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Abstract

Background: Chest pain is among the most common presenting complaints in the emergency department (ED).
Swift and accurate risk stratification of chest pain patients in the ED may improve patient outcomes and reduce
unnecessary costs. Traditional logistic regression with stepwise variable selection has been used to build risk
prediction models for ED chest pain patients. In this study, we aimed to investigate if machine learning
dimensionality reduction methods can improve performance in deriving risk stratification models.

Methods: A retrospective analysis was conducted on the data of patients > 20 years old who presented to the ED
of Singapore General Hospital with chest pain between September 2010 and July 2015. Variables used included
demographics, medical history, laboratory findings, heart rate variability (HRV), and heart rate n-variability (HRnV)
parameters calculated from five to six-minute electrocardiograms (ECGs). The primary outcome was 30-day major
adverse cardiac events (MACE), which included death, acute myocardial infarction, and revascularization within 30
days of ED presentation. We used eight machine learning dimensionality reduction methods and logistic regression
to create different prediction models. We further excluded cardiac troponin from candidate variables and derived a
separate set of models to evaluate the performance of models without using laboratory tests. Receiver operating
characteristic (ROC) and calibration analysis was used to compare model performance.

Results: Seven hundred ninety-five patients were included in the analysis, of which 247 (31%) met the primary
outcome of 30-day MACE. Patients with MACE were older and more likely to be male. All eight dimensionality
reduction methods achieved comparable performance with the traditional stepwise variable selection; The
multidimensional scaling algorithm performed the best with an area under the curve of 0.901. All prediction
models generated in this study outperformed several existing clinical scores in ROC analysis.

Conclusions: Dimensionality reduction models showed marginal value in improving the prediction of 30-day MACE
for ED chest pain patients. Moreover, they are black box models, making them difficult to explain and interpret in
clinical practice.
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Background
Chest pain is among the most common chief complaints
presenting to the emergency department (ED) [1–3].
The assessment of chest pain patients poses a diagnostic
challenge in balancing risk and cost. Inadvertent dis-
charge of acute coronary syndrome (ACS) patients is as-
sociated with higher mortality rates while inappropriate
admission of patients with more benign conditions in-
creases health service costs [4, 5]. Hence, the challenge
lies in recognizing low-risk chest pain patients for safe
and early discharge from the ED. There has been in-
creasing focus on the development of risk stratification
scores. Initially, risk scores such as the Thrombolysis in
Myocardial Infarction (TIMI) score [6, 7] and the Global
Registry of Acute Coronary Events (GRACE) score [8]
were developed from post-ACS patients to estimate
short-term mortality and recurrence of myocardial in-
farction. The History, Electrocardiogram (ECG), Age,
Risk factors, and initial Troponin (HEART) score was
subsequently designed for ED chest pain patients [9],
which demonstrated superior performance in many
comparative studies on the identification of low-risk
chest pain patients [10–17]. Nonetheless, the HEART
score has its disadvantages. Many potential factors can
affect its diagnostic and prognostic accuracy, such as
variation in patient populations, provider determination
of low-risk heart score criteria, specific troponin reagent
used, all of which contribute to clinical heterogeneity
[18–21]. In addition, most risk scores still require vari-
ables that may not be available during the initial presen-
tation of the patient to the ED such as troponin. There
remains a need for a more efficient risk stratification
tool.
We had previously developed a heart rate variability

(HRV) prediction model using readily available variables
at the ED, in an attempt to reduce both diagnostic time
and subjective components [22]. HRV characterizes
beat-to-beat variation using time, frequency domain, and
nonlinear analysis [23] and has proven to be a good pre-
dictor of major adverse cardiac events (MACE) [22, 24,
25]. Most HRV-based scores were reported to be super-
ior to TIMI and GRACE scores while achieving compar-
able performance with HEART score [17, 24, 26, 27].
Recently, we established a new representation of beat-to-
beat variation in ECGs, the heart rate n-variability
(HRnV) [28]. HRnV utilizes variation in sampling RR-
intervals and overlapping RR-intervals to derive add-
itional parameters from a single strip of ECG reading.
As an extension to HRV, HRnV potentially supplements
additional information about adverse cardiac events
while reducing unwanted noise caused by abnormal
heartbeats. Moreover, HRV is a special case of HRnV
when n = 1. The HRnV prediction model, developed
from multivariable stepwise logistic regression,

outperformed the HEART, TIMI, and GRACE scores in
predicting 30-day MACE [28]. Nevertheless, multicolli-
nearity is a common problem in logistic regression
models where supposedly independent predictor vari-
ables are correlated. They tend to overestimate the vari-
ance of regression parameters and hinder the
determination of the exact effect of each parameter,
which could potentially result in inaccurate identification
of significant predictors [29, 30]. In the paper, 115
HRnV parameters were derived but only seven variables
were left in the final prediction model, and this implies
the possible elimination of relevant information [28].
Within the general medical literature, machine learning

