
RESEARCH ARTICLE Open Access

Variable selection in social-environmental
data: sparse regression and tree ensemble
machine learning approaches
Elizabeth Handorf1*† , Yinuo Yin2, Michael Slifker1 and Shannon Lynch2†

Abstract

Background: Social-environmental data obtained from the US Census is an important resource for understanding
health disparities, but rarely is the full dataset utilized for analysis. A barrier to incorporating the full data is a lack of
solid recommendations for variable selection, with researchers often hand-selecting a few variables. Thus, we
evaluated the ability of empirical machine learning approaches to identify social-environmental factors having a
true association with a health outcome.

Methods: We compared several popular machine learning methods, including penalized regressions (e.g. lasso,
elastic net), and tree ensemble methods. Via simulation, we assessed the methods’ ability to identify census
variables truly associated with binary and continuous outcomes while minimizing false positive results (10 true
associations, 1000 total variables). We applied the most promising method to the full census data (p = 14,663
variables) linked to prostate cancer registry data (n = 76,186 cases) to identify social-environmental factors
associated with advanced prostate cancer.

Results: In simulations, we found that elastic net identified many true-positive variables, while lasso provided good
control of false positives. Using a combined measure of accuracy, hierarchical clustering based on Spearman’s
correlation with sparse group lasso regression performed the best overall. Bayesian Adaptive Regression Trees
outperformed other tree ensemble methods, but not the sparse group lasso. In the full dataset, the sparse group
lasso successfully identified a subset of variables, three of which replicated earlier findings.

Conclusions: This analysis demonstrated the potential of empirical machine learning approaches to identify a small
subset of census variables having a true association with the outcome, and that replicate across empiric methods.
Sparse clustered regression models performed best, as they identified many true positive variables while controlling
false positive discoveries.
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Background
The Precision Medicine Initiative suggests that environ-
ment, along with genes and lifestyle behaviors, should
be considered for cancer treatment and prevention.
Nevertheless, the impact of social environment, or the
neighborhood in which a person lives, remains under-
studied [1]. Compared to the biological level where
empirical, high-dimensional computing approaches, like
genome-wide association studies (GWAS), are often used
for hypothesis-generation, risk prediction, and variable
selection, empirical methods are only beginning to be
employed at the environmental level [2, 3].
Social environment, as defined by a patient’s neighbor-

hood of residence, is particularly relevant to the study of
cancer health disparities. Neighborhood boundaries can
be defined by US Census tracts (smaller geographic areas
than a county). These neighborhoods can be described
by variables measuring economic (e.g., employment, in-
come); physical (e.g., housing/transportation structure);
and social (e.g., poverty, education) characteristics [4, 5].
Studies linking US Census data with state and national
cancer registry data show that neighborhood can help
explain differential cancer incidence and mortality rates
beyond race/ethnicity or genetic ancestry, and that
neighborhood environment often exerts independent
effects on cancer outcomes [6, 7].
Methodological challenges have limited the incorporation

of neighborhood data into Precision Medicine. Most studies
use a priori variable selection approaches, but there are no
standard variables to represent particular domains (e.g.
poverty, education, employment, etc.), which has limited
translation of social environmental variables into clinical
use. In the few studies using empiric selection approaches,
variable selection and replication of findings were compli-
cated by the high degree of correlation among US Census
variables. For instance, similar to a GWAS, we previously
conducted a neighborhood-wide association study (NWAS)
in both black and white men in Pennsylvania and agnosti-
cally identified 22 US census variables (out of over 14,000)
significantly associated with advanced prostate cancer [3].
In the first NWAS, social support was identified as an
important neighborhood domain, but 2 very similar
variables were identified to represent this domain (% male
householders living alone vs %male householders over 65
living alone in a non-family household). Thus, multicolli-
nearity (the presence of many highly interrelated variables)
is a challenge for variable selection and replication.
The systematic assessments offered by machine learn-

ing algorithms, which allow for high dimensionality and
collinearity, may be useful for analyses of neighborhood
data. In this manuscript, we broadly use the term “ma-
chine learning” to refer to any computational method
which selects variables automatically, without direct
input from a human analyst. While the main objective of

