xhi + uh (1)

Equation (1) is the conditional logistic model where πhi
is the probability that each individual i in cluster h takes
on the value Yhi = 1 and depends on the value of the
cluster random effect, uh, which captures the effect of
unmeasured cluster-level variability that affects the out-
come propensity. They are usually assumed to be normally
distributed with a mean of 0 and variance of σ 2

h , and
are uncorrelated with the individual and cluster-level pre-
dictor variables. In this way, heterogeneity of the binary
outcome (Yhi = 1) propensity between the clusters would
have been accounted for. For example, increasing values
of uh indicate that the associated clusters have higher
propensities on the binary outcome (Yhi = 1) and greater
heterogeneity between the outcomes is implied by higher
values of σ 2

h .

Intra-class correlation coefficient (ICC)
In biomedical research studies, the intra-class correla-
tion coefficient (ICC) statistic is used in multilevel anal-
ysis to measure the extent of within-cluster homogeneity,
which is caused by the multilevel structure of the data
[13, 14]. The statistic is obtained by calculating the ratio
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of the amount of between-cluster variance to the sum
of between- and within-cluster error variances, and it is
computed as follows:

ρ = σ 2
u

σ 2
u + σ 2

e
(2)

where σ 2
u and σ 2

e are the variances of the between-cluster
and the within-cluster errors, respectively. Since adding
the two variances give the total variance of the out-
come variable, ρ is often interpreted as the proportion of
the variance explained by clustering, or as a measure of
within-cluster homogeneity. If the value of ICC is 0 then
the observed outcomes are completely independent, and
if the value is 1 then the outcomes are completely depen-
dent on the cluster they belong to. Thus, the ICC ranges
from 0 to 1, and using cut-off points in Koo et al. [13] and
Merlo et al. [15], values of ICC of less than 0.50, between
0.50 and 0.75, between 0.76 and 0.90 and greater than
0.90 indicate low, moderate, high and very high correla-
tions, respectively. For the linear mixed model, both the
random effect and individual error terms are on the same
linear scale, which makes it easier to compute the total
variance in the outcome variable. However, for the multi-
level logistic regressionmodel, the cluster-level variance is
on the logistic scale which cannot be directly understood
in terms of variations between clusters in the prevalence
of the binary outcome. Furthermore, the individual-level
variance is taken from an underlying standard logistic dis-
tribution. The value of the variance for this underlying
distribution is σ 2

e = π2/3 = 3.29. Thus, as pointed out
in Merlo et al. [12] and Sanagou et al. [3], the usefulness
of ICC is somehow limited, largely due to its dependence
on linear mixed model concepts regarding partitioning
of the total variance, its association with the prevalence
of the outcome variable, and the different scales between
cluster-level and individual-level error variances. Thus,
for public health and epidemiological usages, explaining
the partitioning of total variance and ICC for dichotomous
outcomes is most challenging.

Themedian odds ratio (MOR)
As an alternative to the ICC-based clustering measure
in multilevel logistic regression, Larsen and Merlo [10]
proposed expressing the between-cluster variance on the
odds ratio (OR) scale, which could then be easily inter-
preted as it is on the same scale on which the effects of
predictor variables are measured. For the calculation of
MOR, one considers a set of all odds ratios that could
be obtained by comparing two individuals with identical
covariates but from two different clusters, where one has
higher random effect and the other with a lower random
effect. The two random effect values are ordered so that
the odds ratio is always at least one. The median of these
odds ratios provides theMedianOdds Ratio (MOR) statis-

tic and, assuming that the random effects are normally
distributed, the MOR is given as [10]:

MOR = exp
(√

2σ 2
u × �−1(0.75)

)
= exp

(√
2σ 2

u × 0.6745
)

= exp
(
0.95 ×

√
σ 2
u

)
.
(3)

where �−1(0.75) is the 75th percentile of a standard nor-
mal distribution. If σ 2

u = 0, then MOR = 1, which is
indicative of the absence of between-cluster heterogene-
ity, while if σ 2

u is large (i.e. considerable between-cluster
heterogeneity), the MOR will be much larger than 1 [3,
16]. Thus, the MOR measures heterogeneity between
individuals belonging to different clusters.

Interval odds ratio - 80% (IOR-80)
The interval odds ratio (IOR), as developed in Larsen and
Merlo [10] assesses the impact of cluster-level predictor
variables on the individual binary outcomes. One starts by
considering two different clusters that differ by one unit
on a given cluster-level predictor variable. Two individ-
uals with the same values for the remaining cluster-level
predictor variables and all the individual-level covariates
are chosen, one from each of the two clusters. Then the
odds ratio (OR) for the predictor is computed, which
often measures the effect of moving to a higher value of
the given cluster-level predictor (for a binary cluster-level
predictor variable, the OR is just the odds of it being 1
versus 0). Considering all possible pairs of individuals and
their ORs, the 80% interval around the median of the
distribution of the OR values provides the 80% interval
odds ratio (IOR-80). Under the assumption of a normally
distributed random effect, the IOR-80 has a lower limit
of IORL = exp(α + √

(2 × σ 2
u ) × (−1.2816)) and an

upper limit of IORU = exp(α + √
(2 × σ 2

u ) × (+1.2816))
[10, 17], and values -1.2816 and +1.2816 represent the
10th and 90th percentiles of the standard normal distribu-
tion, respectively. Thus, the limits of the IOR-80 are given
as:

IORL = exp
(

α −
√(

2 × σ 2
u
) × 1.2816

)
, (4)

IORU = exp
(

α +
√(

2 × σ 2
u
) × 1.2816

)
, (5)

where α is the regression coefficient for the cluster-level
predictor of interest. If the between-cluster variance is
small, then the IOR-80% interval will be narrow, and if
the between-cluster variance is large, then the IOR-80%
interval will be wider. IOR-80% will contain a 1 if the
cluster heterogeneity is large compared to the effect of
the cluster-level predictor. If the interval will not contain
1, then the effect of the cluster-level predictor (posi-
tively or negatively) is larger compared to the unexplained
between-cluster variation [10]. Thus, the addition of the
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cluster-level predictor effect helps to compare the impor-
tance of between-cluster heterogeneity and cluster-level
predictors in understanding the differences in individual
proneness to the outcome, Yhi = 1. However, the choice
of the 80% interval width is rather arbitrary. Longer or
shorter interval widths may or may not contain a 1 when
the 80% width actually contains a 1.

