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Abstract

Background: Administrative databases offer vast amounts of data that provide opportunities for cost-effective
insights. They simultaneously pose significant challenges to statistical analysis such as the redaction of data because
of privacy policies and the provision of data that may not be at the level of detail required. For example, ages in years
rather than birthdates available at event dates can pose challenges to the analysis of recurrent event data.

Methods: Hu and Rosychuk provided a strategy for estimating age-varying effects in a marginal regression analysis of
recurrent event times when birthdates are all missing. They analyzed emergency department (ED) visits made by
children and youth and privacy rules prevented all birthdates to be released, and justified their approach via a
simulation and asymptotic study. With recent changes in data access rules, we requested a new extract of data for
April 2010 to March 2017 that includes patient birthdates. This allows us to compare the estimates using the Hu and
Rosychuk (HR) approach for coarsened ages with estimates under the true, known ages to further examine their
approach numerically. The performance of the HR approach under five scenarios is considered: uniform distribution
for missing birthdates, uniform distribution for missing birthdates with supplementary data on age, empirical
distribution for missing birthdates, smaller sample size, and an additional year of data.

Results: Data from 33,299 subjects provided 58,166 ED visits. About 67% of subjects had one ED visit and less than
9% of subjects made over three visits during the study period. Most visits (84.0%) were made by teenagers between
13 and 17 years old. The uniform distribution and the HR modeling approach capture the main trends over age of the
estimates when compared to the known birthdates. Boys had higher ED visit frequencies than girls in the younger
ages whereas girls had higher ED visit frequencies than boys for the older ages. Including additional age data based
on age at end of fiscal year did not sufficiently narrow the widths of potential birthdate intervals to influence
estimates. The empirical distribution of the known birthdates was close to a uniform distribution and therefore, use of
the empirical distribution did not change the estimates provided by assuming a uniform distribution for the missing
birthdates. The HR approach performed well for a smaller sample size, although estimates were less smooth when
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*Correspondence: rhonda.rosychuk@ualberta.ca

13-524 Department of Pediatrics, University of Alberta, Edmonton Clinic Health
Academy, T6G 1C9 Edmonton, Canada

Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, Canada

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-020-01181-x&domain=pdf
http://orcid.org/0000-0001-8019-5466
mailto: rhonda.rosychuk@ualberta.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Rosychuk et al. BMC Medical Research Methodology (2020) 20:297

Page 2 of 11

(Continued from previous page)

better at these younger ages.

there were very few ED visits at some younger ages. When an additional year of data is added, the estimates become

Conclusions: Overall the Hu and Rosychuk approach for coarsened ages performed well and captured the key
features of the relationships between ED visit frequency and covariates.

Keywords: Administrative health datasets, Coarsened data, Doubly censored data, Recurrent events

Background

Data coarsening gives rise to a variety of challenges in
data analysis. In general, data may be missing for reasons
such as limited study resources, incomplete reporting by
researchers or study participants, non-mandatory fields
in administrative databases, and privacy concerns. The
nature of the coarsened data and the aims of the analysis
often motivate solutions for addressing the problem. For
example, double censoring, both left- and right-censoring
(e.g., [1, 2]), naturally arises when the events are only
observed within a range bounded by the entry and the
end of a study, possibly together with the births of sub-
jects or other limits. The censoring mechanism for doubly
censored data is complicated and the censoring times are
partially or completely missing for subjects ([3]). Doubly
censored data are alternatively defined as doubly inter-
val censored data. More analysis approaches for doubly
interval censored data are presented in Chapter 8 of [4].
In general, coarsened observations on a variable, differ-
ent from missing observations in the strict sense, still bear
information on the variable. It is often desirable but chal-
lenging to make good use of the information in the data
analysis.