dimensionality reduction methods are uncommon and
limited to a few specific areas, such as bioinformatics stud-
ies on genetics [31, 32] and diagnostic radiological im-
aging [33, 34]. Despite this, dimensionality reduction in
HRV has been investigated and shown to effectively com-
press multidimensional HRV data for the assessment of
cardiac autonomic neuropathy [35]. In this paper, we
attempted to investigate several machine learning dimen-
sionality reduction algorithms in building predictive
models, hypothesizing that these algorithms could be use-
ful in preserving useful information while improving pre-
diction performance. We aimed to compare the
performance of the dimensionality reduction models
against the traditional stepwise logistic regression model
[28] and conventional risk stratification tools such as the
HEART, TIMI, and GRACE scores, in the prediction of
30-day MACE in chest pain patients presenting to the ED.

Methods
Study design and clinical setting
A retrospective analysis was conducted on data collected
from patients > 20 years old who presented to Singapore
General Hospital ED with chest pain between September
2010 to July 2015. These patients were triaged using the
Patient Acuity Category Scale (PACS) and those with
PACS 1 or 2 were included in the study. Patients were
excluded if they were lost to the 30-day follow-up or if
they presented with ST-elevation myocardial infarction
(STEMI) or non-cardiac etiology chest pain such as
pneumothorax, pneumonia, and trauma as diagnosed by
the ED physician. Patients with ECG findings that pre-
cluded quality HRnV analysis such as artifacts, ectopic
beats, paced or non-sinus rhythm were also excluded.

Data collection
For each patient, HRV and HRnV parameters were cal-
culated using HRnV-Calc software suite [28, 36] from a
five to six-minute single-lead (lead II) ECG performed
via the X-series Monitor (ZOLL Medical, Corporation,
Chelmsford, MA). Table 1 shows the full list of HRV
and HRnV parameters used in this study. Besides, the
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first 12-lead ECGs taken during patients’ presentation to
the ED were interpreted by two independent clinical re-
viewers and any pathological ST changes, T wave inver-
sions, and Q-waves were noted. Patients’ demographics,
medical history, first set of vital signs, and troponin-T
values were obtained from the hospital’s electronic
health records (EHR). In this study, high-sensitivity
troponin-T was selected as the cardiac biomarker and an
abnormal value was defined as > 0.03 ng/mL.
The primary outcome measured was any MACE within

30 days, including acute myocardial infarction, emergent re-
vascularization procedures such as percutaneous coronary
intervention (PCI) or coronary artery bypass graft (CABG),
or death. The primary outcome was captured through a
retrospective review of patients’ EHR.

Machine learning dimensionality reduction
Dimensionality reduction in machine learning and data
mining [37] refers to the process of transforming high-
dimensional data into lower dimensions such that fewer
features are selected or extracted while preserving essen-
tial information of the original data. Two types of di-
mensionality reduction approaches are available, namely
variable selection and feature extraction. Variable selec-
tion methods generally reduce data dimensionality by
choosing a subset of variables, while feature extraction
methods transform the original feature space into lower-
dimensional space through linear or nonlinear feature
projection. In clinical predictive modeling, variable selec-
tion techniques such as stepwise logistic regression are
popular for constructing prediction models [38]. In con-
trast, feature extraction approaches [39] are less

Table 1 List of traditional heart rate variability (HRV) and novel heart rate n-variability (HRnV) parameters used in this study. HRnV is
a new representation of beat-to-beat variation in ECGs and parameter “n” controls the formation of new RR-intervals that are used
for parameter calculation. Details of HRnV definition can be found in [28]

HRV HR2V HR2V1 HR3V HR3V1 HR3V2

Mean NN HR2V Mean NN HR2V1 Mean NN HR3V Mean NN HR3V1 Mean NN HR3V2 Mean NN

SDNN HR2V SDNN HR2V1 SDNN HR3V SDNN HR3V1 SDNN HR3V2 SDNN

RMSSD HR2V RMSSD HR2V1 RMSSD HR3V RMSSD HR3V1 RMSSD HR3V2 RMSSD

Skewness HR2V Skewness HR2V1 Skewness HR3V Skewness HR3V1 Skewness HR3V2 Skewness

Kurtosis HR2V Kurtosis HR2V1 Kurtosis HR3V Kurtosis HR3V1 Kurtosis HR3V2 Kurtosis

Triangular index HR2V Triangular index HR2V1 Triangular index HR3V Triangular index HR3V1 Triangular index HR3V2 Triangular index

NN50 HR2V NN50 HR2V1 NN50 HR3V NN50 HR3V1 NN50 HR3V2 NN50

pNN50 HR2V pNN50 HR2V1 pNN50 HR3V pNN50 HR3V1 pNN50 HR3V2 pNN50

– HR2V NN50n HR2V1 NN50n HR3V NN50n HR3V1 NN50n HR3V2 NN50n

– HR2V pNN50n HR2V1 pNN50n HR3V pNN50n HR3V1 pNN50n HR3V2 pNN50n

Total powera HR2V Total power HR2V1 Total power HR3V Total power HR3V1 Total power HR3V2 Total power