Sorting out index (SOI)
To remedy the problem of IOR depending on the choice
of the interval width, Chaix et al. [18] suggested using
the percentage in the distribution of the odds ratios as
described under the IOR for which the value is greater
than 1. Thus, if the cluster residual variance is high, and
the effect of the cluster-level predictor is not able to dis-
tinguish high-risk clusters from low-risk clusters, then the
odds ratios between clusters for the cluster effect would
be greater than 1 in half of the cases. On the other hand, if
the cluster-level predictor has a huge positive effect com-
pared to the between-cluster heterogeneity, then the odds
ratios would be greater than 1 in almost all the pairwise
cases of individuals. The percentage range of 50-100% is
often used as a sorting out index (SOI) to assess and mea-
sure the extent to which a given cluster-level covariate is
important compared to the between-cluster heterogeneity
in explaining the individual proneness to Yhi = 1.
The cluster-level covariate could be assumed to be neg-

atively associated with the outcomes, in which case one
would formulate the SOI differently. It will still be in half
of the cases if it is very weak, otherwise it will be in none
of the cases where the odds ratio is greater than 1; then
the SOI will range between 0 to 50%. Thus, the percent-
age range of the SOI can be between 0% and 100% [11, 19].
Assuming the random effect is normally distributed, the
sorting out index (SOI) is calculated as:

SOI = �

(
α√
2σ 2

u

)
(6)

The value of � for
(

α√
2σ 2

u

)
can be evaluated from a

standard normal distribution table and is expressed as
a percentage. This information indicates the degree to
which the cluster-level predictor is of importance as com-
pared to the unexplained between-cluster heterogeneity.
An SOI of near 0% or 100% implies an absence of between-
cluster variability and a high negative or positive effect
of the cluster-level predictor, respectively. The SOI of
50% implies that the effect of cluster-level predictor is
low [19], as compared to the unexplained between-cluster
heterogeneity.

Simulation protocol
We compared the performance of ICC, MOR, IOR-80,
and SOI on simulated two-level binary datasets with indi-
vidual and cluster-level covariates. We then fitted two-
level logistic regression models to the datasets and com-
pared the resulting estimates to the true values by the root
mean square errors.
For the simulation, the response variable, Yhi, was dis-

tributed as a Bernoulli random variable. The following
logit model on the probability, πhi = Pr(Yhi = 1), was
used to simulate the binary responses:

logit(πhi) = β0 + β1Xhi1 + β2Xhi2 + αXh + uh (7)

We assumed the cluster-specific random effect, uh, fol-
lowed a normal distribution with a mean of 0 and a
variance of σ 2

u (i.e. uh ∼ N(0, σ 2
u )). The fixed effect param-

eters were fixed at β0 = 0.5,β1 = −1.5,β2 = 0.3,α =
−0.3, and both level-1 covariates Xhp ∼ N(0, 1) for p =
1, 2, and level-2 covariate Xh ∼ Bernoulli(0.5). For exam-
ple, to generate 10 clusters with each cluster having 5
individuals with the outcome Yhi = 1 or 0, the following
steps were implemented;

a) We drew 10 random effects, uh, for the 10 clusters
distributed from a normal, uh ∼ N(0, σ 2

u ), for
example a value of σ 2

u = 0.2.
b) Take the first value of the generated random effect,

say uh = 1.78.

Repeat the following steps (c-f) 5 times for cluster 1
with the random effect value of 1.78.

c) Draw Xhi1 from a N(0, 1) and Xhi2 from a N(0, 1)
and Xh from Bernoulli(0.5).

d) Substitute the generated values into the equation:
logit(πhi) = 0.5 − 1.5Xhi1 + 0.3Xhi2 − 0.3Xh + 1.78

e) We then solve for
πhi = 1

1+exp (−(β0+β1Xhi1+β2Xhi2+αXh+uh))
f) We then draw Yhi from a Bernoulli with parameter

πhi, which results in either 1 or 0 as a binary outcome
for subject 1 in the cluster 1.

g) Return to step b) and pick the next value, for example
-0.568, as the random effect value for cluster 2. This
is repeated 10 times to generate 10 clusters with
known random effect values, each cluster having 5
individuals.

Here, we fixed the values for σ 2
u at 0.2, 0.5, 1.0 and 1.5. The

resulting true values of ICC, MOR, SOI and IOR-80 are
shown in Table 1.
The process was repeated for the varied number of clus-

ters (i.e., H = 10, 50, 100, 300, 500 clusters), number of
observations within each cluster (i.e., Nh = 5, 20, 50, 100,
250). For each combination of the number of clusters,
cluster size, and between cluster variance, 1000 datasets
were simulated. The root mean square error (RMSE)
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Table 1 True values of fixed effects and measures of heterogeneity for the two-level logistic regression, under various random effects
variance values

σ 2
u β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Lower Upper

0.20 0.5000 −1.5000 0.3000 −0.3000 0.0570 1.532 0.3176 0.3294 1.667

0.50 0.5000 −1.5000 0.3000 −0.3000 0.1319 1.963 0.3821 0.2057 2.669

1.00 0.5000 −1.5000 0.3000 −0.3000 0.2331 2.596 0.4160 0.1209 4.538

1.50 0.5000 −1.5000 0.3000 −0.3000 0.3131 3.216 0.4312 0.0805 6.819

√
(Ei−Oi)2

N , where Ei was the estimated value and Oi the
true value as shown in Table 1, were computed to deter-
mine their accuracies. We used the open software R (R
Core Team, 2020) and packages rms (regression modeling
strategies) [20], lmerTest and pbkrtest in simulating and
analyzing the data.

