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Abstract

Background: Precise predictions of incidence and mortality rates due to breast cancer (BC) are required for
planning of public health programs as well as for clinical services. A number of approaches has been established
for prediction of mortality using stochastic models. The performance of these models intensely depends on
different patterns shown by mortality data in different countries.

Methods: The BC mortality data is retrieved from the Global burden of disease (GBD) study 2017 database. This
study include BC mortality rates from 1990 to 2017, with ages 20 to 80+ years old women, for different Asian
countries. Our study extend the current literature on Asian BC mortality data, on both the number of considered
stochastic mortality models and their rigorous evaluation using multivariate Diebold-Marino test and by range of
graphical analysis for multiple countries.

Results: Study findings reveal that stochastic smoothed mortality models based on functional data analysis
generally outperform on quadratic structure of BC mortality rates than the other lee-carter models, both in term of
goodness of fit and on forecast accuracy. Besides, smoothed lee carter (SLC) model outperform the functional
demographic model (FDM) in case of symmetric structure of BC mortality rates, and provides almost comparable
results to FDM in within and outside data forecast accuracy for heterogeneous set of BC mortality rates.

Conclusion: Considering the SLC model in comparison to the other can be obliging to forecast BC mortality and
life expectancy at birth, since it provides even better results in some cases. In the current situation, we can assume
that there is no single model, which can truly outperform all the others on every population. Therefore, we also
suggest generating BC mortality forecasts using multiple models rather than relying upon any single model.
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Background
The modeling and projections of future cancer related in-
cidence and mortality rates are essential for development
of public health programs and clinical amenities [1].
Breast cancer (BC) ranked among the top global burden
of diseases, and it threaten the health all over the world.

Among Asian women, the BC is consider the second lead-
ing cause of cancer related morbidity and mortality.
According to previous studies, the BC among Asian
women constitute approximately 40% of all BC diagnosed
worldwide [2–4]. Asia has much higher mortality to inci-
dence ratio of BC than western countries [2, 3]. A study
conducted on BC differences in Asian regions, reported
that BC increasing among Asian women. Cause of this in-
creasing rate are associated with higher prevalence of BC
risk factors like, delayed childbirth, increased obesity [5].
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Other risk factors that may contribute to increase mortal-
ity risk due to BC are include aging process, high body
mass index, alcohol consumption and low physical activity
[2–4, 6, 7]. Though, a number of cumulative exposures
contribute to raise the BC mortality rates, therefore it is
expected that these rates follow a smooth curvilinear pat-
tern and future mortality rates are predictable based on
these pattern. The rapid change pattern of BC rates over
the historical time is remain a challenge for its prediction.
The Asian countries selected in this study are suffering
from increase BC burden and also having similar circum-
stances related to over population, poverty, socio-cultural
background, and insufficient access to diagnosis, advanced
screening and proper treatment [4]. Moreover, due to lack
of proper statistical registries system in the developing
countries, statisticians always encounter the problem of
insufficient and unsatisfying Asian demographic and dis-
ease registration data sets. This data deficiency raise the
problems when it used in stochastic mortality models.
Solving those problems bring lots of research passion in
this field. In light of limited data access combined with
poor quality, less technically refined methods are available
for Asian countries compared with developed countries.
One of the methods which could be applied on Asian data
is the stochastic population approach. This approach has
been used in various studies to generate the future mortal-
ity forecasts for different western countries [8].
Till now, variety of forecasting techniques for predic-

tion of mortality trends have been tested and proposed
consistently [9, 10]. In this regard, the work of Lee and
Carter [11] is incontrovertible contribution in literature
of mortality forecasting. Their contributions based on
generalization of different stochastic mortality models
and its extended versions. The basic Lee-Carter (LC)
model uses age and time parameter to estimate the fu-
ture mortality trends by using principal component ap-
proach. This initial model now considered a milestone
in the stochastic modeling and forecasting of trends in
mortality data. After this, various extensions and modifi-
cations were proposed. These extensions vary in number
of fundamental features, for example, smoothness as-
sumption, causes of randomness, different estimation
methods and addition of cohort effects. Now these
methodologies has become widely used to attain a
broader interpretation and to capture the main struc-
tures of vigorous of mortality intensity [12–17]. How-
ever, in context of different stochastic mortality models
comparisons, many studies confirm that there is no
single model among them which clearly dominates
the others according to measured evaluation stan-
dards [18–20]. Lee and Tuljapurkar [8] proposed a
new method in case of few observations at uneven
intervals, and they applied it to China and South
Korea data. Hyndman and Ullah [15] developed a

more general method by treating the underlying
demographic process as functional data, employing
the functional principal components to extract more
than one explaining components and providing robust
estimation and forecast. Previously, functional demo-
graphic models on breast cancer mortality data has
been used to estimate the future trends in breast cancer
mortality for United State and England-Wales [21].
This study apply the three stochastic mortality

models belong to family of generalized LC with
smoothing p-splines approach to four Asian countries’
data sets, evaluate the performance of these three
methods, compare the similarities of different Asian
regions and accordingly propose potential improve-
ments. The models that apply in current study named
as smoothedleecarter (SLC) model, Functional demo-
graphic model (FDM) and Booth-Maindonald-Smith
(BMS) model. Though, the prediction of mortality for
future by different stochastic methods have been ex-
tensively reviewed elsewhere [22, 23]. This paper
covers in-sample and out-sample evaluation of differ-
ent stochastic smoothed mortality methods by apply-
ing them to BC mortality of four Asian countries.
Reference to current study data sets, the parameter

estimation of LC models is based on least square
method using singular value decomposition (SVD) al-
gorithm of the matrix of the log age-specific observed
BC death rates. The BC mortality data in form of
death counts and exposures to risk have to fill a rect-
angular matrix. Hereafter, it will be denoted as Mx, t