VLF power HR2V VLF power HR2V1 VLF power HR3V VLF power HR3V1 VLF power HR3V2 VLF power

LF power HR2V LF power HR2V1 LF power HR3V LF power HR3V1 LF power HR3V2 LF power

HF power HR2V HF power HR2V1 HF power HR3V HF power HR3V1 HF power HR3V2 HF power

LF power norm HR2V LF power norm HR2V1 LF power norm HR3V LF power norm HR3V1 LF power norm HR3V2 LF power norm

HF power norm HR2V HF power norm HR2V1 HF power norm HR3V HF power norm HR3V1 HF power norm HR3V2 HF power norm

LF/HF HR2V LF/HF HR2V1 LF/HF HR3V LF/HF HR3V1 LF/HF HR3V2 LF/HF

Poincaré SD1 HR2V Poincaré SD1 HR2V1 Poincaré SD1 HR3V Poincaré SD1 HR3V1 Poincaré SD1 HR3V2 Poincaré SD1

Poincaré SD2 HR2V Poincaré SD2 HR2V1 Poincaré SD2 HR3V Poincaré SD2 HR3V1 Poincaré SD2 HR3V2 Poincaré SD2

Poincaré SD1/SD2
ratio

HR2V Poincaré SD1/
SD2

HR2V1 Poincaré SD1/
SD2

HR3V Poincaré SD1/
SD2

HR3V1 Poincaré SD1/
SD2

HR3V2 Poincaré SD1/
SD2

SampEn HR2V SampEn HR2V1 SampEn HR3V SampEn HR3V1 SampEn HR3V2 SampEn

ApEn HR2V ApEn HR2V1 ApEn HR3V ApEn HR3V1 ApEn HR3V2 ApEn

DFA, α1 HR2V DFA, α1 HR2V1 DFA, α1 HR3V DFA, α1 HR3V1 DFA, α1 HR3V2 DFA, α1

DFA, α2 HR2V DFA, α2 HR2V1 DFA, α2 HR3V DFA, α2 HR3V1 DFA, α2 HR3V2 DFA, α2

Mean NN average of R-R intervals, SDNN standard deviation of R-R intervals, RMSSD square root of the mean squared differences between R-R intervals, NN50 the
number of times that the absolute difference between 2 successive R-R intervals exceeds 50 ms pNN50, NN50 divided by the total number of R-R intervals, NN50n
the number of times that the absolute difference between 2 successive RRnI/RRnIm sequences exceeds 50 × n ms, pNN50n NN50n divided by the total number of
RRnI/RRnIm sequences, VLF very low frequency, LF low frequency, HF high frequency, SD standard deviation, SampEn sample entropy, ApEn approximate entropy,
DFA detrended fluctuation analysis
aIn frequency domain analysis, the power of spectral components is the area below the relevant frequencies presented in absolute units (square milliseconds)
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commonly used in medical research, although they have
been widely used in computational biology [40], image
analysis [41, 42], physiological signal analysis [43],
among others. In this study, we investigated the imple-
mentation of eight feature extraction algorithms and
evaluated their contributions to prediction performance
in risk stratification of ED chest pain patients. We also
compared them with a prediction model that was built
using conventional stepwise variable selection [28].
Henceforth, we use the terms “dimensionality reduction”
and “feature extraction” interchangeably.
Given that there were n samples (xi, yi), i = 1, 2, …, n,

in the dataset (X, y), where each sample xi had original D
features and its label yi = 1 or 0, with 1 indicating a posi-
tive primary outcome, i.e., MACE within 30 days. We
applied dimensionality reduction algorithms to project xi
into a d-dimensional space (d <D). As a result, the ori-
ginal dataset X ∈ℝn ×D became X̂∈ℝn�d . There was a
total of D = 174 candidate variables in this study. As sug-
gested in Liu et al. [28], some variables were less statisti-
cally significant in terms of contributions to the
prediction performance. Thus, we conducted univariable
analysis and preselected a subset of ~D variables if their p
< ~P. In this study, we determined ~P by running principal
component analysis (PCA) [44] and logistic regression
through 5-fold cross-validation; we plotted a curve to
visualize the choice of a threshold and its impact on pre-
dictive performance. PCA was used for demonstration
because of its simplicity and fast running speed. Other
than PCA, we also implemented seven dimensionality
reduction algorithms, including kernel PCA (KPCA) [45]
with polynomial kernel function, latent semantic analysis
(LSA) [46], Gaussian random projection (GRP) [47],
sparse random projection (SRP) [48], multidimensional
scaling (MDS) [49], Isomap [50], and locally linear

embedding (LLE) [51]. All these algorithms are unsuper-
vised learning methods, meaning the transformation of
feature space does not rely on sample labels y. Among
the eight methods, MDS, Isomap, and LLE are manifold
learning-based techniques for nonlinear dimensionality
reduction. Table 2 gives a brief introduction to these
eight methods.