Simulation results
Tables 2 and 3 present the accuracies of estimates of the
fixed effects and measures of heterogeneity for the two-
level logistic regression model for a varied number of
clusters, cluster sizes and cluster variances. Tables 4 and 5
present results of estimated values of the fixed effects and
measures of heterogeneity for the 2-level logistic regres-
sion model, under various numbers of clusters, cluster
sizes, and cluster variances.

Accuracy of estimated parameters
We observe that the estimated parameters for the fixed
effects were accurate for all cluster-levels and cluster vari-
ances, particularly for large clusters and cluster sizes.
Lower root mean square errors were particularly observed
for larger clusters, providing evidence of unbiasedness for
the estimates β̂ ’s and α̂ for increased clusters and cluster
sizes as shown in Tables 2 and 3. The RMSEs for β̂0 were
slightly biased for 10 clusters with a cluster size of 5. How-
ever, the estimates were unbiased for at least 10 clusters
with a cluster size of at least 20 for all cluster-level vari-
ances. At a cluster variance of 1.0, the estimates for β̂0
were unbiased for at least 100 clusters with a cluster size of
at least 5. Lower RMSEs for β̂1 were observed for at least
10 clusters with a cluster size of at least 5 for all cluster
variances. Bias for β̂1 was negligible for 100 clusters with
cluster size of at least 50 at a cluster variance of 0.5. At a
cluster variance of 0.2, α̂ was slightly biased for 10 clus-
ters with a cluster size of 5. However, we observe unbiased
estimates of α for 100 clusters with cluster sizes of 50, and
500 clusters with a cluster size of at least 5. The bias of α̂

improved with the increase in clusters and cluster size for
all cluster variances.

Performance of estimated heterogeneity measures
Intra-class correlation coefficient (ICC)
Tables 2 and 3 show that the estimates for the ICC were
less biased when the cluster variance was 0.2 and the esti-
mates of the ICC were unbiased with 100 clusters and
clusters sizes of 20 or more. At the cluster variance of 0.5,
the ICC was estimated with less bias for at least 100 clus-
ters of sizes 50 or larger. At level-2 variance of 1.0, the ICC
was slightly biased for 10 clusters with cluster size of 5.
However, the bias for estimating the ICC decreased for at
least 50 clusters with cluster size of at least 20. At a level-
2 variance of 1.5, the lowest RMSEs were observed for the
estimation of ICC with at least 10 clusters each of clus-
ter size of at least 20. Increasing the number of clusters
(at least 100) and cluster size (at least 20) gave negligible
bias for the estimation of ICC as its RMSEs decreased to
almost zero, for all level-2 variances.

Median odds ratio (MOR)
As observed from Tables 2 and 3, the estimates of the
MOR were largely biased for 50 clusters with cluster size
of 5, for all cluster variances. at a cluster variance of 0.2,
the estimates of the MOR were less biased for at least 50
clusters with cluster sizes of at least 20. The estimates of
the MOR improved when cluster sizes were 50 or more
for all cluster-level variances. The lowest RMSEs were
observed for at least 300 clusters and a cluster size of at
least 50 in estimating the MOR.

80% interval odds ratio (IOR-80)
The estimates for the IOR-80 were less accurate for small
clusters and cluster sizes when the cluster variance was
large as observed from Tables 2 and 3. At a cluster vari-
ance of 0.2, we observe low RMSEs when estimating the
IOR-80 lower and upper limits for at least 10 clusters with
a cluster size of at least 20. At a cluster variance of 0.5,
the estimates of the IOR-80 lower limit were accurate for
at least 10 clusters with a cluster size of at least 20. How-
ever, the estimates for the IOR-80 upper limit were largely
biased for at least 10 clusters with a cluster size of at least
5 for cluster variances of 1.0 and 1.5. On the contrary, the
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Table 2 Average Root Mean Square Errors for the estimated fixed effects, cluster effect, ICC, MOR, IOR-80 and SOI at cluster variances of
0.2 and 0.5

Clusters Cluster size β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size Lower Upper