that is observed BC mortality rates at age x during
calendar year t. it is achieved by the ratio between
the number of deaths at age x during year t, (Dx, t),
from an exposure to risk, that is, the number of per-
son years from which Dx, t happened (Ex, t). As
regards the Asian women population data set on the
basis of the BC mortality rates from 20 to 80+ year
of age, presented by countries and individual year, it
shows curvilinear mortality behavior and suggest the
smoothing is suitable for this data (see Fig. 1). We
can see the random variations in the data, especially
for ages below 50, where the reductions in the BC
mortality rates are solid. Besides, we can also observe
the BC mortality irregularities for older ages. There-
fore, the model estimation on four Asian countries’
data set follow the smoothing technique for model
fitting to control the random variations in the data,
otherwise we could not get the resulting BC mortality
rates much reliable.
The aim of current study based in achieving the

following specific objectives: (a) To estimate the BC
mortality trends by using three stochastic mortality
models with smoothing P-splines approach for four
Asian countries’ data sets. (b) To evaluate both the
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goodness of fit and predictive ability (In-sample and
Out-sample) of the three models using advance quanti-
tative forecast accuracy test as well as by range of graph-
ical display on each Asian country’s data set. To the best
of our knowledge, this is the first study to extend the
current literature on Asian mortality data due to breast
cancer, on both the number of considered stochastic
mortality models and their rigorous evaluation using
multivariate Diebold-Marino test and by range of graph-
ical analysis for multiple countries under consideration.
Our research to some extent validates the existing re-
sults but also presents a more comprehensive view. The
rest of the current study is organized in the following
sections. The methodology is addressed in section 2 and
results of empirical analysis is presented in section 3.
Discussion and conclusion is merged in Section 4.

Methods
In this section, analysis methods of BC mortality model-
ing is discussed. P-splines approach for Smoothing BC
mortality rates were employed first. Then, three stochas-
tic mortality models were fitted to the smoothed BC
mortality data. Goodness of fits tests included graphical
displays and multivariate Diebold–Mariano (DM) test
was used to evaluate the model performance.

Smoothing data using P-splines approach
The violation of homogeneity assumption due to pres-
ence of outliers in mortality data may often under or
overestimate the actual mortality estimates. Particularly,
the mortality rates in older ages have high variability

because of small number of cases in the population. This
high variability can create the problems in estimation of
mortality rates for older ages. Therefore, use of smooth-
ing techniques for such a data can avoid this deficiency
of facts. Otherwise, the heavy difference at older ages in-
fluences the fitting of mortality models and can over or
under fit the model [24]. To overcome this situation
various studies suggested the Penalized splines which
also known P-splines is now widely used method of
smoothing in stochastic mortality models and general-
ized linear models [9, 25–27]. Concerning to its applica-
tion, the following main features of the methodology is
adopted: Firstly, the B-splines used as the basis for the
regression modeling; secondly, the regression coefficients
with different penalties is used for modifying the log-
likelihood. In line with the previous literature, the inten-
sity of mortality is decomposed as follow: [26, 28].

ln μx tð Þ ¼
X

i; j

Θi; jBi; j x; tð Þ ð1Þ

The two-dimensional B-splines Bi, j for specific age
and calendar year x and t respectively with regularly
spaced knots is used. The parameters Θi, j ’s, to be esti-
mated based on the data set. As suggested by a study,
the penalty can be used based on finite differences of the
coefficients of the adjacent B-spline to limit the influ-
ence of the knots on the fitted value and this approach
is called P-spline [25]. The calculation of penalties for
both dimensions age x and calendar year t, depend on
sums of following components (Θi, j − 2Θi − 1, j +Θi − 2,

Fig. 1 Females breast cancer death rates (per, 100,000) among four countries, 1990–2017, Top horizontal panel = actual death rates, Bottom
panel = log death rates
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j)
2. The selection of weight coefficients to attach with

each penalty should depend on historical data. Accord-
ing to some studies, the P-splines are less apparent to
the actuaries, particularly due to the selection of penalty
parallels to the assessment of the future pattern of mor-
tality. In order to smooth the mortality data, a study has
reported the limits of using a penalized spline. As the
penalty depends on the parameterization, so smoothed
value is vary with respect to its choice [10]. Its solution
is suggested in a study, to consider a direct smoothing
and interchange the penalized differences in the contigu-
ous coefficient with the penalized differences in the con-
tiguous fitted values [28]. Recommended by a study, it is
better to smoothing the data initial, rather than smooth-
ing the fitted values. In this way, it become more con-
venient to impose the monotonic restriction on the
smoothing data more simply [15].

The Lee–Carter (LC) model
The Lee-Carter (LC) model is backbone of all method-
ologies that used for mortality projection and it is key
component of all actuarial literature related to mortality
forecasting. The LC method (Lee and Carter [11]) for
forecasting mortality rates uses principal components
analysis to decompose the age-time matrix of central
death or mortality rates into a linear combination of age
and time parameters. The parameter of time is used in
forecasting. LC has produced numerous variants and
extensions. The two main variants of LC are Lee Miller
(LM) and Booth-Maindonald-Smith (BMS) presented by
lee and miller [29], and Booth et al. [12] respectively.
These variants are collectively referred to as “LC
methods”. A major extension of this approach uses func-
tional data analysis. Which has presented in next sec-
tions. It further extended in various combinations of
options that study variation in different dimension like
age, period or cohort, and these are famous as “HU
methods. Detail description of methods and extensions
can be found elsewhere [23, 30].
With reference to the present study data set, the fol-

lowing Eq. (2) shows the LC model for BC mortality
data. The logarithm of the observed BC mortality rates
given for age x and year t is denoted as Mx, t.The sum of
an age-specific component αx represent the independent
of time parameter. Another component that is product
of a time-varying parameter kt, and an age-specific com-
ponent βx, reflecting the general level of BC mortality
and change of BC mortality at each age x with changes
in general level of BC mortality respectively.