This paper is concerned with a large, administrative,
health data study where birthdate data for all patients
were originally withheld for patient privacy reasons. Pre-
viously, we studied children and youth in Alberta who
visited emergency departments (ED) for mental health
reasons (April 2002 to March 2011). Hu and Rosychuk
[3] developed procedures for estimating age-dependent
effects on the intensity of recurrent events on the age
timescale in the presence of coarsened ages due to miss-
ing birthdates and in the presence of double censoring
and provided asymptotic results that showed the proce-
dures are valid theoretically. Pietrosanu, Rosychuk, and
Hu [5] subsequently examined how estimates differed
under different distributions for missing birthdates and in
situations with different sample sizes through empirical
studies. These empirical studies could not be as com-
prehensive as desired because the true birthdates were
unavailable.

With recent changes in the data access rules for Alberta
data, we are able to request a new extract of the mental
health ED data that includes patient birthdates for April

2010 to March 2017. The new extract provides an oppor-
tunity to empirically verify the Hu and Rosychuk (HR)
approach for coarsened ages by comparing their estimates
using the data with estimates under the true, known ages.
This paper focuses on examining the performance of the
HR approach under five scenarios: uniform distribution
for missing birthdates, uniform distribution for missing
birthdates with supplementary data on age, empirical dis-
tribution for missing birthdates, smaller sample size, and
an additional year of data.

Methods

Study setting and data

Alberta is a Canadian province with over 4 million res-
idents [6] and a uniform single-payer health system —
the Alberta Health Care Insurance Plan (AHCIP) — that
provides medically necessary health care. The Govern-
ment of Alberta is the custodian of all administrative
databases used in our study and Alberta Health Services
(AHS) provided the data from two population-based data
sources: the National Ambulatory Care Reporting System
(NACRS) and the AHCIP. Each Alberta resident is given a
lifetime unique personal health number that can be used
to link individuals across datasets.

The NACRS [7] database contains data for individual-
level ambulatory care in all 104 EDs in Alberta. The
NACRS database records details on each ED visit, such as
demographics of the patient (e.g., birthdate, age in years
at ED visit, sex), visit timing (e.g., registration date/time,
triage date/time, end of ED visit date/time), triage level,
diagnoses, interventions, discharge disposition, and geo-
graphic location.

For this study, all ED visits during April 1, 2010,
to March 31, 2017, were extracted for Alberta res-
idents aged <18 years at the time of the visit and
who presented for mental health reasons. ED vis-
its were considered mental health visits if the pri-
mary diagnosis field on the NACRS record con-
tained International Statistical Classification of Diseases
and Related Health Problems, Tenth Revision, Canada
(ICD-10-CA) [8] corresponding to psychoactive sub-
stance abuse, schizophrenia/schizotypal/delusional disor-
ders, mood disorders, neurotic/stress-related disorders,
behavioural syndromes, behavioural/emotional disorders,
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disorders of adult personality, unspecified mental disor-
der, or toxic effects of non-medicinal substances. Addi-
tionally, ED visits were considered mental health related
if they contained intentional self harm codes in any of
the diagnosis fields. The full details of the codes used are
provided elsewhere [9].

In addition, there was an AHCIP data extract from the
Annual Cumulative Registry File (CRF) database that pro-
vided the most reliable data at fiscal year end for birthdate,
sex, and geographic location. These fields were linked for
patients in the ED data extract. Our study uses data on
birthdate, age in years at ED visit, age in years at fiscal
year end, sex, health zone of residence, and a rural/urban
indicator based on the second character in the individ-
ual’s postal code. We refer to these data as the PMHC
(pediatric mental health care) data. Sex, rural/urban and
health zone variables are very stable over time and can
be assumed to be time-independent [3]. If some patients
changed their residence regions (rural/urban) or health
zones during the study, we used the data at their first ED
visit. Sex, rural/urban and health zone variables become
our time-independent covariates used in our modeling
that follows.

The University of Alberta Health Research Ethics Board
approved this study and deemed that individual consent
was not required.