machine learners is often predictive accuracy, an add-
itional objective is variable selection and determining
which features are truly important. This is analogous to
the goals of variant discovery vs risk prediction in gen-
etic studies [8, 9].
Motivated by the previous NWAS of prostate cancer

cases in Pennsylvania, we sought to understand which
machine learning algorithms are most effective for iden-
tification of neighborhood factors which have a true
association with a health outcome. Machine learning
algorithms are often judged by comparing predicted vs.
observed outcomes in an independent test set. We can-
not use this paradigm to evaluate variable selection,
however, as the true underlying variables associated with
a given outcome are unknown. This motivated use of a
simulation study, where we generated outcomes that are
dependent on a small subset of the potential predictor
variables. We then applied several popular machine
learning approaches, including lasso, elastic net, hier-
archical clustering, and random forests, and assessed
how well each method identified true positive variables
while minimizing false negatives. We compared the
results to traditional regression with correction for
multiple testing. Finally, we applied the top performing
machine learning approaches to our original NWAS
dataset, and compared findings from these analyses to
our first NWAS in white men.

Methods
Candidate methods for discovery of important variables
Below, we describe methods for variable selection where
both p, the number of potential predictor variables, and
N, the number of observations, are large, and discuss
how these methods can be applied to analysis of
neighborhood-level covariates. We identified methods
which provide objective and automatic variable (feature)
selection for both continuous and binary outcomes. We
also limited our evaluation to methods with largely auto-
mated tuning, which are readily implemented using
standard R packages, and which one can run within rea-
sonable timeframes. Ultimately, the methods we identi-
fied fell within two broad categories: penalized models,
and ensemble tree-based methods.

Standard regression models
The simplest approach to variable selection is similar to the
GWAS and NWAS approach [3]. A series of univariable
tests are conducted to determine the relationship between
each possible predictor and the outcome. Variables which
are statistically significant after correction for multiple-
testing [10] (i.e. ‘top hits”) are then replicated in a separate
set of samples [11]. Although this approach is simple and
easy to implement, the separate regression models ignore
any correlation structure between candidate predictors.
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This may lead to selection of a large number of highly
correlated variables, necessitating further variable selec-
tion steps, as described in the NWAS manuscript [3].
We included this approach as a baseline for compari-
son, to demonstrate the degree of improvement more
advanced methods can provide.

Sparse regression models
Penalized regression addresses some of the limitations of
standard regression for high-dimensional data. A useful
class of these models provide shrinkage which enforces
sparsity; that is, many of the parameter estimates are
shrunk to exactly zero [12]. Sparse models have several
advantages over traditional regression, including reduced
overfitting (which improves prediction), accommodating
multicollinearity, and the ability to fit models where p >
n. They can also be used for variable reduction, where a
zero parameter estimate indicates that the variable is not
an important predictor.

Lasso penalized regression The Least Absolute Shrink-
age and Selection Operator (lasso) includes a L1-norm
(absolute value) penalty that shrinks many parameter
estimates to exactly zero [12, 13]. Thus, variables with
non-zero coefficients can be considered the important
predictors for the outcome of interest.
For a linear regression, the lasso solution is found as
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where N is the number of observations, p is the number
of parameters, Y is a vector of outcomes, X is a N x p
matrix of covariates, and β is a vector of effects. The size
of the penalty is determined by λ, which can be found
via cross-validation to minimize prediction error. Alter-
natively, one can choose a stricter threshold for λ at 1
standard error above the minimum prediction error (to
conservatively allow for error in the estimate of the opti-
mal λ) [12]. Although the lasso can find a solution under
multicollinearity, if a group of highly correlated variables
is present the lasso tends to arbitrarily select one vari-
able and set the others to zero [14].

Elastic net The elastic net was proposed to overcome
some of the limitations of the lasso method. It uses a
combination of the L1 lasso penalty and the L2 ridge
penalty:
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where 0 ≤ α ≤ 1, and other parameters are defined as

above in (1). The choice of α determines whether the
penalty is closer to a ridge penalty (α = 0) or a lasso
penalty (α = 1). The choice of both α and λ can be deter-
mined via cross validation [14]. Unlike the lasso, when
predictors are collinear, the elastic net tends to classify
groups of highly correlated variables as all either zero or
nonzero. In many cases the elastic net provides better
performance than the lasso [14].