ln Mx;t
� � ¼ αx þ βxkt þ εx;t ð2Þ

The error term is denoted as εx, t and it is assume that
it follow homoscedastic and normality assumption. In

order to find a least squares solution to the Eq. (2) the
SVD method is used because of unavailability of regres-
sors on right-hand side. To find the unique solution of
parameter of Eq. (2) the following set of constrains is
imposed on parameters of Eq. (2), firstly, the sum of the
age specific coefficients is equal to one i.e. ∑βx = 1 and
secondly, the sum of the time varying parameter is equal
to zero i.e. ∑kt = 0. In order to forecast BC mortality by
using the LC model, following two procedures were
adopted in current study. First procedure is to estimate
parameters αx, βx and kt using historical BC mortality
data. Second procedure is to estimated time-dependent
parameter kt. Model structure is based on a stochastic
process which is follow autoregressive integrated moving
average (ARIMA p, d, q) model scheme. It is commonly
known as the standard Box and Jenkins methodology
[31, 32]. Finally, the fitted ARIMA model was used to
extrapolate kt and to get a forecast of future BC mortal-
ity rates and then from these forecasts future life expect-
ancy was deriven to evaluate the model.

Booth-Maindonald-Smith (BMS) model
In LC model the age-specific component βx, which can

be defined in terms βð1Þx and βð2Þx are assumed to be con-

stant over time and time varying parameter kð2Þt is
assumed to be linear over time. Booth, Maindonald and
Smith [12] changed these assumption in their study. In
line with the prior literature, the BMS model was built
by extended the LC model. The extension of model
based on inclusion of more interaction terms between
age x and year t. Model fitting period was restricting by
improving the assumptions of homoscedastic and linear-
ity of βx and kt respectively. However, in LC model only
first terms of the SVD is used. While, BMS model can
used “n” terms that allow the model to include second
and higher order terms as well [22]. According to a
study, any systematic variation in the residuals from
fitting only the first term would be captured by the sec-
ond and higher order terms [12]. With reference to
current study data set, the BMS model can be presented
as:

ln Mx;t
� � ¼ α0x þ

Xn

i¼1
β ið Þ
x k ið Þ

t þ εx;t ð3Þ

Where Mx, t is the BC mortality rate for age x in
calendar year t. α0x is the intercept of the model
which represent the effect of age-specific parameter.

βðiÞx represent the “age interaction” parameter at age x.

While, kðiÞt is the “time interaction” parameter that
indicate the value in year t. The residual term εx, t

shows the value of error at age x and year t and
approximation rank is denoted by n.
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The purpose of inclusion of more interaction terms
in the BMS model is to improve the model fit on data
and to increase its capacity to explain more unex-
plained variations that could not account in LC model.
The BMS model applied by a study on Australian data
over the period 1907 to 1999. The study results
reported the higher forecasted life expectancies and
smaller forecast error by BMS model relative to the LC
model. Another study also claim the more accurate
forecasts and use of shorter fitting period by BMS
model than the LC model [33, 34].

Functional Demographic Model (FDM)
Hyndman and Ullah [15] presented the modified version
of the LC model, which is known as Functional Demo-
graphic Model (FDM). This methodology is based on
combination of functional data analysis and nonpara-
metric smoothing and robust statistics and it was pro-
posed to forecast the age-specific mortality rates.
Particularly, this approach allows for smooth functions
of age, resulting the robust to outliers and offers a mod-
eling framework convenient to fit to restrictions and
other evidence. The methodology background of FDM
based on generalization of LC method. In context of our
study data set, let yt(x) represent the log of the observed
BC mortality rates for specific age x and calendar year t
i.e. yt(x) = ln(Mx, t) and we assume that there are under-
lying L2 continuous and smooth functions {ft (x)} such
that

yt xið Þ ¼ f t xið Þ þ σ t xið Þεt;i ð4Þ

where, εt, i is error term which is assume to be inde-
pendent identically distributed (i.i.d) standard normal
variable, and quantity of noise that vary with age x
is denoted by σt(xi). The forecasting of log observed
BC mortality rates yt(x) founded through following
steps:

Step-1. First of all smoothed data set series was
generated for each time t using penalized regression
splines. The functions ft(x) for x∈ [x1, xp] from ℝ

2,
where ℝ

2 = {(xi, yt(xi)∣ (i, t)∈ℕp ×ℕn}. The
functions ft(x) for i = 1,2,...,p was estimated for each
time t i.e. t = 1,2, … n by applying a nonparametric
smoothing with constraint. It was assume that the
function ft(x) is monotonically increasing for x ≥ c
for some c (say 65 years), where c is reasonable
threshold for mortality data. The estimated curves
has less noise at older ages by imposing this
condition (see Hyndman and Ullah [15], for more
details).

Step 2. The smoothed curves ft(x) generated in above
step-1 was decomposed by using the following basis
function expansion [35].

f tðxÞ ¼ μðxÞ þ
XK

k¼1
βt;kϕkðxÞ

þ etðxÞ; x∈½x1; xp� ð5Þ
where μ(x) is a locational measurement (median curve)
of ft(x), while Eigen functions ϕk(x) shows the main
regions of variation or kth principal component func-
tion; { βt, k } are the coefficients (or corresponding prin-
cipal component scores) which are uncorrelated by
construction and k is the number of basis functions with
k < n; Hyndman and Booth [36] found that k = 6 is suffi-
cient to capture a substantial amount of variance in the
data; et(x) is the error function which ∼ N (0,var.(x)).