Statistical methods

The data extraction window for this study is [Wi,
Wr]=[April 1 2010, March 31 2017]. We set the recur-
rent events on the age a timescale, where a €[ 0, 18) years.
The outcome of interest, N;(a), is the number of ED vis-
its made from birth to age a for subject i, i = 1,...,n.
For subject i, H;(a) is the history information prior to age
a and Z; is the covariate vector. For our data, the his-
tory would include the age at each prior ED visit and the
covariate vector is comprised of sex, rural/urban indicator,
and health zone of residence.

We first describe the methods when the model assumes
the regression coefficients are constant over age and the
birthdates are all available. We then apply the analogous
algorithm called Procedure A from [3] as an asymptotic
solution using a range of possible values for individual
unavailable birthdates. Next, we provide the approach
that allows regression coefficients to vary over age and
assumes birthdates are unavailable.

Regression coefficients constant over age

The Anderson-Gill (AG) model is a commonly used Cox
regression model for the counting process of recurrent
events. Here, we consider the special case where the
counting process is a Poisson process. Thus, the AG model
assumes that the covariate effects § do not vary with age
and the intensity is independent of all history information
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given the covariates. Then, the conditional intensity func-
tion of the AG model is A(a|H;(a), Z;) = Lo(a) exp (B'Z;),
where Ag(a) is the unspecified common baseline intensity
for all subjects.

When the birthdates, B = {By, By, ..
we can solve the equation

., By}, are available,

o, T YwIB)Zieh”
L YWIBOZie ™

1 18
Un(ﬂIB) = ;/0 Y(U‘Bi) { Zlnzl Y(ulBl)eﬂZ]

} dN;(u) =0

1)
GAG

for B to obtain the estimator B;“, where Y (u|B;) =
I(max(0, W; — B;) < u < min(18, Wr — B;)).

When birthdates B ={By,B>,...,B,} are all missing,
Procedure A from [3] provides an asymptotic solution by
using the range [; of possible values of birthdate B; that is
determined based on the available data for the subject. For
example, if a subject had an ED visit on January 1, 2011,
at the age of 1, then the possible values for the birthdate
are /=[January 1 2010, January 2, 2009]. It assumes that
the missing birthdate B; is an independent variable follow-
ing a uniform distribution, G;(-) = Unif(J;), within a year
for each subject i. We can use a sample mean obtained
from many collections of generated B;’s to approximate
the required expectation in implementing the approach.
That is, we randomly generate W independent collec-

tions of birthdates B™) = {ng) li=1,..., n}, where w =

1,...,Wand BEW) ~ Unif(l;), for all subjects.
With the generation of birthdates, the estimating func-
tion in (1) becomes
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and yields an alternative estimator Bﬁ‘%, where Y (M|BEW))

=] (max (0, W — ng)) < u < min (18, Wr — Bl(w)>>.
Practically speaking, if the birthdates are known for sub-
jects, then the lower and upper bounds of I; are the same
and equal to the true birthdate B;, for i = 1,...,n. Thus,
we can regard the known birthdates as a special case of
“generating” B with a probability of 1 and W = 1.

Regression coefficients vary over age

Assuming effects are constant over age may be too restric-
tive and the AG model can be too simplistic for a particu-
lar dataset. Hu and Rosychuk [3] estimate the multivariate
covariate effects B(a) at age a, where B(4) may vary
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with a. Conditional on Z;, the expected rate function is
E{dN;(a)|Z;} = exp (ﬂ (a)/Zi) dAy(a), where Ag(a) is the
cumulative baseline rate function.

The time-varying covariate effects S(a) are estimated
by solving the estimating equation E,(y;a) = 0 for y
(Equation 9 in [3]), and use the first component vector of
the estimator for y to estimate (a). Specifically,

1 18 n = ~
Brio= [ Ke-o) {ziws - Zowo |,

i=1

SV iuwa) /S (viu @), with
= LA for ¢q = 0,1 and S"E,q)(y;u,a) =
) ﬁ(u)Z;‘(u, a)®1 exp ()/Zf(u, a)). Also ZF (u,a) =

(7 w—@2Z), iw) = [§° Y @lb)dGi(b), and N} () =

fOOO{Y(u|b)dNi(u)}dG,'(b), and K,(-) = K(-/h)/h is a
kernel function to facilitate estimation.