Predictive and statistical analysis
In this study, we chose logistic regression as the classifi-
cation algorithm to predict the MACE outcome. As de-
scribed earlier, we determined the threshold ~P to
preselect a subset of ~D variables, ensuring the removal
of less significant variables as indicated by univariable

analysis, after which X ∈ℝn ×D became ~X∈ℝn� ~D . In
summary, the inputs to all dimensionality reduction al-
gorithms were in ~D -dimensional space. Subsequently,
conventional logistic regression was implemented to take
d-dimensional X̂ to predict y, where 5-fold cross-
validation was used.
We compared the models built with machine learning

dimensionality reduction with our previous stepwise
model [28], in which the following 16 variables were
used: age, diastolic blood pressure, pain score, ST-
elevation, ST-depression, Q wave, cardiac history (the
“History” component in the HEART score), troponin,
HRV NN50, HR2V skewness, HR2V SampEn, HR2V
ApEn, HR2V1 ApEn, HR3V RMSSD, HR3V skewness,
and HR3V2 HF power. As described in [28], we selected
candidate variables with p < 0.2 in univariable analysis
and subsequently conducted multivariable analysis using
backward stepwise logistic regression. In the current
study, we further built eight dimensionality reduction
models without using the cardiac troponin and com-
pared them with the stepwise model without the

Table 2 Summary of machine learning dimensionality reduction methods used in this study

Methods Descriptions

Principal component analysis
(PCA) [44]

PCA decomposes data into a set of successive orthogonal components that explain a maximum amount of the
variance

Kernel PCA (KPCA) [45] KPCA extends PCA by using kernel functions to achieve non-linear dimensionality reduction

Latent semantic analysis (LSA)
[46]

LSA is similar to PCA but differs in that the data matrix does not need to be centered

Gaussian random projection
(GRP) [47]

GRP projects the original input features onto a randomly generated matrix where components are drawn from a
Gaussian distribution

Sparse random projection
(SRP) [48]

SRP projects the original input features onto a sparse random matrix, which is an alternative to dense Gaussian
random projection matrix

Multidimensional scaling
(MDS) [49]

MDS is a technique used for analyzing similarity or dissimilarity data, seeking a low-dimensional representation of
the data in which the distances respect well the distances in the original high-dimensional space

Isomap [50] Isomap is a manifold learning algorithm, seeking a lower-dimensional embedding that maintains geodesic distances
between all points

Locally linear embedding (LLE)
[51]

LLE projects the original input features to a lower-dimensional space by preserving distances within local
neighborhoods
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troponin component. This analysis enabled us to check
the feasibility of avoiding the use of laboratory results
for quick risk stratification.
In evaluating the modeling performance, we per-

formed the receiver operating characteristic (ROC) curve
analysis and reported the corresponding area under the
curve (AUC), sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) mea-
sures. Moreover, we generated the calibration plots for
prediction models. In describing the data, we reported
continuous variables as the median and interquartile
range (IQR) and statistical significance using two-sample
t-test. We reported categorical variables as frequency
and percentage and statistical significance using chi-
square test. All analyses were conducted in Python ver-
sion 3.8.0 (Python Software Foundation, Delaware,
USA).

Results
We included 795 chest pain patients in this study, of which
247 (31%) patients had MACE within 30 days of presenta-
tion to the ED. Table 3 presents the baseline characteristics
of the patient cohort. Patients with MACE were older (me-
dian age 61 years vs. 59 years, p = 0.035) and more likely to
be male (76.1% vs. 64.6%, p = 0.002). History of diabetes,
current smoking status, and pathological ECG changes
such as ST elevation, ST depression, T wave inversion,
pathological Q waves, and QTc prolongation were signifi-
cantly more prevalent in patients with the primary out-
come. Troponin-T and creatine kinase-MB levels were also
significantly elevated in patients with the primary outcome.
There was no statistically significant difference in patient
ethnicity between MACE and non-MACE groups.
Figure 1a depicts the PCA-based predictive per-

formance versus the threshold ~P (for preselection of
variables) and Fig. 1b shows the number of prese-
lected variables versus threshold ~P . The predictive
performance peaked at ~P ¼ 0:02, where a total of 30
variables were preselected, including gender, diastolic
blood pressure, pain score, ST-elevation, ST-
depression, T-wave inversion, Q wave, cardiac history,
EKG, and risk factor components of the HEART
score, troponin, HRV RMSSD, HRV NN50, HRV
pNN50, HRV HF power, HRV Poincaré SD1, HR2V
RMSSD, HR2V NN50, HR2V pNN50, HR2V HF
power, HR2V Poincaré SD1, HR2V1 RMSSD, HR2V1

NN50, HR2V1 HF power, HR2V1 Poincaré SD1, HR3V1

RMSSD, HR3V1 HF power, HR3V1 Poincaré SD1, HR3V2

RMSSD, and HR3V2 Poincaré SD1. These were used as in-
puts to all dimensionality reduction algorithms whose out-
puts were linear or nonlinear combinations of these 30
variables.