Step 3. By using Eq. (5), a univariate time series model
to each principal component score { βt, k } was applied
to obtain their future values.
Step 4. Based on fitted time series models obtained in
step 3, the coefficients { βt, k }, k = 1,2,...,K, are
forecasted for t = n + 1,...,n + h.
Step 5. The forecasted coefficients attained in the step
4 was applied in Eq. (5) to get the ft(x). Then yt(x) was
forecasted from Eq. (4). In simple word, the yt(xi) can
be simplify by combining (4) and (5) and resulting
equation was obtained as (6):

yt xið Þ ¼ μ xið Þ þ
XK

k¼1
βt;kϕk xið Þ þ et xið Þ

þ σ t xið Þεt;i ð6Þ
Specifically, the h-steps ahead forecasts of yn + h(x) can

be obtained by using following formula (7):

ynþh xð Þ ¼ E ynþh xð Þ Ι;Φj� �

¼ μ̂ xð Þ þ
XK

k¼1
β̂n;k;h ϕ̂k xð Þ ð7Þ

In above Eq. (7), the observed data is denoted as I = {yt(xi);
t = 1,2,...,n; i = 1,2,...,p,} and Φ is the set of basis functions (or

estimated set of functional principal components). The β̂n;k;h
corresponds to the h-step ahead forecast of βn+h, k having

been estimated time series β̂1;k;…β̂n;k; using Eq. 7.

Step 6. Lastly, the variance of error terms in Eqs. (4)
and (5) can be calculated to determine confidence
intervals for mortality projections. In particular, the
forecast variance can be derived from Eq. (6) which is
explained in prior studies [10, 30]. .Due to complex
theoretical calculation of interval forecast with the
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fitted model, various studies suggested this equation as
useful tool for interval forecast calculation [21, 37, 38].

Forecast accuracy measure
In order to measure the forecast accuracy, the difference
between actual and corresponding forecast series, indi-
cated as mean absolute forecast error (MAFE) is calcu-
lated by given formula,

MAFEξ ¼ 1
J

X J

j¼1
ynþξ x jð Þ − ŷnþξ x jð Þ
���

��� ð8Þ

In Eq. (8) the term ynþξðx jÞ is the actual observed sam-

ple values for the jth age and ξth curve of the projected
time period, whereas ŷnþξðx jÞ shows the point projections

for the observed sample [39].

The multivariate Diebold–Mariano (DM) test
Diebold-Mariano (DM) test is the statistical test, intro-
duced by Diebold and Mariano in 1995. This test is used
to test the null hypothesis of equal forecast accuracy or
equal predicting ability between two competing models.
The DM test evaluation criteria is based on its parameter
loss function. This loss function may include variety of dif-
ferences and skill functions such as straight, absolute or
squared differences and correlation respectively. In par-
ticular, the test is free from the distributional assumption
on the forecast errors. It can includes temporal autocorre-
lations and any other type of correlation between the two
or more series. Variety of alterations to the test have been
prepared for its improvement and for conveniently to use
it [40–43]. In order to test the forecast accuracy among
multiple models, the authors Mariano and Preve extended
the DM test for multivariate forecast accuracy [44]. The
general loss is used to evaluate the multiple forecast
models. The framework of multivariate DM test is de-
scribes as follows. The test consist of null hypothesis that
demonstrates equal predictive accuracy for the predictive
models. The test procedure is as follow:

H0 : E g e 1ð Þ;t
� �� � ¼ E g e 2ð Þ;t

� �� � ¼ …

¼ E g e kþ1ð Þ;t
� �� �

; ð9Þ

e ið Þ;t ¼ yit − ŷitf g; i ¼ 1; 2;…; k þ 1:t
¼ 1; 2;…;T ð10Þ

In the above Eq. (9) the component E[g(e(1), t)] indicate
the loss function expected value for the ith forecast. While
in Eq. (10) the e(i), t is the (k + 1)th forecast errors time
series from (k + 1) another model. In simple word, we can
assume that these components might be the forecasts out-
come that based on some subjective or objective ap-
proach, for example, surveys, judgments, extrapolation
techniques, smoothing, time-series models, or any mixture
of methods. The accuracy of the forecasts is to be assess

using some specified loss function that is denoted by g(∙).
As various parameter can be involved in the loss function,
so usually it is assume that the loss function depends only
on the forecast errors. The loss function differential djt be-
tween forecasting errors of two model is described as

djt ¼ g e j;t
� �

− g e jþ1;t
� �

; j ¼ 1; 2;…; k ð11Þ
For multiple model, k loss differential series { djt } in

notation of vector is considered as:

dt ¼ ðd1t;d2t ;…; dktÞËC; t ¼ 0;�1;�2;… ð12Þ
In context of Eq. (12), Now the null hypothesis of Eq. (9)

can be stated as H0 : E[dt] = 0. In order to test this null
hypothesis, the vector of observed sample means for equal
predictive ability test is written as:

d ¼ 1
T

XT

t¼1
dt

For example dt is the ccc (AFE). So it can be expressed
as:

dt ¼ μþ εt þ θ1εt − 1 þ θ2εt − 2 þ… ð13Þ
Finally, according to above equation the multivariate

version of the DM test statistic is designed as:

S ¼ Td
t
Ω̂

− 1
d→χ2k ð14Þ

where T is total number of years in the predictive set
and transpose matrix of d is denoted as d

t
. While Ω̂ is

the stable estimator of Ω and k is the degree of freedom
that is number of time series in the system. Heterosce-
dasticity and autocorrelation consistent (HAC) estimate
of Ω can provide improvement in the time related
structure without distressing test statistic distribution
[44, 45]. In addition, a study based on Monto Carlo
simulation suggested that a reasonable estimator of Ω
can also be attained using the sample variance [46].
Level of significance alpha (α) can be considered for de-

cision of null hypothesis (H0). Rejection of null hypothesis
suggests that not all tested model holds equal predictive
ability. Hence, loss dissimilarities in d are consider for the
choice of the outstanding predictive model.