Sparse models with clustering Hierarchical clustering
is a way of grouping variables with similar behavior
across observations. Agglomerative clusters are built
from the bottom-up by joining the “closest” clusters at
each step according to defined distance and linkage
functions, and the distance becomes the “height” at
which clusters are joined. For the census data we
propose to define distance as one minus the absolute
value of the Spearman correlation coefficient. Complete
linkage is a useful choice here as it maintains the ori-
ginal scale of the distance measures (in this case, from 0
to 1), and the height is therefore interpretable. The
resulting clusters are represented via a dendrogram (see
Additional file 1) [15].
Cluster membership can be defined by cutting the

dendrogram at a specific height, so that any observations
that are joined at a height lower than that value are mem-
bers of a cluster. A more objective method is to identify
statistically significant clusters via a bootstrap [16]. This
method resamples participants to identify which clusters
of variables often appear, measuring stability. Note that
with either method, many clusters may contain only one
variable. If the number of clusters is small relative to n,
clustered variables can be summarized into a single meas-
ure, and models can then be fit using multiple regression
models. However, if a large number of clusters are
present, a better choice is to use cluster membership to fit
group lasso or sparse group lasso models. The sparse
group lasso is particularly useful, as it has penalties at
both the group and individual level, allowing for
sparsity across and within groups [17–19].

Tree ensemble methods
Another group of popular machine learning methods are
based on tree ensembles, where many decision trees are
fit to the data. Decision trees rely on recursive binary
partitioning, that is, at each step (node) in the tree, the
observations are split into two daughter nodes depend-
ing on some function of the predictor variables. Often,
methods aggregating many trees (ensembles) outperform
single tree based methods [20].

Random forests The random forests method is useful
for high-dimensional data. Underlying the method are
many Classification and Regression Trees run on bootstrap
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samples of the dataset [15]. The relative impact of each
variable on prediction accuracy is characterized using the
variable importance score (VIMP), calculated by permuting
each variable and re-fitting the random forest, and assessing
how this impacts accuracy. VIMP scores provide a way of
ranking predictors relative to each other, but choosing a
threshold for the VIMP is often done post-hoc.
Recently, Ishwaran and Lu (2019) [21] proposed a re-

sampling based calculation of the standard errors for the
VIMP. We propose to use this standard error to inform
variable selection via the confidence interval. Based on
the estimated VIMP scores and their standard errors, we
can create 100*(1-α/p)% confidence intervals for each
variable. If the confidence interval excludes zero, we can
conclude that there is evidence that the variable improves
prediction, and therefore infer that there is a relationship
between that variable and the outcome of interest.

Bagging Bagging was a predecessor to random forests,
and can be thought of as a special case. In the standard
interpretation, at each node a random subset of variables
(often choses to be p/3) are evaluated as candidates for
splitting. In bagging, all p variables are considered for
possible splitting. This tends to yield a smaller subset of
variables with high VIMP scores, which may be better
for our purposes of identifying the best variables [20].
We note that, as this is a special case of random forests,
we can use the same resampling-based approach to
define confidence intervals for the VIMP scores and
accomplish variable selection.

Bayesian Additive Regression Trees (BART) Like
Random Forests and Bagging, BART is a tree ensemble
method; however, it builds a set of trees using repeated
draws from a Bayesian probability model. Similar to the
VIMP of random forests, the relative importance of a given
variable can be characterized using the variable inclusion
proportion, defined as the number of splitting rules based
on the variable out of the total number of splits. We can
obtain an empirical estimate of the null distribution for the
variable inclusion proportions by permuting the outcomes
and re-fitting the BART algorithm. After these are obtained,
three thresholds for variable selection have been proposed.
The first, the local threshold, uses the null distribution of
each individual variable, and if the fitted inclusion propor-
tion is greater than its 1-α quantile under the null, that vari-
able is selected. A more restrictive criterion (Global SE)
increases the threshold using the local mean and standard
deviation with a global multiplier determined based on the
permutation distribution of all variables. The most
restrictive criterion (Global Max) requires that the
inclusion proportion is greater than the 1-α quantile
of the maximum inclusion proportions (across all
variables) from each permutation.