Figure 2 shows the predictive performance (in terms
of AUC value) versus feature dimension (i.e., number of
“principal components”) for all eight dimensionality re-
duction algorithms. The AUC values of GRP, SRP, and
KPCA gradually increased with the increment of feature
dimension, while the AUC values of PCA, LSA, MDS,
Isomap, and LLE drastically jumped to more than 0.8
when feature dimension d ≥ 3 and plateaued in the
curves when d ≥ 15. The highest AUC values of PCA,
KPCA, LSA, GRP, SRP, MDS, Isomap, and LLE were
0.899, 0.896, 0.899, 0.896, 0.898, 0.901, 0.888, and 0.898,
achieved with feature dimensions of 15, 30, 15, 22, 20,
27, 23, and 30, respectively.
Figure 3 shows the ROC curves of the eight dimen-

sionality reduction algorithms, the stepwise logistic re-
gression [28], and three clinical scores. All eight
dimensionality reduction methods performed compar-
ably with the stepwise variable selection, and MDS
achieved the highest AUC of 0.901. Table 4 presents
ROC analysis results of all 12 methods/scores where
sensitivity, specificity, PPV, and NPV are reported with
95% confidence intervals (CIs), noting that the perform-
ance of the stepwise model in this paper was slightly dif-
ferent from that reported in [28] due to the choice of
cross-validation scheme, i.e., 5-fold (AUC of 0.887) ver-
sus leave-one-out (AUC of 0.888). Figure 4 presents the
calibration curves of predictions by all methods/scores.
The stepwise model and seven dimensionality reduction
models (PCA, KPCA, LSA, GRP, SRP, MDS, and Iso-
map) showed reasonable model calibrations, in which
their curves fluctuated along the diagonal line, meaning
these models only slightly overestimated or underesti-
mated the predicted probability of 30-day MACE. The
LLE model was unable to achieve good calibration. In
comparison, all three clinical scores (HEART, TIMI, and
GRACE) generally underpredicted the probability of 30-
day MACE.
Figure 5 shows the ROC curves of prediction models

without using cardiac troponin. At feature dimensions of
13, 21, 13, 29, 24, 17, 18, and 18, the highest AUC values
of PCA, KPCA, LSA, GRP, SRP, MDS, Isomap, and LLE
were 0.852, 0.852, 0.852, 0.852, 0.851, 0.852, 0.845, and
0.849, respectively. The stepwise model without troponin
yielded an AUC of 0.834 compared to 0.887 with tropo-
nin. All prediction models outperformed both the TIMI
and GRACE scores while achieving comparable results
with the HEART score.

Discussion
In this study, we showed that machine learning dimen-
sionality reduction yielded only marginal, non-significant
improvements compared to stepwise model in predicting
the risk of 30-day MACE among chest pain patients in
the ED. This corroborates with similar observations that
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Table 3 Baseline characteristics of patient cohorts

Total (n = 795) MACE (n = 247) Non-MACE (n = 548) p-value

Age, median (IQR) 60 (51–68) 61 (54–68) 59 (50–68) 0.035

Male gender, n (%) 542 (68.2) 188 (76.1) 354 (64.6) 0.002

Race, n (%) 0.623

Chinese 492 (61.9) 159 (64.4) 333 (60.8) 0.374

Indian 129 (16.2) 34 (13.8) 95 (17.3) 0.246

Malay 150 (18.9) 46 (18.6) 104 (19.0) 0.984

Other 24 (3.0) 8 (3.2) 16 (2.9) 0.984

Vital signs, median (IQR)

Temperature (°C) 36.4 (36.0–36.7) 36.3 (36.0–36.7) 36.4 (36.0–36.7) 0.793

Heart rate (beats/min) 76 (67–89) 80 (69–92.5) 75 (66–87) 0.03

Respiratory rate (breaths/min) 18 (17–18) 18 (17–18) 18 (17–18) 0.716

Systolic blood pressure (mmHg) 138 (123.0–159.0) 142 (123.5–165.5) 137 (122.0–156.2) 0.037

Diastolic blood pressure (mmHg) 76.0 (68.0–86.0) 78.0 (70.0–89.0) 75.0 (67.0–84.0) 0.001