Results of empirical analysis
Descriptive epidemiology
The annual four Asian countries mortality rates due to
breast cancer (BC) from 1990 to 2017 for age range 20
to 80+ year was considered to run the application of three
stochastic mortality models with smoothing p-splines ap-
proach. The data related to four Asian countries, China,
Pakistan, India and Thailand was downloaded from the In-
stitute for Health Metrics and Evaluation (IHME) http://
ghdx.healthdata.org/gbd-results-tool. The accessibility of
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data and sources are mentioned in “availability of data and
materials” statement at the end of the paper. We consid-
ered women BC mortality rates from 20 to 80+ years of age
and for each calendar year 1990 to 2017 for four Asian
countries. The mortality rates due to breast cancer given by
the ratio between the “number of deaths” and the “exposure
to risk,” were arranged in a matrix for specific age x and
time t. In order to assess the differences in BC mortality
rates corresponding to both age x and time t, we realized
that BC mortality has shown a gradual increase with time.
To have an idea of this progression, the general trends in
the BC mortality rates and log mortality rates during the
period 1990–2017 for four Asian countries are depicted in
Fig. 1. We can see that mortality improvements are not
similar across the ages and the years. As it is clear, there is
an increasing difference for higher ages (> 50), particularly
around age = 80 for each country except Thailand where
slightly declining trends are observed with time.
Additionally, Density plot of age standardized BC

mortality rates for four countries’ data sets are presented
in Fig. 2. Rates are more dispersed in Pakistani women
while India and Thailand data showed the monotonic
differences with improvement in BC mortality.

Model fits
In order to assess the in-sample and out-sample model
performance, we fit the models by excluding the last 7
years of data from each country’s data set. The first step
of analytical analysis is fitting the three stochastic mor-
tality models after applying the smoothing p-splines
approach for each country’s data sets under consider-
ation. Which later called as, smoothed lee carter (SLC)
model, Functional demographic model (FDM) and

Booth-Maindonald-Smith (BMS) model. Supplementary
Figs. S1, S2 and S3 show the estimated parameters from
these three models. The percentage of variation (PV) ex-
plained by the SLC model is 97.3, 89.3, 63.7 and 87.8%
for the China, Pakistan, India and Thailand data respect-
ively. The difference among the PV of four countries’
data set is due to their BC mortality behavior and differ-
ent features of data as shown in Figs. 1 and 2. We can
see that the BC mortality rates at older ages in China
data are more consistent than other countries; as a re-
sult, the SLC model fitted the China data better than the
other country’s data set.
Moving from the SLC to the second stochastic mortal-

ity model that called as FDM, we notice that the PV ex-
plained by the FDM model increases for Pakistan and
Thailand while decreases for India and remain almost
constant for China. Specifically, in context of order 3 of
FDM, the basis functions explain respectively 97.1, 1.9,
0.4% of the variation for China, 90.0, 8.7, 0.8% of the
variation for Pakistan, 61.6, 20.5, 7.5% of the variation
for India and 88.4, 10.2, 0.7% of the variation for
Thailand data. The difference of variations among basis
functions is because these basis functions model the dif-
ferent movements in BC mortality across the ages. Spe-
cifically, the first basis function usually models the
movements in BC mortality for younger ages. Let con-
sider the Figs. S1, S2 and S3 for SLC, BMS and FDM
model respectively, to highlight some differences among
four countries death rates due to breast cancer. Keeping
in view the Fig. S3, we notice that the function fitted on
China, Pakistan and Thailand data has a stronger slope
between age 20 and 30, 20 and 40 and 30 and 40 re-
spectively than the fitted function on India data. There-
fore, the BC mortality reduction at younger ages is
greater for China, Pakistan and Thailand comparatively
to India. Correspondingly, the first fitted coefficient plot
shows the evidence about the mortality improvements at
younger age. We can observe that, the BC mortality
rates for younger ages have dropped over the period
1990–2005 and this phenomenon is captured by the de-
creasing trend of the coefficient 1 for China and India.
On the other hand, a gradually increasing trend of the
coefficient 1 is observed over the whole period for
Pakistan data. The second basis function provide us evi-
dence about the BC mortality rates differences between
30 and 60 years old. It can be clearly observe that almost
each country have more strained rate differences but this
differences is more stressed for Pakistan data as compare
to other countries. Finally, the function 3 represents pat-
terns that are more complex and it model the BC mor-
tality differences between all the cohorts. In the current
situation, these differences are not much significant for
each country under consideration. Therefore, third func-
tions show a lower variability between ages 65 to 80.

Fig. 2 Density plots of females’ age-standardized mortality rates (per
100,000) due to breast cancer, by countries, from 1990 to 2017
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Further, shifting from the SLC and FDM to the BMS
model, we observed that the PV explained by the
model was consistent with the explained variation by
SLC model. On the other hand, fitting from the both
SLC and BMS model shows the higher variances in
upper ages (> 50) for Pakistan than other Asian coun-
tries while with time these mortality differences are
increases after 2005 period particularly for Pakistan
and India (Figs. S1 and S2).

Goodness of fits of models
Residual analysis
A good fit is achieved when the residuals are independ-
ent and identically distributed. In order to verify this
condition, residuals mortality rate by age in different
years was derived from three fitted models for all four
countries’ data set (Fig. 3). Residuals mortality rate by
age were seem to be more consistent in FDM than in
SLC and BMS for all four countries almost everywhere.

Whereas, these errors were lower in SLC and BMS
model on older ages for each country’s data set. In
addition, the error measures were also calculated to con-
form the error differences among different models as
shown in Table 1. By comparing the SLC, FDM and
BMS model, we notice that overall the error measures in
FDM are smaller as compare to other models, even if
the PV described by model is greater in the both SLC
and BMS as compare to FDM model. Specifically, the
mean square error (MSE) of the SLC model is lower
than the MSE of the other two model for China while
for other three countries’s data set this error is the lower
in FDM as compare to other two model.