With the W independent collections of randomly
generated lzirthdates B™), E,(y;a) can be approxi-
mated by U, w(y;a) = % 21‘3:1 u, (y;a|B(W)), where
U, (y;alB™) LS — @)Y, Y (u B§W>)
{Z;k(u, a) — ZZ (v u, a)} dN;(u) as defineii in Equation 6 of
[3]. Then, we can obtain the estimator S, (-) by solving

L_[,,,W(y;a) = 0. The full development and details are in
Hu and Rosychuk [3].

where é;(y;u,a) =
A®

Data scenarios

We investigate several scenarios that compare the esti-
mates obtained when the birthdates are missing and when
they are available.

Scenario 1: Uniform distribution for missing birthdates
This scenario answers the question of whether or not the
assumption of a uniform distribution for birthdates was
appropriate. We first conducted analyses using the AG
and the HR approaches and the complete PMHC data with
the missing birthdates uniformly generated from individ-
ual’s birthdate intervals given by the ED visit dates. Then,
we examined the performance of the models by com-
paring the estimates with missing birthdates to the ones
obtained with the known birthdates.

Scenario 2: Uniform distribution for missing birthdates and
additional age data

This scenario answers the question of whether or not the
incorporation of the available additional age information
narrows the birthdate intervals sufficiently to alter the
estimates. The CRF provides some additional information
on age: the age in years at the end of the fiscal year (March
31) is provided for each subject and each fiscal year of
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the study. This additional age data potentially narrows the
birthdate intervals used in Scenario 1 for the analysis with
missing birthdates.

Scenario 3: Distribution for missing birthdates based on
true birthdates

This scenario answers the question of whether or not
another distribution for the missing birthdates would be
better to use than the uniform distribution. The previ-
ous two scenarios assumed a uniform distribution for
the true birthdate within a birthdate interval. The cur-
rent data extract has the true birthdates and although
these birthdates are not from the entire population of
births in a single year, a proxy for the empirical distri-
bution of birthdates can be created by ignoring the year
and only focusing on the month and day of birthdates
of subjects in the dataset (Fig. 1). With this approach,
the probability of a birthdate within a birthdate inter-
val would be relative to the empirical birthdate distri-
bution with the interval. Figure 1 confirms that a uni-
form distribution of missing birthdates is a reasonable
assumption.

Scenario 4: Reduced sample size

The sample sizes for administrative data are often large
and this scenario answers the question of the effect of
missing birthdates on a smaller sample size. A random
sample of 2,000 subjects and their 3,515 ED visits was
taken from the dataset to explore estimates based on a
smaller sample size.

Scenario 5: Adding an additional year of data

This scenario answers the question of whether or not
additional study time influences the performance of the
estimates when birthdates are not available. An additional
year of data would reduce the length of birthdate inter-
vals for any subjects that had a visit in the additional time
period. This scenario used the PMHC data from 2010 to
2016 and then compared results obtained with the full
data to 2017.

For all scenarios, models with indicator variables for the
three categorical covariates sex, rural/urban, and zone are
fit (with female, urban, and the Edmonton zone as base-
lines) using specially developed C/C++ code that is called
with R. We used W = 5 and W = 100 with the AG
and HR models to investigate if the number of generated
birthdates mattered when the birthdates were missing.
Moreover, we used the Epanechnikov kernel and set two
months as one time unit, the bandwidth to be 3 units, and
the window of age to be [6, 102] time units. These are the
same settings as in [3]. Since the differences between the
local constant (LC) and the local linear (LL) estimates are
very small [3], we only present the LC estimates in the
following analyses.
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Results

Patient characteristics

The PMHC data contain 58,166 ED visits made by 33,299
subjects. About 67% of subjects had one ED visit and
less than 9% of subjects made over three visits during the
study period. In addition, most visits (84.0%) were made
by teenagers between 13 and 17 years old. Children under
6 years old had the least ED visits and made only 2.5%
of visits. Among the 33,299 subjects, 57.7% were females,
78.4% lived in an urban area, and over a half resided in
the largest metropolitan zones of Edmonton and Calgary
(Edmonton: 25.1%; Calgary: 34.8%; North: 17.4%; Central:
14.3%; South: 8.4%).