SpO2 (%) 99.0 (97.0–100.0) 99.0 (97.0–100.0) 99.0 (97.0–100.0) 0.842

Pain score 2.0 (0.0–5.0) 2.0 (0.0–5.0) 2.0 (0.0–5.0) 0.008

Glasgow Coma Scale (GCS) score 15.0 (15.0–15.0) 15.0 (15.0–15.0) 15.0 (15.0–15.0) 0.121

Medical history, n (%)

Ischaemic heart disease 343 (43.1) 115 (46.6) 228 (41.6) 0.22

Diabetes 278 (35.0) 106 (42.9) 172 (31.4) 0.002

Hypertension 509 (64.0) 161 (65.2) 348 (63.5) 0.707

Hypercholesterolaemia 476 (59.9) 151 (61.1) 325 (59.3) 0.683

Stroke 58 (7.3) 15 (6.1) 43 (7.8) 0.458

Cancer 29 (3.6) 7 (2.8) 22 (4.0) 0.537

Respiratory disease 31 (3.9) 5 (2.0) 26 (4.7) 0.102

Chronic kidney disease 87 (10.9) 26 (10.5) 61 (11.1) 0.896

Congestive heart failure 38 (4.8) 9 (3.6) 29 (5.3) 0.407

History of PCI 199 (25.0) 68 (27.5) 131 (23.9) 0.316

History of CABG 71 (8.9) 26 (10.5) 45 (8.2) 0.355

History of AMI 133 (16.7) 48 (19.4) 85 (15.5) 0.205

Active smoker 197 (24.8) 73 (29.6) 124 (22.6) 0.045

ECG pathology, n (%)

ST elevation 65 (8.2) 48 (19.4) 17 (3.1) < 0.001

ST depression 92 (11.6) 69 (27.9) 23 (4.2) < 0.001

T wave inversion 209 (26.3) 86 (34.8) 123 (22.4) < 0.001

Pathological Q wave 86 (10.8) 51 (20.6) 35 (6.4) < 0.001

QTc prolongation 174 (21.9) 73 (29.6) 101 (18.4) 0.001

Left axis deviation 64 (8.1) 16 (6.5) 48 (8.8) 0.34

Right axis deviation 16 (2.0) 6 (2.4) 10 (1.8) 0.773

Left bundle branch block 8 (1.0) 3 (1.2) 5 (0.9) 0.991

Right bundle branch block 56 (7.0) 14 (5.7) 42 (7.7) 0.385

Interventricular conduction delay 30 (3.8) 13 (5.3) 17 (3.1) 0.201

Left atrial abnormality 12 (1.5) 4 (1.6) 8 (1.5) 0.886

Left ventricular hypertrophy 103 (13.0) 38 (15.4) 65 (11.9) 0.21

Right ventricular hypertrophy 6 (0.8) 1 (0.4) 5 (0.9) 0.747
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traditional statistical methods can perform comparably
to machine learning algorithms [52, 53]. Among the di-
mensionality reduction models integrated with cardiac
troponin, the MDS model had the highest discriminative
performance (AUC of 0.901, 95% CI 0.874–0.928) but
did not significantly outperformed the traditional step-
wise model (AUC of 0.887, 95% CI 0.859–0.916). Among
the models without using troponin, PCA, KPCA, LSA,
GRP, and MDS performed equally well, achieving an
AUC of 0.852, compared with the stepwise model with-
out troponin which had an AUC of 0.834. In general, the
traditional stepwise approach was proved to be compar-
able to machine learning dimensionality reduction

methods in risk prediction, while benefiting from model
simplicity, transparency, and interpretability that are de-
sired in real-world clinical practice.
High-dimensional data suffers from the curse of di-

mensionality, which refers to the exponentially increas-
ing sparsity of data and sample size required to estimate
a function to a given accuracy as dimensionality in-
creases [54]. Dimensionality reduction has successfully
mitigated the curse of dimensionality in the analysis of
high-dimensional data in various domains such as com-
putational biology and bioinformatics [31, 32]. However,
clinical predictive modeling typically considers relatively
few features, limiting the effects of the curse of

Table 3 Baseline characteristics of patient cohorts (Continued)

Total (n = 795) MACE (n = 247) Non-MACE (n = 548) p-value

Laboratory findings, median (IQR)

Troponin (ng/L) 0 (0–39.5) 40 (10–170) 0 (0–15.2) < 0.001

Creatine kinase-MB 2.4 (1.8–3.2) 2.7 (2.1–6.0) 2.4 (1.7–2.7) < 0.001

Clinical scores, median (IQR)

HEART 5.0 (4.0 to 7.0) 7.0 (6.0 to 8.0) 4.0 (3.0 to 6.0) < 0.001

TIMI 2.0 (1.0 to 4.0) 3.0 (2.0 to 4.0) 2.0 (1.0 to 3.0) < 0.001

GRACE 104.0 (83.5 to 128.0) 119.0 (97.0 to 139.0) 98.0 (78.0 to 125.0) < 0.001

IQR interquartile range, MACE major adverse cardiac events, PCI percutaneous coronary intervention, CABG coronary artery bypass graft, AMI acute myocardial
infarction, HEART History, ECG, Age, Risk factors and Troponin, TIMI Thrombolysis in Myocardial Infarction, GRACE Global Registry of Acute Coronary Events