σ 2
u = 0.2

10 5 0.042 0.002 0.076 0.082 0.034 0.226 0.125 0.063 0.333

20 0.012 0.008 0.000 0.010 0.003 0.018 0.010 0.007 0.002

50 0.000 0.003 0.003 0.015 0.002 0.013 0.007 0.011 0.002

100 0.008 0.002 0.002 0.008 0.002 0.010 0.008 0.001 0.032

250 0.007 0.027 0.010 0.015 0.004 0.023 0.018 0.003 0.062

50 5 0.041 0.008 0.020 0.045 0.010 0.058 0.037 0.007 0.215

20 0.020 0.039 0.002 0.011 0.004 0.029 0.018 0.018 0.031

50 0.011 0.010 0.001 0.040 0.001 0.005 0.053 0.008 0.046

100 0.028 0.006 0.002 0.050 0.004 0.022 0.022 0.023 0.040

250 0.065 0.013 0.000 0.028 0.005 0.031 0.029 0.004 0.008

100 5 0.032 0.011 0.034 0.043 0.009 0.054 0.022 0.023 0.010

20 0.005 0.018 0.012 0.008 0.001 0.008 0.007 0.002 0.016

50 0.005 0.004 0.003 0.000 0.001 0.008 0.006 0.000 0.002

100 0.002 0.003 0.009 0.016 0.002 0.010 0.012 0.003 0.038

250 0.002 0.003 0.002 0.013 0.002 0.015 0.011 0.002 0.053

300 5 0.003 0.005 0.008 0.025 0.011 0.071 0.038 0.022 0.018

20 0.002 0.009 0.004 0.003 0.001 0.009 0.004 0.004 0.010

50 0.006 0.001 0.001 0.001 0.001 0.008 0.005 0.002 0.008

100 0.001 0.005 0.003 0.006 0.001 0.007 0.005 0.001 0.023

250 0.004 0.002 0.004 0.001 0.001 0.005 0.010 0.002 0.009

500 5 0.011 0.001 0.001 0.000 0.016 0.108 0.097 0.005 0.017

20 0.006 0.006 0.001 0.001 0.001 0.008 0.058 0.003 0.002

50 0.006 0.003 0.002 0.006 0.000 0.003 0.055 0.003 0.002

100 0.002 0.003 0.002 0.016 0.000 0.003 0.050 0.002 0.002

250 0.019 0.001 0.001 0.009 0.001 0.005 0.053 0.002 0.002

σ 2
u = 0.5

10 5 0.003 0.000 0.010 0.003 0.003 0.153 0.017 0.036 0.347

20 0.019 0.012 0.009 0.032 0.003 0.038 0.017 0.002 0.176

50 0.040 0.010 0.000 0.090 0.003 0.033 0.016 0.000 0.160

100 0.070 0.010 0.000 0.070 0.008 0.045 0.028 0.024 0.101

250 0.020 0.000 0.010 0.050 0.003 0.019 0.022 0.014 0.101

50 5 0.000 0.060 0.030 0.060 0.031 0.180 0.018 0.064 0.309

20 0.010 0.000 0.010 0.030 0.004 0.023 0.015 0.004 0.091

50 0.020 0.000 0.000 0.030 0.005 0.029 0.019 0.004 0.015

100 0.020 0.010 0.010 0.000 0.003 0.015 0.009 0.004 0.014

250 0.020 0.000 0.000 0.030 0.008 0.046 0.013 0.001 0.004

100 5 0.000 0.040 0.010 0.010 0.009 0.052 0.013 0.014 0.059

20 0.040 0.010 0.020 0.010 0.004 0.025 0.007 0.006 0.051

50 0.020 0.000 0.000 0.010 0.002 0.010 0.005 0.004 0.011

100 0.010 0.000 0.000 0.030 0.006 0.032 0.013 0.016 0.001

250 0.030 0.000 0.000 0.030 0.002 0.014 0.010 0.004 0.051
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Table 2 Average Root Mean Square Errors for the estimated fixed effects, cluster effect, ICC, MOR, IOR-80 and SOI at cluster variances of
0.2 and 0.5 (Continued)

Clusters Cluster size β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size Lower Upper

300 5 0.020 0.000 0.030 0.010 0.008 0.048 0.008 0.006 0.031

20 0.010 0.000 0.000 0.000 0.004 0.022 0.005 0.004 0.049

50 0.000 0.010 0.010 0.020 0.002 0.009 0.007 0.006 0.059

100 0.030 0.000 0.000 0.030 0.002 0.013 0.010 0.004 0.041

250 0.002 0.001 0.001 0.002 0.001 0.008 0.003 0.000 0.014

500 5 0.010 0.000 0.010 0.010 0.005 0.028 0.008 0.004 0.049

20 0.000 0.000 0.010 0.000 0.002 0.013 0.002 0.004 0.029

50 0.000 0.000 0.000 0.020 0.001 0.005 0.007 0.004 0.021

100 0.004 0.000 0.002 0.014 0.002 0.058 0.006 0.003 0.017

250 0.008 0.002 0.001 0.031 0.003 0.019 0.012 0.003 0.014

Table 3 Average root mean square errors for the estimated fixed effects, cluster effect, ICC, MOR, IOR-80 and SOI at cluster variances of
1.0 and 1.5

Clusters Cluster β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size Lower Upper

σ 2
u = 1.0

10 5 0.062 0.008 0.009 0.010 0.028 0.217 0.011 0.012 0.870

20 0.120 0.001 0.012 0.202 0.007 0.050 0.056 0.021 0.855

50 0.042 0.041 0.001 0.024 0.012 0.079 0.017 0.007 0.086

100 0.094 0.017 0.020 0.167 0.011 0.076 0.040 0.022 0.479

250 0.002 0.009 0.008 0.096 0.005 0.034 0.031 0.009 0.424

50 5 0.023 0.009 0.002 0.015 0.020 0.135 0.012 0.012 0.478

20 0.037 0.009 0.003 0.068 0.012 0.081 0.022 0.001 0.531

50 0.025 0.006 0.001 0.006 0.005 0.036 0.008 0.002 0.117

100 0.003 0.006 0.000 0.014 0.005 0.036 0.013 0.004 0.001

250 0.006 0.006 0.005 0.024 0.006 0.039 0.010 0.001 0.228

100 5 0.004 0.004 0.024 0.032 0.012 0.082 0.008 0.012 0.109

20 0.021 0.006 0.000 0.005 0.005 0.035 0.005 0.003 0.069

50 0.013 0.006 0.001 0.032 0.003 0.017 0.010 0.003 0.168

100 0.021 0.005 0.007 0.031 0.005 0.034 0.009 0.005 0.064

250 0.004 0.010 0.003 0.018 0.003 0.018 0.007 0.001 0.104

300 5 0.014 0.024 0.012 0.038 0.023 0.151 0.017 0.010 0.627

20 0.009 0.005 0.006 0.003 0.003 0.020 0.004 0.002 0.035

50 0.005 0.002 0.008 0.010 0.002 0.015 0.009 0.001 0.069

100 0.021 0.004 0.003 0.026 0.002 0.015 0.009 0.002 0.168

250 0.009 0.003 0.001 0.013 0.002 0.015 0.009 0.002 0.069

500 5 0.007 0.033 0.004 0.017 0.025 0.165 0.004 0.019 0.058

20 0.007 0.006 0.004 0.025 0.005 0.033 0.006 0.006 0.004

50 0.003 0.001 0.002 0.007 0.002 0.010 0.002 0.001 0.003

100 0.006 0.006 0.006 0.013 0.003 0.023 0.003 0.002 0.001

250 0.012 0.004 0.001 0.015 0.002 0.011 0.007 0.001 0.001
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Table 3 Average root mean square errors for the estimated fixed effects, cluster effect, ICC, MOR, IOR-80 and SOI at cluster variances of
1.0 and 1.5 (Continued)