Scenario 1: Uniform distribution for missing birthdates

We started with the analysis under the AG model. Table 1
presents the estimates and the standard errors of the
covariate effects for missing birthdates with W = 5

and W = 100 and the true birthdates. The differences
among these estimates are tiny. Except for sex and South
vs Edmonton zone, there is no significant effect of other
covariates on the intensity of ED visits at a significance
level of 5%.

Next, we conducted the analysis under the HR model.
Figure 2 shows the estimates and the approximate 95%
pointwise confidence intervals (Cls) of the covariate
effects for missing birthdates with W = 5 or W = 100
and the true birthdates under the HR model together with
those under the AG model. The estimate curves verify
that the marginal regression model with the time-varying
coefficients are more appropriate than the AG model with
the time-independent coefficients. The estimates under
the AG model can be regarded as the overall averages of
the time-varying coefficient estimates [3]. The estimates
with W = 5 and W = 100 both detect the main trends
of the estimates for the known birthdates, suggesting the

Table 1 Coefficient estimates and standard error estimates under the Anderson-Gill model

Missing birthdates

Covariate _ with W =5 ~ ~ with W = 100 ~ ] True birthdates ]
s st (Bs) Broo SE (Bioo) p®) st (B®))
sex(male vs female) -0.105 0.015 -0.104 0.015 -0.103 0.015
residence (rural vs urban) -0.027 0.021 -0.027 0.021 -0.029 0.021
zone (South vs Edmonton) -0.112 0.030 -0.113 0.030 -0.113 0.030
zone (Calgary vs Edmonton) -0.034 0.021 -0.034 0.021 -0.035 0.021
zone (Central vs Edmonton) -0.037 0.028 -0.037 0.028 -0.036 0.028
zone (North vs Edmonton) -0.014 0.027 -0014 0.027 -0.012 0.027
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HR approach performs well regardless of the number of
generated birthdates. The estimates with W = 100 are
the smoothest, as expected, and the ones for the known
birthdates (i.e., W = 1) are the least smooth.

There are some interesting findings indicated by the
coefficient estimates of some covariates. In Fig. 2a and
b, there is no significant difference on the frequency of
ED visits between pre-school boys and girls. Boys at early
school ages have significantly higher frequency of ED

visits than girls at the same ages. However, the frequency
of ED visits for teenage girls is significantly higher than
that for teenage boys. Figure 2c and d suggest that there
is no significant effect of rural/urban on the intensity of
ED visits. In Fig. 2e and f, teenagers between 11 and 14
years old in the Calgary zone have significantly higher fre-
quency of ED visits than teenagers at the same ages in
the Edmonton zone; however, the frequency in the Cal-
gary zone is not significantly different from that in the
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Edmonton zone at other ages. The graphs for the other
zones do not differ substantially from the Edmonton zone
(not shown).

Scenario 2: Uniform distribution for missing birthdates and
additional age data

About 25% of birthdate intervals have a width <331 days
before the additional age data are used, whereas >75%
have a width <331 days after the additional age data are
used.

The additional age data result in only tiny changes for
a few of the estimates in Table 1 (not shown). Since the
coefficients are time-independent under the AG model,
the whole dataset can contribute to the estimation of the
coefficients and there would have to be substantive nar-
rowing of many of the birthdate intervals to make an
overall impact on the estimated effects.

Figure 3 presents the LC estimates and the approxi-
mate 95% pointwise Cls for the effects of sex and zone
using the full PMHC data and the fiscal year end data.
The graphs for the rural areas do not differ significantly
from the urban areas (not shown). Similar to the results
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for Scenario 1, the estimate curves with both W = 5
and W = 100 capture the main trends of the estimates
using the true birthdates. Additionally, Fig. 3 indicates
that including the additional age data does not result in a
notable change in the coefficient estimates because adding
the additional information does not lead to substantive
narrowing of enough of the birthdate intervals to have an
influence on the estimation.