In-sample and out-sample predictive accuracy by
multivariate Diebold-Mariano (DM) test
In order to test and compare the model predictive accur-
acy we used the multivariate Diebold-Mariano (DM)
test, which is advance approach for testing and

Fig. 3 Residuals BC mortality rates from three models, SLC, FDM and BMS, for each country individually
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comparing of predictive ability of models. To measure
in-sample forecast accuracy, the multivariate DM test is
applied to average Absolute Forecast Error (AFE) across
ages and years from three models for each country’s data
set. According to the test, we have formulated our null
hypothesis (H0) that “predictive accuracy of the three
model is the same” that implies zero difference of aver-
age absolute forecast errors among competing models.
Based on our results in Table 2, the null hypothesis is
not accepted at 1% level of significance for all four coun-
tries results (p < 0.01). Therefore, based on the results
we may conclude that three models hold different pre-
dictive accuracy across years for each country’s data set.

On the other hand, Table 3 test the predictive accuracy
of three models across ages we observe that three
models hold equal predictive accuracy across ages.
In addition, we also test the model for outstanding

predicting ability based on multivariate DM goodness of
fit test. The DM test assigned rank 1 to the model which
have minimum mean loss value among the models
which indicating best fit of that model. According to the
test, null hypothesis indicate the best fit of ranked 1
model. So, Fig. 4 depicts the actual and fitted log BC
mortality rates across years from three models. We can
see that according to multivariate DM goodness of fit
test, the SLC model is ranked 1 which indicating best fit
of model for China (Mean loss = 0.0064, p-value = 0.918)
and Pakistan (Mean loss = 0.0059, p-value = 0.999). On
the other hand, FDM model showed best fit on India
(Mean loss = 0.0028, p-value = 0.999) and Thailand
(Mean loss = 0.0054, p-value = 0.999) data.
In order to compare the in-sample predictive accuracy

among three models, we demonstrated that SLC model
provided the outstanding predictive ability for China and
Pakistan data set while FDM delivered the outstanding
predicting ability on India and Thailand data.
In order to conform the forecast ability of models, it

was also tested, the model that provide a good in-sample
fit to historical data whether it still produce good out-
sample forecasts. A good model should provide accurate
in-sample fits to the historical data as well as out-sample
plausible forecasts. Therefore, out-sample predictive ac-
curacy was also considered to verify the model predictive
accuracy consistency. To evaluate the forecast accuracy,
the following steps are required. Initially, it is needed to
choose the matric of interest included the forecasted
variable. Possible metrics of forecasted variables may in-
clude the mortality rates, life expectancy or future sur-
vival rates. Different metrics are relevant for different
purposes. As, our study goal is to examine the feasibility
of different stochastic mortality models, hence, we em-
phasis on the BC mortality rates. We project the BC
mortality rates from 2011 to 2017 according to the fitted
models and derive the life expectancy to compare the
forecasts with the actual. In our study forecasts are cal-
culated based on the evolution of time parameter (kt)
and errors in age parameter (ax) and (bx) are not consid-
ered. Because according to the literature the standard er-
rors of (ax) and (bx) to become less significant over
forecast time in comparison to the standard error of par-
ameter (kt) [11]. The forecast errors in the SLC, FDM
and BMS model for four countries’ data set are shown in
Fig. 5. To compare the out-sample forecast accuracy
among three models, average projection error in life ex-
pectancy by computing mean over forecast years were
considered. Table 4 displays the comparison of out-
sample forecast accuracy based on forecast errors in life

Table 1 Error measures from three fitted models individually for
each country

Smoothed Lee Carter (SLC) Model

Average across ages ME MSE MPE MAPE

China 0.000 0.0008 0.020 0.036

Pakistan 0.000 0.0024 0.0004 0.016

India 0.000 0.0007 0.0232 0.073

Thailand 0.000 0.0023 0.0110 0.056

Average across years

China 0.000 0.046 1.509 2.736

Pakistan 0.000 0.134 0.018 0.794

India 0.000 0.0418 1.7075 5.827

Thailand 0.000 0.133 0.803 4.153

Average across ages Functional Demographic Model (FDM)

China 0.000 0.0013 −0.029 0.065

Pakistan −0.000 0.0004 0.001 0.008

India 0.000 0.0003 0.0128 0.046

Thailand −0.000 0.000 0.005 0.019

Average across years

China −0.000 0.0700 −2.199 4.815

Pakistan −0.000 0.026 0.0437 0.367

India −0.000 0.016 0.939 3.575

Thailand −0.000 0.015 0.378 1.359

Average across ages Booth-Maindonald-Smith (BMS) Model

China −0.000 0.0014 0.033 0.054

Pakistan 0.001 0.002 0.001 0.016

India 0.000 0.001 0.022 0.075

Thailand −0.000 0.006 0.032 0.141

Average across years

China −0.007 0.084 2.466 4.109

Pakistan 0.077 0.139 0.048 0.788

India −0.000 0.045 1.675 5.909

Thailand −0.004 0.362 2.348 10.701

ME mean error, MSE mean square error; MPE mean percent error; MAPE mean
absolute percent error
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expectancy. Based on multivariate DM test results we
determine that three models have significantly different
(p < 0.01) out-sample predictive accuracy for all coun-
tries’ data set (Table 4). Moreover, we also find the
model with outstanding forecast ability for four coun-
tries’ data set. According to the test results, SLC model
provided the outstanding forecast ability on china and
Pakistan data, while FDM has rank 1 for providing out-
standing forecast ability for India and Thailand data set.
At the same time, SLC model also offered the quite
comparable results for India and Thailand data (Fig. 6).
Further, we also calculate the mean and variance of life

expectancy forecast errors across forecast years. Table 5
depicts the minimum variance of life expectancy forecast
error for SLC model in China and Pakistan data set. On
the other hand, the FDM and SLC model showed the al-
most same variance for India and Thailand data. More-
over, 95% confidence interval plot of BC mortality
forecast error were also shown in Fig. 7. The confidence
intervals for the mean error are tighter for SLC model
than other models in both China and Pakistan data set.
However, the confidence intervals for the both model
FDM and SLC are narrow for other two countries’
data set.