Simulation study
Machine learning methods are typically evaluated by
their ability to predict outcomes. In this study, we are in-
terested in a different question: how well does each
method correctly identify the subset of census variables
which are truly associated with the outcome of interest?
Therefore, we conducted a simulation-based experiment,
generating outcomes which have known associations
with a small subset of census variables.
The data structure of the census variables is complex;

measures may exhibit non-normal distributions, contain
excess numbers of zeros, and some variables are highly
collinear (see Additional file 2). To fully reflect this com-
plexity, we used observed census variables for PA pros-
tate cancer cases [3] as the basis of our simulation. For
computational tractability, we randomly selected 1000
variables and 2000 individuals. Missing values were im-
puted using median substitution, and all variables were
standardized (mean = 0, standard deviation = 1). Let X be
the data matrix corresponding to the full set of 1000
neighborhood variables. We define XT as the matrix with
columns representing variables truly associated with the
outcome of interest, Y. The full set of predictors, p, also
contains many other predictors. We define matrix X0 to
be the matrix of columns not directly related to Y. The
variables in X0 which are highly correlated with variables
in XT are considered “surrogate” variables.
We selected 10 variables to be members of XT, where

5 variables exhibited marked collinearity (X1-X5, correl-
ation > 0.95 with at least 1 other variable), and 5 vari-
ables which exhibited modest or low collinearity (X6-X10,
correlation < 0.6 with all other variables). Outcomes
were simulated according to the structure shown in
Fig. 1. We considered both binary and continuous out-
comes as they are commonly seen in medical research
with the mean models logit(E(Y)) = β ′ XT for binary Y
and E(Y) = β ′ XT for continuous Y, with errors distrib-
uted as N(0,1). Effect size (β) was equal for each member
of XT, with β = 0.22 for binary outcomes and β = 0.11
for continuous outcomes. The size of β was set as the ef-
fect size in a single univariable test for which we would
have at least 80% power with 5*10− 5 2-sided type-I error
to detect the effect when N = 2000.
We simulated outcomes (Y) 500 times. In practice,

variable selections are often internally validated by with-
holding a portion of the dataset. Therefore, we randomly
assigned 2/3 of the data to be the discovery set and the
remaining 1/3 to be the validation set. The algorithms
discussed above were applied to each set of simulated
outcomes. Candidate variables selected in the discovery
set were then validated in the withheld 1/3 sample, using
a series of univariable regression models, considering
any variable with a P-val < 0.05 to be validated, similar to
the approach taken in some GWAS studies [22]. For the
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random forest method, which often identified a large
number of variables in the discovery set, we also ex-
plored using a multivariable lasso model in the validation
in an attempt to reduce potential confounding in the val-
idation step. Table 1 lists each method tested, along with
the selection rule in the discovery set. All models were fit

using R software (version 3.5) [23]. Software used to fit
models and run simulations is available on github.
(https://github.com/BethHandorf/neighborhood-machine-
learning).

Comparison of methods: performance assessment
Performance was quantified by which methods identified
a large proportion of true positive variables (XT) and
minimized false positive variables (X0). We also consid-
ered more flexible success metrics where true positives
were considered as the identification of either a target
variable or a good surrogate (correlation > 0.8 with tar-
get), and false positives were considered as those not a
target variable or a surrogate. The threshold of 0.8 was
chosen as it is a commonly used value for determining
suitability of surrogate endpoints in clinical studies [28, 29].
We also considered a composite metric, the F2 score. This
is a measure of accuracy combining the Positive Predictive
Value (PPV, sometimes termed precision) and the sensitiv-
ity (sometimes termed recall). The F2 score is a specific
case of the general F score, which gives greater weight to
the sensitivity [30].