Fig. 1 Variable preselection using p-value in univariable analysis for dimensionality reduction: a prediction area under the curve versus the p-
value, and (b) the number of preselected variables versus the p-value
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dimensionality. This may account for the relatively lim-
ited benefit of dimensionality reduction in our analysis.
Additionally, with comparable performance to the

traditional stepwise model, transparency and interpret-
ability of machine learning dimensionality reduction

models are constrained by complex algorithmic transfor-
mations of variables, leading to obstacles in the adoption
of such models in real-world clinical settings. In con-
trast, traditional biostatistical approaches like logistic re-
gression with stepwise variable selection deliver a simple

Fig. 2 Prediction performance based on the eight dimensionality reduction algorithms versus the number of feature dimensions after reduction

Fig. 3 ROC curves (based on the optimal number of dimensions) generated by the stepwise model, eight dimensionality reduction models, and
three clinical scores
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and transparent model, in which the absolute and rela-
tive importance of each variable can be easily interpreted
and explained from the odds ratio. Marginal perform-
ance improvements should be weighed against these lim-
itations in interpretability, which is an important
consideration in clinical predictive modeling.
Comparing the eight dimensionality reduction algo-

rithms, PCA and LSA use common linear algebra

techniques to learn to create principal components in a
compressed data space, while MDS, Isomap, and LLE
are nonlinear, manifold learning-based dimensionality
reduction methods. As observed from our results, com-
plex nonlinear algorithms did not show an obvious ad-
vantage over simple PCA and LSA methods in
enhancing the predictive performance. Yet, nonlinear al-
gorithms are more computationally complex and require

Table 4 Comparison of performance of the HRnV models (based on 5-fold cross-validation), HEART, TIMI, and GRACE scores in
predicting 30-day major adverse cardiac events (MACE). The cut-off values were defined as the points nearest to the upper-left
corner on the ROC curves

AUC (95% CI) Cut-off Sensitivity % (95% CI) Specificity % (95% CI) PPV % (95% CI) NPV % (95% CI)

Stepwise 0.887 (0.859–0.916) 0.3140 79.4 (74.3–84.4) 78.8 (75.4–82.3) 62.8 (57.5–68.2) 89.4 (86.7–92.2)

PCA 0.899 (0.872–0.926) 0.2881 85.4 (81.0–89.8) 78.5 (75.0–81.9) 64.1 (59.0–69.3) 92.3 (89.9–94.7)

KPCA 0.896 (0.869–0.923) 0.3489 81.8 (77.0–86.6) 82.1 (78.9–85.3) 67.3 (62.0–72.6) 90.9 (88.4–93.4)

LSA 0.899 (0.872–0.926) 0.2884 85.4 (81.0–89.8) 78.6 (75.2–82.1) 64.3 (59.1–69.5) 92.3 (89.9–94.7)

GRP 0.896 (0.868–0.923) 0.2965 85.0 (80.6–89.5) 78.5 (75.0–81.9) 64.0 (58.8–69.2) 92.1 (89.6–94.5)

SRP 0.898 (0.871–0.925) 0.2940 84.6 (80.1–89.1) 79.6 (76.2–82.9) 65.1 (59.9–70.3) 92.0 (89.5–94.4)

MDS 0.901 (0.874–0.928) 0.3095 83.4 (78.8–88.0) 81.6 (78.3–84.8) 67.1 (61.8–72.4) 91.6 (89.1–94.1)

Isomap 0.888 (0.860–0.917) 0.3468 78.5 (73.4–83.7) 82.7 (79.5–85.8) 67.1 (61.7–72.5) 89.5 (86.9–92.2)

LLE 0.898 (0.870–0.925) 0.3140 85.0 (80.6–89.5) 79.4 (76.0–82.8) 65.0 (59.8–70.2) 92.2 (89.7–94.6)

HEART 0.841 (0.808–0.874) 5 78.9 (73.9–84.0) 72.8 (69.1–76.5) 56.7 (51.4–61.9) 88.5 (85.5–91.4)

TIMI 0.681 (0.639–0.723) 2 63.6 (57.6–69.6) 58.4 (54.3–62.5) 40.8 (35.9–45.7) 78.0 (74.0–82.1)

GRACE 0.665 (0.623–0.707) 107 64.0 (58.0–70.0) 60.8 (56.7–64.9) 42.4 (37.3–47.4) 78.9 (75.0–82.8)

AUC area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value, HEART History, ECG, Age, Risk factors and Troponin,
TIMI Thrombolysis in Myocardial Infarction, GRACE Global Registry of Acute Coronary Events