Discussion
Although, the forecasting mortality methods have been
broadly studied by a group of researchers like Booth [22]
and Booth & Tickle [23]. In the present study, we apply
the three stochastic mortality models belong to family of
generalized lee-carter with smoothing p-splines
approach to four Asian countries’ data sets, evaluate the
performance of these three methods, compare the simi-
larities of different Asian regions and propose potential
improvements. Furthermore, study is also contain the

derivation of future stochastic life expectancy at birth
calculated from mortality forecasts and use it for models
assessment.
The age-specific BC mortality change by different

years for four Asian countries’ data set was depicted in
Fig. 1. We can observe that, the mortality rates has
followed a smooth function with some observational
error. The observational error has higher variance at
very old ages where the population are small and also at
young ages where the mortality rates are small. This
phenomenon can also be clearly shown from Fig. 2 that
have higher intensity of mortality for small population of
Pakistan while remaining countries have relatively
smaller mortality rates for large number of population.
A study also reported the similar pattern in USA mortal-
ity data, where researchers observed that age-specific
mortality rates are higher than 1/100,000 for very small
populations [38]. Mortality forecasting based on such a
data pattern may be well representative by stochastic
mortality models with P-splines smoothing approach.
This smoothing approach have been extensively used to
smooth mortality data for application of these models in
various studies [10, 26, 27, 38].
Application of stochastic smoothed mortality models

namely SLC, FDM and BMS model on BC mortality data
provided the different PV explained by the models. Con-
sistent PV among three models were observed for China
data set. The reason may be the method assume the
homoscedastic variances as this data is follow to this
assumption to some extent [38]. The other reason might
be the China’s data sets contain less wiggly data in a
shorter and older age range. While for other countries
these PV were little bit different among the three
models, which shows the capability of the models to deal
with the heteroscedastic data. It observed that for these

Table 2 Comparison of predictive accuracy of three models across years for each country using multivariate Diebold-Mariano (DM)
test

Country Null Hypothesis Test Statistic Value P-Value Decision

China H0: SLC=FDM= BMS
OR
H0: All model hold Equal predictive accuracy

− 1796.2 0.000 H0 is rejected

Pakistan −20.151 0.000 H0 is rejected

India −24.314 0.000 H0 is rejected

Thailand −3.9457 0.000 H0 is rejected

Predictive period, 1990–2010

Table 3 Comparison of predictive accuracy of three models across ages for each country using multivariate Diebold-Mariano (DM) test

Country Null Hypothesis Test Statistic Value P-Value Decision

China H0: SLC=FDM = BMS
OR
H0: All model hold Equal predictive accuracy

14.165 0.999 H0 is not rejected

Pakistan 2617.9 1 H0 is not rejected

India 1034.7 1 H0 is not rejected

Thailand 89.218 1 H0 is not rejected

Predictive period, 1990–2010
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type of data FDM provided the larger PV and smaller
measure error than the other models. In line with previ-
ous literature, the basis functions used in FDM model
have the ability to account different mortality move-
ments and model them across the ages [15]. Therefore,
larger PV explained by FDM in irregular data set might
be the reason of presence of different basis function in
the model.
To highlight some differences among four countries’

death rates due to breast cancer we fitted the three models
on each country’s data set separately (supplementary Figs.
S1, S2 and S3). Keeping in view the FDM results (Fig. S3),
we observed that the fitted mortality functions, from age
20 to 30 for China, 20 to 40 for Pakistan and 30 to 40 for
Thailand has a stronger negative slope. Therefore, the BC
mortality reduction at younger ages was greater for these
countries as compare to India. The decreasing trend in BC
mortality in these countries has been reported previously
and reason of this decline may be due to higher pregnancy

rates and related reproductive factors in that countries
[47, 48]. In addition, low or never use of oral contracep-
tives may also be the possible reason for the decreasing
BC mortality rates in younger women [4, 49]. Both SLC
and BMS model showed the higher mortality variances in
upper ages (> 50) for Pakistan than other Asian countries
during the study period. Mortality differences gradually
improved after 2005 period in Pakistan and India and
remained consistent or move to decline in China and
Thailand during the specified time period. The actual
cause of the reduction in breast cancer mortality is still
unknown yet and required more research to explore the
possibility. Proper Access to medical facilitates and
advanced treatments are likely reasons for the decline in
mortality in China: such as improved early detection com-
bined with effective treatment. Most women under 50
years of age working in urban areas have employer-
sponsored benefits like medical examinations and free
breast ultrasounds once or twice a year. Previous studies

Fig. 4 In-sample goodness of fit of three models and selection of best fit by multivariate DM test on four countries’ data set, models are fitted for
21 year of BC mortality rates from 1990 to 2010, values on x-axis showing the number of years from 1990 to 2010 with 5 year interval
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have shown that ultrasound is superior to Chinese
women’s mammography for the prevention and control of
BC [50]. Mubarik et al. [4, 7] conducted a study on trends
and projections in BC mortality, and they reported the
higher BC mortality rates during the period 1990–2017 in
some of Asian countries including Pakistan and India.
Our study results has also reported the similar findings in
these countries. The rising trends in BC mortality in these
countries might be due to that they did not have much
success in disease diagnosis and treatment programs as
compare to developed Asian and European countries dur-
ing the developmental period.
In order to evaluate the models performance, both in

their goodness of fit on historical data and their forecast-
ing ability (in-sample and out-sample), all models were
tested and ranked by using residual analysis and an ad-
vance statistical multivariate DM test. This test is widely
used for measuring predictive ability across multiple

forecasting methods [51]. According to goodness of fit
analysis, FDM errors were generally lower and residual
trends were more consistent. In addition, the error mea-
sures suggested by Cairns et al. [18] were also computed
and compared for the three models. We noticed that
overall the error measures in FDM were smaller as com-
pare to other models, even if the PV explained by model
was higher in the SLC and BMS than in FDM. Specific-
ally, the MSE of the FDM model was lower than the
MSE of the other two model for each country’s data set
except China. Furthermore, multivariate DM test had
showed the significant difference among the models pre-
dictive performance for each country’s data set. When
outstanding forecasting ability of models was tested for
both in-sample and out-sample forecasts, SLC model
showed the best predicting ability in both cases for
China (in-sample mean loss: 0.006, p = 0.918; out-sample
mean loss: 0.060, p = 0.999) and Pakistan (in-sample