Clusters Cluster β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size Lower Upper

σ 2
u = 1.5

10 5 0.063 0.021 0.035 0.076 0.014 0.124 0.017 0.011 0.394

20 0.005 0.016 0.028 0.140 0.013 0.120 0.030 0.014 0.459

50 0.002 0.030 0.006 0.171 0.010 0.091 0.039 0.016 0.429

100 0.002 0.014 0.002 0.014 0.010 0.085 0.010 0.003 0.360

250 0.065 0.016 0.004 0.134 0.019 0.162 0.033 0.015 0.130

50 5 0.007 0.013 0.007 0.025 0.041 0.334 0.014 0.016 0.381

20 0.038 0.015 0.001 0.050 0.013 0.112 0.010 0.008 0.045

50 0.026 0.003 0.007 0.066 0.003 0.069 0.015 0.010 0.177

100 0.056 0.003 0.007 0.069 0.008 0.069 0.016 0.007 0.144

250 0.084 0.005 0.002 0.040 0.009 0.080 0.015 0.007 0.012

100 5 0.012 0.045 0.016 0.032 0.027 0.227 0.008 0.015 0.669

20 0.040 0.009 0.005 0.047 0.007 0.059 0.011 0.006 0.247

50 0.027 0.011 0.008 0.052 0.006 0.049 0.011 0.006 0.178

100 0.069 0.001 0.006 0.069 0.004 0.031 0.016 0.006 0.139

250 0.010 0.002 0.005 0.066 0.003 0.051 0.015 0.006 0.038

300 5 0.021 0.003 0.012 0.034 0.003 0.131 0.007 0.010 0.291

20 0.021 0.000 0.006 0.026 0.003 0.016 0.007 0.002 0.214

50 0.018 0.005 0.003 0.012 0.003 0.015 0.003 0.000 0.121

100 0.013 0.003 0.001 0.014 0.003 0.046 0.004 0.001 0.123

250 0.009 0.003 0.001 0.013 0.003 0.115 0.009 0.007 0.360

500 5 0.007 0.005 0.001 0.009 0.003 0.178 0.006 0.008 0.040

20 0.001 0.005 0.000 0.028 0.003 0.039 0.007 0.000 0.035

50 0.016 0.000 0.003 0.001 0.003 0.024 0.006 0.001 0.040

100 0.029 0.001 0.001 0.028 0.003 0.013 0.007 0.002 0.019

250 0.010 0.003 0.072 0.072 0.003 0.060 0.016 0.002 0.011

estimates for the IOR-80 lower limit at these cluster vari-
ances (1.0 and 1.5) were accurate for at least 10 clusters
with a cluster size of at least 20. The accuracy of the IOR-
80 estimates were less biased with increased clusters and
cluster sizes. At a cluster variance 0.2, unbiased estimates
of the IOR-80 lower and upper limits were observed for
100 clusters with cluster size of at least 50. Overall, the
bias for the estimates of the I0R-80 decreased for at least
300 clusters with a cluster size of at least 100 at all cluster
variances.

Sorting out index (SOI)
As seen from Tables 2 and 5, the SOI estimates were
biased for 10, 50, and 100 clusters with a cluster size of 5.
However, the estimates of SOI were less biased for at least
10 clusters with cluster sizes of at least 20 at cluster vari-
ances of 0.2 and 0.5. Furthermore, the estimates for SOI
were slightly biased for 10 clusters with a cluster size of 5.

The bias in estimating the SOI decreased with increased
clusters (at least 300) and a cluster size (at least 50) at
cluster-level variances of 0.2 and 0.5. In addition, for large
cluster variances of 1.0 and 1.5, the estimates of the SOI
were unbiased with increased clusters (at least 100) and
cluster size (at least 50).

Application to childhood anemia in Malawi
For the application, we analyzed childhood anemia among
under-five children in Malawi using the 2015-16 Malawi
Demographic and Health Survey (MDHS) data by fit-
ting a two-level logistic regression model taking the
community as a level-two unit. Childhood anemia is
a major public health concern in Sub-Saharan Africa
(SSA), particularly in Malawi [21]. We categorized ane-
mia among children aged 6 to 59 months who were born
five years before the survey as: no anemia = 0 and had
anemia = 1.
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Table 4 Estimated values of fixed effects and measures of heterogeneity for the two-level logistic regression, under random effects
variance values 0.2 and 0.5

Clusters Cluster β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size lower upper

σ 2
u = 0.2 True values: 0.500 -1.500 0.300 -0.300 0.0570 1.532 0.3176 0.3294 1.667