Fig. 4 Calibration curves (based on the optimal number of dimensions) generated by the stepwise model, eight dimensionality reduction
models, and three clinical scores
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more computing memory. For example, KPCA and Iso-
map have computational complexity of O(n3) and mem-
ory complexity of O(n2), while PCA has computational

complexity of Oð~D3Þ and memory complexity of Oð~D2Þ
[39]. In applications of clinical predictive modeling, n —

the number of patients — is usually larger than ~D —

the number of variables; in our study, n is 795 and ~D is
29 or 30, depending on the inclusion of troponin. This
suggests that linear algorithms may be preferred due to
reduced computational complexity and memory while
retaining comparable performance. Another observation
in this study was that the impact of preselection (as
shown in Fig. 1) on predictive performance was more
substantial than that of dimensionality reduction, indi-
cating the importance of choosing statistically significant
candidate variables.
Our study also reiterates the value of HRnV-based

prediction models for chest pain risk stratification.
Among chest pain risk stratification tools in the ED,
clinical scores like HEART, TIMI, and GRACE are cur-
rently the most widely adopted and validated [55, 56].
However, a common barrier to quick risk prediction
using these traditional clinical scores is the requirement
of cardiac troponin, which can take hours to obtain. To

address these difficulties, machine learning-based pre-
dictive models that integrate HRV measures and clinical
parameters have been proposed [17, 22, 25, 26], includ-
ing our development of HRnV, a novel alternative meas-
ure to HRV that has shown promising results in
predicting 30-day MACE [28], which was the stepwise
model in this paper. Both the dimensionality reduction-
based predictive models and the stepwise model with
troponin presented superior performance than HEART,
TIMI, and GRACE scores. When troponin was not used,
several dimensionality reduction-based models such as
PCA, KPCA, and MDS still yielded marginally better
performance than the original HEART score, while
benefiting from generating the predictive scores in
merely 5 to 6 min.
Additionally, Table 4 shows that all HRnV-based pre-

dictive models had higher specificities than the HEART
score while all HRnV-based models except Isomap also
improved on the already high sensitivity of the HEART
score [21, 57]. The specificities of KPCA, Isomap, and
MDS were significantly higher by an absolute value of al-
most 10%. Substantial improvements to the specificity of
MACE predictive models may reduce unnecessary ad-
mission and thus minimize costs and resource usage [5].
This is particularly relevant in low-resource settings, for

Fig. 5 ROC curves (based on the optimal number of dimensions) generated by the stepwise model, eight dimensionality reduction models, and
three clinical scores, where the prediction models were built without using cardiac troponin.s
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example, the overburdened EDs in the current corona-
virus disease 2019 (COVID-19) pandemic, where novel
methods in resource allocation and risk stratification
could alleviate the strain on healthcare resources [58].
There remains a need for further investigation into

methods that utilize information from the full set of
HRV and HRnV variables. From 174 variables in the ini-
tial data set, dimensionality reduction performed the
best with a preselection of 30 variables, of which 19 were
HRV and HRnV parameters. That is, the majority of the
newly constructed HRnV parameters were removed
based on the strict significance threshold of p < 0.02 on
univariable analysis. Therefore, novel HRnV measures
were not fully used in prediction models of 30-day
MACE, leaving room for further investigation of alterna-
tive ways of using them. Moving forward, it may be valu-
able to develop and evaluate deep learning frameworks
[59] to synthesize novel low-dimensional representations
of multidimensional information. Alternatively, building
point-based, interpretable risk scores [60] can also be
beneficial to implementation and adoption in real-world
clinical settings, since designing inherently interpretable
models is more favorable than explaining black box
models [61].
We acknowledge the following limitations of this

study. First, the clinical application (i.e., risk stratification
of ED chest pain patients) was only one example of clin-
ical predictive modeling, thus our conclusion on the ef-
fectiveness of machine learning dimensionality reduction
algorithms may not be generalizable to other applica-
tions, particularly those with a larger number of vari-
ables. Second, only eight dimensionality reduction
algorithms were investigated, while many other methods
are available. Third, given the small sample size, we were
unable to determine the threshold ~P and build predictive
models with a separate training set; this also limited the
stability check [62] for both logistic regression and ma-
chine learning models. Last, we did not build a workable
predictive model for risk stratification of ED chest pain
patients, although several models built in this study
showed promising results compared to existing clinical
scores. We aim to conduct further investigations.

Conclusions
In this study we found that machine learning dimension-
ality reduction models showed marginal value in im-
proving the prediction of 30-day MACE for ED chest
pain patients. Being black box models, they are further
constrained in clinical practice due to low interpretabil-
ity. Whereas traditional stepwise prediction model
showed simplicity and transparency, making it feasible
for clinical use. To fully utilize the available information
in building high-performing predictive models, we

suggest additional investigations such as exploring deep
representations of the input variables and creating inter-
pretable machine learning models to facilitate real-world
clinical implementation.
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