Fig. 5 Forecast errors of (a) SLC (b) FDM (c) BMS model across ages by forecast year 2011–2017 for four countries’ data

Table 4 Comparison of forecast accuracy of three models across years for each country using multivariate Diebold-Mariano (DM)
test

Country Null Hypothesis Test Statistic Value P-Value Decision

China H0: SLC=FDM= BMS
OR
H0: All model hold Equal predictive accuracy

64.354 0.000 H0 is rejected

Pakistan 7.636 0.000 H0 is rejected

India 3624.1 0.000 H0 is rejected

Thailand 286.68 0.000 H0 is rejected

Forecast period, 2011–2017
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mean loss: 0.005, p = 0.999; out-sample mean loss: 0.020,
p = 0.978). While FDM model indicated the best predict-
ive performance within and outside forecasts for data set
of other two countries. In contrast, model choice based
on goodness of fit testing was ambiguous. Overall, study
results indicated that the model/models, which had

similar predictive ability within data, they also provided
the almost same predictive ability of outside of fitted
data. Nevertheless, there was no single model that we
called the overall best model for all countries’ data set.
Overall, based on model predictive accuracy tests, SLC
model generally outperform the FDM for China and

Fig. 6 Out-sample goodness of fit of three models and selection of best fit by multivariate DM test on four countries’ data set, 7 year forecast
from 2011 to 2017 are compared among the models, values on x-axis representing the code of years from 2011 to 2017

Table 5 Mean and variance of forecast error in life expectancy

Country SLC FDM BMS

Mean Variance Mean Variance Mean Variance

China 0.015969 0.007437 −0.58973 0.01647 0.507574 0.017841

Pakistan 0.012938 0.000478 0.044085 0.000288 0.003414 0.000489

India −0.30533 0.023026 −0.24113 0.020099 −0.32129 0.023243

Thailand −0.36042 0.006641 0.044443 0.006649 −0.57447 0.010475
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Pakistan data set, while FDM was ranked 1 on India and
Thailand data both on goodness of fit and on forecast
accuracy. These findings are consistent with the claim
by other studies that have reported their findings in
favor of the FDM model than the Lee-Carter model in
term of better performance [10, 52].
In order to confirm the predictive accuracy results, we

also calculated the mean and variance of forecasting
errors in life expectancy over forecast years. The mini-
mum mean error and variance of forecast error in life
expectancy for SLC model for China and Pakistan data
was confirming the predicted accuracy of that model.
On the other hand, the FDM and SLC model showed
the almost same variance for India and Thailand data.
Moreover, 95% confidence interval plot of BC mortality
forecast error were also shown. The confidence intervals
for the mean error was tighter for both SLC model and
FDM for Pakistan and Thailand. A quantitative compari-
son study of different stochastic mortality models has
also reported the consistency in performance of lee-
carter and functional demographic models on Italian
mortality data [19].

Conclusion
According to the study findings, we conclude that in
selecting and ranking the mortality models, they should
carried out for both their goodness of fit and testing of
within and out data forecasting ability. In particular, ap-
plication on BC mortality data under study, stochastic
smoothed mortality models based on functional data
analysis, generally had better perform on quadratic
structure of data, both in term of goodness of fit and on

forecast accuracy. Commonly, their errors were lower
and their error distributions although were not ideally
satisfying but showed less inconsistent effects. In some
of previous studies, application of these models on mor-
tality data also claim in favor of FDM that it outperform
the lee-carter model [10, 18]. On the other hand, SLC
model outperform the FDM in case of symmetric data,
and also shows almost comparable results to FDM for
both within and outside data forecast accuracy in case of
asymmetric or quadratic structure of data.
Therefore, our study recommends considering the

SLC model in comparison to the other, since it provides
even better results in some cases. Moreover, each model
considered has certain limitations and shows certain fail-
ures to present all data. Therefore, no one can eventually
be convinced of “the finest” in fitting and predicting BC
mortalities. Although the results of both models, FDM
and SLC included, were generally fair. However, they
still display some nonrandom errors because of the co-
hort effect. Therefore, we plan to consider and compare
other stochastic mortality models with cohort effect in
future work and test them on smoothed BC mortality
data. In conclusion, as already renowned by other stud-
ies [19, 52] we also suggest generating mortality fore-
casts using multiple models rather than relying upon
any single model. In the current case, we can assume
that there is no single model, which can truly outper-
form all the others on every population. Additionally, we
perceived that these approaches would be most conveni-
ent for modeling and projecting the future trends of rare
diseases for which there has been very little improve-
ment in treatment and involve least birth cohort effects.

Fig. 7 Confidence Interval (95%) for the mean forecast error of SLC, FDM and BMS model separately for each country’s data set
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Additional file 1: Figure S1. The parameter estimates of SLC model for
four countries’ BC mortality rates, ax, is the derived age pattern averaged
across years; bx, stands for the sensitivity of the mortality rates to the
change of kt, reflecting how fast the mortality rate changes over ages; kt
represents the only time-varying index of mortality level. Figure S2. The
parameter estimates of BMS model for four countries’ BC mortality rates,
ax, is the derived age pattern averaged across years; bx, stands for the
sensitivity of the mortality rates to the change of kt, reflecting how fast
the mortality rate changes over ages; kt represents the only time-varying
index of mortality level. Figure S3. The parameter estimates of FDM
model on four countries’ BC mortality rates, (a) China (b) Pakistan (c) India
and (d) Thailand.
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