F2 ¼ 22 þ 1ð Þ�TP
22 þ 1ð Þ�TP þ 22�FN þ FP

Where TP is the number of true positives, FN is the
number of false negatives, and FP is the number of false
positives. When comparing models, a F2 score closer to
1 denotes the preferred model. We chose the weighted
F2 as we believe that in this application, priority should

Table 1 Candidate methods

Abbreviation Description Selection rule R packages

UNIV-BFN Univariable models with Bonferroni-adjusted p-val P < 5*10−5 base R [23]

LASSO-MIN Lasso with λ chosen at the minimum prediction error β≠ 0 glmnet [24]

LASSO-1SE Lasso with λ chosen at 1 SE above the minimum error β≠ 0 glmnet

ELNET-MIN Elastic net, grid search for α (0.05–0.95 by 0.05), λ at min β≠ 0 glmnet

ELNET-1SE Elastic net, grid search α (0.05–0.95 by 0.05), λ at 1 SE β≠ 0 glmnet

HCLST-CORR-SGL Hierarchical clustering, groups with corr > 0.8, sparse
group lasso

β≠ 0 SGL [25]

HCLST-BOOT-SGL Hierarchical clustering, groups from bootstrap, sparse
group lasso

β≠ 0 SGL, pvclust [16]

RF Random Forests algorithm with bootstrap-based
confidence intervals for the variable importance scores

99.995% CI > 0 randomForestSRC [26]

BAGGING Similar to Random Forests, but with all variables
considered candidates for splitting at each node

99.995% CI > 0 randomForestSRC

BART-LOCAL Bayesian Additive Regression Trees, local criteria for
Inclusion Proportion (IP)

IP > 0.95 quantile of local
distribution

bartMachine [27]

BART-GLOBALSE Bayesian Additive Regression Trees, global SE criteria
for IP

IP > threshold from local
distribution with global
multiplier

bartMachine

BART-GLOBALMAX Bayesian Additive Regression Trees, global Max criteria
for IP

IP > 0.95 quantile of global
max distribution

bartMachine

Fig. 1 Simulation model
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be given to the ability to detect more true positive vari-
ables. Finally, we determined the average detection rate
for the individual variables, and evaluated how effect size
estimates from univariable models were related to the
likelihood of detection.

Application to PA prostate cancer cases
To illustrate these methods in practice, we applied the most
promising algorithms (those with the most true positives
and fewest false positives) from the simulation study to the
full dataset used in the prior NWAS study, which linked
prostate cases from a PA Department of Health registry to
social-environmental variables obtained from the US Cen-
sus [3] The binary outcome of interest was aggressive (high
stage AND grade) prostate cancer [3]. This cohort of white
prostate cancer patients diagnosed between 1995 and 2005
contained 76,186 individuals (8% with aggressive disease).

There were 14,663 census variables evaluated for associ-
ation with the outcome. We included census variables as
predictors, along with age and year of diagnosis. The data
was split into discovery (2/3) and validation (1/3) samples.
As above, variables selected in the discovery set were tested
using univariable regression in the validation set, using a p-
value cutoff of 0.05. We then compared which variables
were selected by the most promising methods (from the
simulation study) in the full study population to those
found by the original NWAS method.

Results
Comparison of methods
Table 2 shows the mean number of variables detected by
each method, broken down into true positives and false
positives. The strict definition considers true positives to
be identification of variables in XT, while the relaxed