10 5 0.542 -1.502 0.376 -0.382 0.042 1.417 0.209 0.392 1.334

20 0.488 -1.508 0.300 -0.290 0.056 1.524 0.322 0.337 1.669

50 0.500 -1.503 0.303 -0.285 0.055 1.519 0.323 0.340 1.665

100 0.492 -1.498 0.298 -0.292 0.059 1.541 0.324 0.329 1.699

250 0.507 -1.527 0.290 -0.315 0.054 1.514 0.304 0.333 1.605

50 5 0.539 -1.508 0.320 -0.255 0.067 1.590 0.354 0.322 1.882

20 0.481 -1.461 0.298 -0.290 0.054 1.508 0.312 0.347 1.636

50 0.489 -1.510 0.299 -0.261 0.060 1.546 0.344 0.337 1.763

100 0.528 -1.506 0.302 -0.350 0.061 1.553 0.296 0.306 1.627

250 0.565 -1.487 0.300 -0.328 0.052 1.501 0.293 0.333 1.559

100 5 0.532 -1.511 0.334 -0.343 0.062 1.559 0.299 0.306 1.657

20 0.505 -1.518 0.312 -0.293 0.058 1.534 0.322 0.331 1.683

50 0.505 -1.496 0.297 -0.300 0.057 1.532 0.317 0.329 1.665

100 0.498 -1.503 0.309 -0.284 0.058 1.537 0.328 0.333 1.705

250 0.498 -1.497 0.302 -0.313 0.055 1.517 0.306 0.332 1.614

300 5 0.503 -1.505 0.292 -0.325 0.046 1.461 0.281 0.352 1.485

20 0.498 -1.509 0.296 -0.297 0.056 1.525 0.318 0.333 1.657

50 0.495 -1.499 0.301 -0.299 0.057 1.528 0.317 0.332 1.659

100 0.501 -1.495 0.303 -0.306 0.056 1.526 0.313 0.330 1.644

250 0.496 -1.498 0.296 -0.301 0.057 1.528 0.317 0.331 1.658

500 5 0.489 -1.499 0.299 -0.300 0.041 1.424 0.279 0.384 1.450

20 0.494 -1.506 0.299 -0.299 0.057 1.531 0.318 0.330 1.666

50 0.494 -1.503 0.298 -0.294 0.057 1.531 0.321 0.332 1.674

100 0.499 -1.503 0.298 -0.284 0.057 1.530 0.326 0.335 1.689

250 0.481 -1.499 0.301 -0.291 0.058 1.533 0.323 0.332 1.683

σ 2
u = 0.5 True values: 0.500 -1.500 0.300 -0.300 0.1319 1.963 0.3821 0.2057 2.669

10 5 0.497 -1.500 0.310 -0.297 0.106 1.816 0.367 0.242 2.323

20 0.519 -1.489 0.291 -3.332 0.125 1.925 0.366 0.207 2.493

50 0.516 -1.497 0.313 -0.332 0.126 1.930 0.367 0.206 2.509

100 0.430 -1.490 0.300 -0.230 0.130 1.920 0.410 0.230 2.770

250 0.480 -1.500 0.290 -0.250 0.130 1.950 0.400 0.220 2.770

50 5 0.500 -1.440 0.330 -0.240 0.100 1.780 0.390 0.270 2.360

20 0.490 -1.500 0.290 -0.270 0.130 1.960 0.390 0.210 2.760

50 0.480 -1.500 0.300 -0.270 0.140 1.990 0.400 0.210 2.820

100 0.480 -1.510 0.310 -0.300 0.130 1.950 0.380 0.210 2.650

250 0.520 -1.500 0.300 -0.270 0.120 1.920 0.390 0.220 2.630

100 5 0.500 -1.460 0.290 -0.290 0.130 1.930 0.380 0.220 2.610

20 0.540 -1.510 0.280 -0.310 0.140 1.990 0.380 0.200 2.720

50 0.480 -1.500 0.300 -0.290 0.130 1.960 0.390 0.210 2.680

100 0.510 -1.500 0.300 -0.330 0.140 1.990 0.370 0.190 2.670

250 0.470 -1.500 0.300 -0.270 0.130 1.950 0.390 0.210 2.720
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Table 4 Estimated values of fixed effects and measures of heterogeneity for the two-level logistic regression, under random effects
variance values 0.2 and 0.5 (Continued)

Clusters Cluster β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size lower upper

300 5 0.520 -1.500 0.330 -0.310 0.140 1.990 0.380 0.200 2.700

20 0.490 -1.500 0.300 -0.300 0.130 1.940 0.380 0.210 2.620

50 0.500 -1.490 0.290 -0.320 0.130 1.960 0.380 0.200 2.610

100 0.470 -1.500 0.300 -0.270 0.130 1.950 0.390 0.210 2.710

250 0.498 -1.499 0.299 -0.302 0.131 1.960 0.381 0.206 2.656

500 5 0.510 -1.500 0.290 -0.290 0.130 1.940 0.380 0.210 2.620

20 0.500 -1.500 0.310 -0.300 0.130 1.950 0.380 0.210 2.640

50 0.500 -1.500 0.300 -0.280 0.130 1.970 0.390 0.210 2.720

100 0.504 -1.501 0.298 -0.286 0.132 1.963 0.388 0.209 2.706

250 0.508 -1.499 0.299 -0.269 0.131 1.959 0.394 0.213 2.743

There were 4676 children aged 6 to 59 months dis-
tributed across 850 enumeration areas (EA) which we
regarded as communities. The overall prevalence of ane-
mia was 63.1% (95% CI: 61.7, 64.5), with an average
prevalence of childhood anemia of 62.2%, with a range
of 0.0% to 100% and mode of 100%. The median anemia
prevalence across the communities was 66.7%. The aver-
age number of children per community was 5.5, with a
range of 1 to 15 and mode of 6. The median number of
children per community was 5.
There are several factors that have been found to