Table 2 Simulation study results

A. Binary outcome Strict Relaxeda

TP (N/10) FP (N/990) F2 TP (N/10) FP (N/953) F2

UNIV-BFN 4.09 32.49 0.267 5.13 12.70 0.443

LASSO-1SE 3.84 6.05 0.383 5.53 3.71 0.559

LASSO-MIN 4.25 9.01 0.399 5.98 6.53 0.569

ELNET-1SE 5.26 20.51 0.405 6.21 9.33 0.560

ELNET-MIN 5.53 26.11 0.393 6.61 14.40 0.548

HCLST-CORR-SGL 5.40 17.91 0.428 6.39 7.09 0.597

HCLST-BOOT-SGL 5.20 16.66 0.420 6.35 7.07 0.594

RF 3.53 18.41 0.281 4.91 7.68 0.462

BAGGING 3.56 13.94 0.308 4.73 6.70 0.456

BART-LOCAL 4.68 15.66 0.387 6.32 7.13 0.591

BART-GLOBALSE 1.96 0.53 0.228 2.24 0.22 0.261

BART-GLOBALMAX 0.01 0.00 0.001 0.01 0.00 0.001

B. Continuous outcome Strict Relaxeda

TP (N/10) FP (N/990) F2 TP (N/10) FP (N/953) F2

UNIV-BFN 4.83 39.57 0.286 5.90 17.47 0.468

LASSO-1SE 2.88 4.49 0.298 4.33 2.42 0.454

LASSO-MIN 4.61 10.52 0.419 6.47 7.60 0.599

ELNET-1SE 3.88 8.27 0.366 4.87 3.29 0.500

ELNET-MIN 5.18 14.79 0.433 6.61 8.88 0.598

HCLST-CORR-SGL 5.82 19.86 0.444 6.81 8.51 0.617

HCLST-BOOT-SGL 5.52 17.03 0.441 6.72 8.45 0.610

RF 4.63 28.46 0.316 5.93 14.26 0.493

BAGGING 4.40 25.73 0.314 5.81 12.96 0.494

BART-LOCAL 5.14 18.35 0.404 6.80 8.34 0.617

BART-GLOBALSE 2.40 0.93 0.274 2.85 0.41 0.326

BART-GLOBALMAX 0.01 0.00 0.002 0.01 0.00 0.002

TP True positive, FP False positive; boldface denotes best performing method by F2 statistic
aUnder the relaxed definition, if a true variable or its surrogate was selected, that variable was considered to be identified. Surrogates are therefore no longer in
the pool of potential false positives, but the maximum number of true positive variables remains 10
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definition allows for surrogate variables. For the false
positives, the strict definition shows the number of
members of X0 which were identified, while the relaxed
definition shows the number of selected members of X0

which did not have a substantial correlation with an
element of XT. The number of false positives was sub-
stantially reduced under the relaxed definition, especially
for methods which identify groups of correlated predic-
tors (e.g. elastic net, sparse group lasso), demonstrating
that many of the “false positive” results were identified
due to their relationship with a “true positive” variable.
For binary outcomes, the sparse regression method

identifying the fewest false positive results was the lasso
with the restrictive 1SE penalty (LASSO-1SE), while
elastic net with the less restrictive penalty (ELNET-
MIN) identified the largest number of true positives.
When considering the sparse group lasso, the simpler
correlation-based threshold to define clusters worked
somewhat better than the more complex bootstrap-
based cluster detection (although results were largely
similar). The correlation-based clustering generated
more clusters on average than bootstrap-based cluster
selection (837 vs 772), so more restrictive cluster defini-
tions may have led to these differences. Of the tree
ensemble methods, BART-LOCAL performed the best.
It substantially outperformed both RF or BAGGING.
BART-GLOBALSE and BART-GLOBALMAX were too
restrictive, identifying very few true positive variables.
Comparing the methods, there was generally a trade-

off between the number of true positives and false posi-
tives. However, certain strategies were clearly inferior to
others (dominated), with higher false positive rates and
lower true positive rates than other methods. Univariable
models and the random forests based models can be
eliminated from consideration in future studies based on
this criterion. When assessing the combined F2 measure
of performance, many of the penalized models performed

particularly well, with HCLST-CORR-SGL doing the best
overall. BART-LOCAL also did well, particularly under
the relaxed definition. The F2 measure indicates that these
methods have particularly good sensitivity, while also con-
sidering their PPV.
The results were largely similar for both continuous

(Normal) and binary outcomes. We did find that
Random Forests (RF) identified more variables (both
false positives and false negatives) for the continuous
outcome, while elastic net identified more variables with
the binary outcome; however, the same method (HCLS
T-CORR-SGL) had the highest F2 statistics for the strict
and relaxed definitions. For the continuous outcome,
under the relaxed definition, BART-LOCAL did as well
as HCLST-CORR-SGL.
Considering the individual variables, those chosen

from areas of high correlation (X1-X5) were selected less
often than those from areas of moderate to low correl-
ation (X6-X10), and there was more variability in detection
rates for X1-X5. (See Additional file 3) Unsurprisingly, the
lasso had notably low detection rates for X1-X5.