be associated with childhood anemia. These include
individual-level factors: age, gender of a child, mother’s
age, birth rank, wealth index, mother’s education level,
father’s education level, household size, household hunger
status, sanitation services, water and electricity supply,
and community-level factors: community geographic type
and community development index [21–25]. For our
application, we used mother’s education, mother’s age,
child gender, household wealth quantile, and commu-
nity geographic type (urban/rural). For the unadjusted
model, the estimate of the between-community variance
was 0.497, translating to an ICC of 0.131 and an MOR of
1.954. Adjusting for the child-level and the community-
level covariates had the following odds ratios on child
anemia: being female (OR= 0.92, 95% CI: 0.80, 1.04), being
in a household with medium (OR= 0.71, 95% CI: 0.59,
0.84) and rich (OR= 0.78, 95% CI: 0.66, 0.93) wealth, hav-
ing mothers with primary (OR= 0.69, 95% CI: 0.56, 0.86)
and post-secondary (OR= 0.64, 95% CI: 0.49, 0.82) educa-
tion, and residing in a rural community (OR= 1.21, 95%
CI: 0.97, 1.52). For the covariate-adjusted model, the esti-
mate of the between-community variance was 0.455. This
translates to estimated values of ICC andMOR to be 0.122
and 1.898, respectively. The estimate of the ICC show
that the unexplained heterogeneity between communities

(i.e. low homogeneity in childhood anemia in a commu-
nity) was low. While that of the MOR shows a high level
of unexplained community heterogeneity (MOR »1). The
estimates of the SOI was 0.567 (translated as 56.7%) and
of the IOR-80 was (0.345, 3.978), implying that the unex-
plained heterogeneity between communities was more
significant in explaining a child’s propensity to be anemic
than the effect of the community geographic type (rural vs
urban).

Discussion
Multilevel logistic regression models, which recognize
the fact that level-1 units (individuals) are nested within
higher-level units (clusters) when estimating the effect
of covariates at different levels on individual binary out-
comes, are widely implemented in most standard statis-
tical software packages. They measure and evaluate the
relative variation in the outcome measures, between indi-
viduals within and between clusters. However, measuring
residual cluster-level variation and covariate effect hetero-
geneity or homogeneity (clustering) of binary outcomes
within high-level clusters is more challenging in multi-
level logistic regression than for linear mixed models. We
set out to compare the performance of four measures of
clustering in a two-level nested logistic regression model
through a simulation study. The four measures were ICC,
MOR, SOI and IOR-80. We applied the four measures to
an analysis of childhood anemia in Malawi using a two-
level logistic regression model, where the level-2 units
were communities.
The accuracy of the estimated coefficients for the two-

level logistic regression model improved for 100 to 500
clusters with cluster sizes of 50 to 250 for all cluster
variances. These findings are similar to results from pre-
vious studies [26, 27], which showed that as the number
of clusters and cluster sizes increased, the accuracy of
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Table 5 Estimated values of fixed effects and measures of heterogeneity for the two-level logistic regression, under random effects
variance values 1.0 and 1.5

Clusters Cluster β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size lower upper

σ 2
u = 1.0 True values: 0.500 -1.500 0.300 -0.300 0.2331 2.596 0.4160 0.1209 4.538

10 5 0.562 -1.508 0.291 -0.290 0.259 2.800 0.424 0.109 5.408

20 0.620 -1.501 0.312 -0.502 0.231 2.581 0.361 0.100 3.683

50 0.542 -1.459 0.300 -0.276 0.230 2.575 0.421 0.128 4.624

100 0.594 -1.517 0.320 -0.467 0.243 2.669 0.376 0.099 4.059

250 0.502 -1.509 0.308 -0.396 0.231 2.580 0.389 0.112 4.114

50 5 0.477 -1.509 0.299 -0.315 0.213 2.461 0.407 0.133 4.060

20 0.537 -1.491 0.297 -0.368 0.221 2.515 0.394 0.120 4.007

50 0.475 -1.506 0.301 -0.306 0.229 2.565 0.413 0.123 4.421

100 0.503 -1.494 0.300 -0.287 0.230 2.572 0.419 0.125 4.539

250 0.495 -1.494 0.295 -0.324 0.228 2.558 0.408 0.122 4.310

100 5 0.522 -1.504 0.324 -0.268 0.222 2.519 0.423 0.133 4.430

20 0.521 -1.494 0.300 -0.295 0.229 2.568 0.417 0.124 4.469

50 0.513 -1.494 0.299 -0.332 0.232 2.588 0.407 0.118 4.370

100 0.501 -1.505 0.307 -0.331 0.236 2.616 0.408 0.116 4.474

250 0.496 -1.491 0.297 -0.318 0.232 2.586 0.411 0.120 4.434

300 5 0.514 -1.476 0.312 -0.338 0.211 2.445 0.399 0.131 3.911

20 0.509 -1.505 0.294 -0.297 0.231 2.581 0.416 0.123 4.503

50 0.496 -1.498 0.292 -0.290 0.234 2.602 0.419 0.122 4.607

100 0.479 -1.504 0.303 -0.274 0.235 2.608 0.424 0.123 4.706

250 0.491 -1.503 0.301 -0.287 0.234 2.618 0.417 0.123 4.607

500 5 0.494 -1.467 0.304 -0.283 0.209 2.433 0.415 0.140 4.080

20 0.493 -1.506 0.304 -0.275 0.228 2.563 0.422 0.127 4.542

50 0.497 -1.501 0.302 -0.293 0.233 2.595 0.418 0.122 4.565

100 0.506 -1.494 0.306 -0.287 0.230 2.574 0.419 0.125 4.524

250 0.489 -1.504 0.301 -0.285 0.235 2.607 0.420 0.122 4.643

σ 2
u = 1.5 True values: 0.500 -1.500 0.300 -0.300 0.3131 3.216 0.4312 0.0805 6.819

10 5 0.437 -1.521 0.335 -0.224 0.307 3.166 0.448 0.092 7.213

20 0.505 -1.484 0.272 -0.440 0.326 3.331 0.403 0.066 6.360

50 0.498 -1.530 0.294 -0.129 0.314 3.229 0.471 0.097 6.248

100 0.502 -1.486 0.302 -0.314 0.304 3.143 0.427 0.083 6.459

250 0.435 -1.516 0.304 -0.166 0.315 3.245 0.464 0.096 6.809

50 5 0.507 -1.487 0.307 -0.325 0.273 2.885 0.418 0.097 5.438

20 0.538 -1.515 0.300 -0.350 0.324 3.314 0.422 0.073 6.864

50 0.526 -1.503 0.307 -0.235 0.305 3.147 0.445 0.090 6.996

100 0.556 -1.503 0.307 -0.369 0.321 3.285 0.418 0.073 6.675

250 0.416 -1.495 0.298 -0.260 0.304 3.139 0.439 0.088 6.807

100 5 0.488 -1.455 0.284 -0.268 0.286 2.989 0.434 0.096 6.150

20 0.460 -1.491 0.305 -0.253 0.311 3.198 0.442 0.086 7.066

50 0.527 -1.511 0.308 -0.352 0.318 3.258 0.420 0.075 6.641

100 0.432 -1.499 0.306 -0.231 0.311 3.200 0.447 0.087 7.258

250 0.510 -1.498 0.296 -0.235 0.311 3.197 0.446 0.087 7.201
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Table 5 Estimated values of fixed effects and measures of heterogeneity for the two-level logistic regression, under random effects
variance values 1.0 and 1.5 (Continued)

Clusters Cluster β0 β1 β2 α ICC MOR SOI IOR-80 IOR-80

Size lower upper

σ 2
u = 1.0 True values: 0.500 -1.500 0.300 -0.300 0.2331 2.596 0.4160 0.1209 4.538

300 5 0.479 -1.503 0.312 -0.266 0.298 3.085 0.437 0.091 6.528

20 0.479 -1.501 0.306 -0.275 0.314 3.223 0.437 0.082 7.033

50 0.518 -1.495 0.297 -0.312 0.312 3.206 0.428 0.080 6.698

100 0.487 -1.503 0.299 -0.314 0.312 3.208 0.428 0.080 6.696

250 0.491 -1.503 0.301 -0.287 0.300 3.101 0.432 0.088 6.459

500 5 0.507 -1.495 0.301 -0.309 0.292 3.042 0.426 0.089 6.079

20 0.499 -1.505 0.300 -0.328 0.309 3.178 0.424 0.080 6.484

50 0.516 -1.500 0.298 -0.299 0.312 3.202 0.431 0.081 6.779

100 0.529 -1.501 0.301 -0.328 0.313 3.216 0.425 0.078 6.631

250 0.510 -1.497 0.228 -0.228 0.310 3.192 0.447 0.088 7.225

the regression coefficients had a negligible bias. The esti-
mates of ICC were more accurate than MOR, SOI and
IOR-80 when the cluster number was small (at least 10)
and when the cluster size was small (at least 20), and the
bias for the ICC was negligible when the number of clus-
ters and the cluster sizes increased. This is similar to a
study by Moineddin et al. [26] which found that increas-
ing the number of clusters and cluster sizes improved the
convergence rate for the ICC.
The estimates of the SOI were more accurate than the

estimates for the MOR and the IOR-80 for smaller num-
ber of clusters (at least 10) and a cluster size of at least 20
regardless of the cluster variance. However, the estimates
of all the measures were more accurate when the num-
ber of clusters increased (from 100 to 500) regardless of
cluster size and cluster variance. The estimates for MOR
and IOR-80 performed better for large clusters (at least
300) and large cluster size (at least 20) at larger cluster
variance (1.0 and 1.5). Overall the ICC and SOI estimates
were better than the estimates of theMOR and the IOR-80
and the estimation of the heterogeneity between clusters
using ICC and SOI was more accurate. However, the ICCs
usefulness is limited as it does not account for covari-
ates at the cluster level. Hence, the SOI would be the best
statistic to measure the strength of clustering as compared
to the ICC, MOR and IOR-80, especially when between
cluster-level covariate heterogeneity is also of interest.
In the application to childhood anemia in Malawi,

accounting for the purported risk factors, the estimated
values of the ICC, andMORwere 0.122 and 1.898, respec-
tively, which were indicative of low similarity between
the status of anemia in children within a community,
and high variability in unexplained heterogeneity between
the communities. The estimates of SOI and IOR-80 were
56.7% and (0.345, 3.978), respectively, which showed that

unexplained heterogeneity between communities was of
great significance in the understanding of anemia in
the children than the child and community-level predic-
tors, namely mother’s education, mother’s age, child sex,
community geographic type and household wealth quan-
tile, used in the model, and community-level geographic
type (rural/urban). [10]. Mother’s age, wealth quintile
and mother’s education were significantly associated with
childhood anemia, similar to findings from previous stud-
ies [21, 23, 24]. However, the effect of community geo-
graphic type on childhood anemia was not significant.
With 850 communities, an average of 5 children per com-
munity and the simulation study, we recommend using
the ICC and SOI to measure the strength of heterogene-
ity between the communities. However, since the ICC
does not take into account the community-level covari-
ate (community geographic type), we recommend using
the SOI to measure the strength of variation between
communities for this application.

Conclusion
In conclusion, measures of the between-cluster hetero-
geneity and effects of cluster-level covariates in multi-
level logistic regression models would be estimated with
negligible bias when the data has at least 300 clus-
ters with a cluster size of at least 50. The estimation
of the intra-class correlation coefficient and the sort-
ing out index are accurate with 10 clusters and a clus-
ter size of 20. We recommend using the sorting out
index to assess unexplained heterogeneity between clus-
ters as well as the effect of cluster-level covariates. The
usual intra-cluster correlation coefficient would suffice
when only quantification of the between-cluster varia-
tion is the purpose of the multilevel logistic regression
analysis.
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