Performance assessment: exploration of false negatives/
impact of correlated data
One unexpected finding was the very low true positive
rate for certain variables. For the Bonferroni-adjusted
univariable analyses, we would expect each variable to
be detected in 39–40% of simulations, based on power
to detect effects in training and validation sets. However,
the proportion of time a variable was chosen (binary
case) ranged from 0 to 97% (see Table 3). These results
were attributable to confounding within XT. Confound-
ing of the relationship between a predictor X and an
outcome Y occurs when a third factor is associated with
both X and Y. Here, there were small to moderate corre-
lations between the members of XT (see Additional file 4).
Therefore, when variables were analyzed separately, the

Table 3 Effect of confounding on detection rate (binary outcome)

Mean β
(true = 0.22)

Detection rate
(UNIV-BFN)

Detection rate
(HCLST-CORR-SGL)

Detection rate
RF with lasso
validation

X1 0.223 0.25 0.586 0.244

X2 0.343 0.972 0.778 0.126

X3 0.252 0.546 0.372 0.132

X4 0.152 0.022 0.014 0.028

X5 0.085 0 0 0.01

X6 0.233 0.316 0.800 0.662

X7 0.281 0.812 0.928 0.71

X8 0.228 0.388 0.768 0.382

X9 0.280 0.786 0.928 0.728

X10 0.032 0 0.024 0.006
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regression model was misspecified due to confounding.
As shown in Table 3, the estimated effects from univari-
able models (i.e. our UNIV-BFN models) relate to the
proportion of times a variable is identified. Variables
with estimated effects > 0.22 (larger than the truth) were
more likely to be selected, while variables with estimated
effects < 0.22 (smaller than the truth; X4, X5, X10) were
almost never identified. Unfortunately, even methods
like the lasso which simultaneously consider all variables
did not provide substantial improvements in detection
rates of rarely selected variables, nor did using a multi-
variable (lasso) model in the validation step in place of
the univariable regressions.

Application to PA prostate cancer cases
We assessed associations between the census variables
and the outcome of aggressive Prostate Cancer (PCa)
using HCLST-CORR-SGL, the best-performing method
for binary outcomes. After applying the hierarchical
clustering algorithm with a threshold of 0.8, 10,888 of
the 14,663 variables were grouped with at least one
other variable. Of the 6865 clusters identified, 3090 had
two or more variables (max 244), and 3765 clusters con-
tained only one variable. HCLST-CORR-SGL identified
19 census variables in 13 clusters as predictors of aggres-
sive disease (Additional file 5), as well as year of diagno-
sis and patient age. One variable found in the NWAS
study was identified by this approach, and two variables/
clusters in the NWAS were highly related to variables
identified by HCLST-CORR-SGL. These overlapping
variables are described in Table 4. We note that the
results from HCLST-CORR-SGL were sparse within clus-
ters; nevertheless, the algorithm does not force selection
of a single representative variable from each cluster.
Therefore, some highly related variables were chosen (e.g.
PCT_SF3_PCT065I007 and PCT_SF3_PCT065A007).

Conclusions
In simulation studies, we found that methods using
hierarchical clustering combined with sparse group lasso
(HCLST-CORR-SGL) performed the best at identifying
variables with true associations (or their surrogates),
while providing control of false positive results. This
conclusion is based on the method’s F2 scores in

simulated data, a combined measure of accuracy which
gives greater weight to the method’s sensitivity. HCLST-
CORR-SGL used clustering to directly address the com-
plex correlation structure of the data, which may have
led to improvements in the ability of penalized regres-
sion to detect true positive variables. We showed that
the simpler threshold-based approach was sufficient to
define meaningful clusters. However, none of the ap-
proaches we assessed solved the issue of low detection
rates for the variables subject to confounding towards
the null, even though the sparse regressions are based
on multivariable models.
We applied the HCLST-CORR-SGL to our full dataset

and compared findings from these machine learning
methods to our previously published NWAS, under the
assumption that variables that replicated across methods
were more likely to represent true findings. We note that
in our simulation study, outcomes were generated com-
pletely independently, while the observed outcomes in
the full dataset likely had spatial effects which were not
accounted for in the machine learning approaches
applied here. Nevertheless, HCLST-CORR-SGL did in-
dependently replicate three out of 17 NWAS variables
(i.e. the identification of the same or a highly correlated
variable) which did take into account potential spatial
effects.
Previous studies of social-environmental factors often

selected census variables a priori. These studies showed
that single variables representing single domains (e.g. %
living below poverty) were associated with advanced
prostate cancer and cancer more broadly [4]. Interest-
ingly, the NWAS and machine learners consistently
identified more complex variables that combined do-
mains related to race, age, and poverty with household
or renter status. Thus, findings from these empirical
methods could serve to be hypothesis-generating, sug-
gesting interactions among domains that are often con-
sidered individually in current social-environmental
studies. For example, the top hit from the previous
NWAS (PCT_SF3_P030007) had a correlation of 0.93
with two variables identified by HCLST-CORR-SGL
(PCT_SF3_PCT065I007 and PCT_SF3_PCT065A007).
All three are markers of employment and transportation,
a combination of two different domains.

Table 4 Results from full data: Variables identified as associated with PCa aggressiveness by both HCLST-CORR-SGL and NWAS

SGL variable(s) Domain: Description NWAS variable Correlation(s)

PCT_SF3_PCT050102 Poverty: % Ratio of Income to Poverty level for persons aged 45–54 under 0.50 PCT_SF3_PCT050102 1.0

PCT_SF3_HCT005092 Housing/Income: %Renter-occupied housing units built 1939–1949 with householder
aged 25–34

PCT_SF3_HCT015042 0.912

PCT_SF3_PCT065I007 Employment/Transportation:
% White Only (non-Hispanic) Worker taking public transportation (trolley or streetcar)
to work

PCT_SF3_P030007 0.935

PCT_SF3_PCT065A007 % White Only Worker taking public transportation (trolley or streetcar) to work PCT_SF3_P030007 0.935
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This study has several limitations. First, although we
assessed several popular machine-learning algorithms
for variable selection, there are many other approaches.
We considered principal components regression, as it is
commonly used with highly collinear data, but ultimately
did not include it because the results were difficult to in-
terpret and required arbitrary thresholds. Other popular
machine learning approaches that use a “black box”
algorithm for prediction (e.g. neural networks) were not
readily useable for variable selection and therefore were
not included. Most Support Vector Machines (SVM)
based methods are not readily used for variable selec-
tion; we considered a sparse SVM method, but found
that it was computationally infeasible to implement [31].
We also did not evaluate predictive accuracy of the vari-
ous methods, as it was not of primary interest. Further,
we intentionally designed a situation where variables had
small effects compared to the random error, [3] so even
a perfect method would have relatively low predictive
ability. In real-world cases, the social-environmental var-
iables would be combined with patient-level variables,
giving the models much better predictive accuracy; we
did not do so here to isolate the effect of method choice
on selection of neighborhood predictors. Also, this work
specifically considered the use of US Census variables;
if researchers will use other sources of social-
environmental data which is appreciably different in
structure, it would be prudent to evaluate some of the
better performing methods via simulation. In such a
case, researchers could use our simulation method-
ology and code as a template to help guide their choice
of model. Finally, for computational tractability, the
size of the dataset used in simulations was limited to
1000 variables and 2000 subjects, much smaller than
the full dataset upon which this study is based. In
future studies, we will assess the impact of spatial
relationships and the rate of true associations on the
method’s performance. We will also consider cases
where the data-generating model is non-linear, in-
cludes interactions, and uses patient-level predictors.
Other directions needing further study include evaluat-
ing and developing methods for separate sources of so-
cial and environmental data (e.g. measures of exposure
to pollution), and determining whether such predictors
should be analyzed separately, or combined in a uni-
fied framework. Our work also demonstrates the need
for new methods with improved capacity for variable
selection in the presence of confounding.
In this era of Big Data and Precision Medicine,

[32, 33] the importance of neighborhood and other
environmental data will continue to grow. Given the
complex structure and high dimensionality of environ-
mental data, researchers should continue to develop
machine learning approaches for this area. For complex

diseases like cancer, the analysis of multilevel, mixed
feature datasets (including environmental, biological, and
behavioral features) will likely be needed to inform health
disparities, disease prevention and clinical care, motivating
the development of new analytical approaches.
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