Scenario 3: Distribution for missing birthdates based on
true birthdates

Figure 4 shows the coefficient estimates of sex and zone
and the approximate 95% pointwise ClIs with the full
PMHC data and missing birthdates under the empirical
birthdate distribution (Fig. 1). Figure 4 indicates that the
estimates and the 95% CIs are almost identical for missing
birthdates under a uniform distribution and the empiri-
cal distribution, particularly when W = 100, because the
empirical birthdate distribution is very close to a uniform
distribution. Compared with the estimates for the known
birthdates, the use of the empirical distribution does not
clearly improve the estimation of the coefficients.
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Fig. 3 Local constant (LC) estimates and approximate 95% pointwise confidence intervals (Cls) for the effects of sex and Calgary vs Edmonton zone
using the full PMHC data together with the fiscal year end data. In each panel, the thick black curves denote the coefficient estimate and the
corresponding 95% Cls under the Hu-Rosychuk (HR) model for missing birthdates with W = 5 or W = 100; the thick grey curve represents the
estimate with the known birthdates and associated 95% Cls (shaded); the dark grey dashed curves denote the estimate and the 95% Cls without the
fiscal year end data; the dashed line and the surrounding shade are the estimate and the 95% Cls under the Andersen-Gill (AG) model, respectively
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Scenario 4: Reduced sample size

This scenario had a random sample of 2,000 subjects.
More than a half (67.1%) of subjects had one ED visit
and only 8.6% made over 3 visits. Most visits (82.5%)
were made by teenagers whose ages are between 13 and
17 years old. Pre-school children made less than 3% of
the visits. Among the 2,000 subjects, 56.7% were girls,
78.6% lived in an urban area, and more than a half (59.3%)
resided in the Edmonton and Calgary zones.

Figure 5 presents the coefficient estimates of sex and
zone and the corresponding 95% pointwise Cls for the
small sample of the PMHC data. The main trends in the
estimates of sex agree with the ones using the full PMHC
data while the bands are much wider than the ones using
the full data. Figure 5c¢ and d present no significant effect
of the Calgary zone on the intensity of ED visits; there are
two big jumps at younger ages (cropped) in the estimate
for the known birthdates because there were only a few
ED visits at pre-school ages in the reduced sample.

Scenario 5: Adding an additional year of data
This scenario used the PMHC data from 2010 to 2016 and
then compared results obtained with the full data to 2017.
This subset of the PMHC data consists of 48,827 ED vis-
its made by 28,497 subjects. Most (67.9%) subjects had
one ED visit and only 8.1% of subjects made over 3 visits.
About 84.2% of the visits were made by teenagers between
13 and 17 years old. Children under 6 years old made less
than 3% of the visits. Furthermore, 57.5% of subjects were
females, 78.3% lived in an urban area, and more than a half
(59.8%) resided in the Edmonton and Calgary zones.
Figure 6 presents the coefficient estimates of sex and
zone with the approximate 95% pointwise Cls using the
PMHC data from 2010 to 2016. The estimates detect the
main trends of the estimates given by the true birthdates.
In Figure 6a and b, the difference between the estimates
using the six-year data and the full data is notable at ages
between 5 and 10 and the estimates using the six-year data
tend to be lower than the ones using the full data.
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Fig. 5 Local constant (LC) estimates and approximate 95% pointwise confidence intervals (Cls) for the effects of sex and Calgary vs Edmonton zone
using a random sample of 2,000 subjects and their ED visits from the PMHC data. In each panel, the thick black curves denote the coefficient
estimate and the corresponding 95% Cls using the reduced sample for missing birthdates with W = 5 or W = 100; the thick grey curve represents
the estimate using the full data and associated 95% Cls (shaded); the dark grey dashed curves denote the estimate and the 95% Cls with the
reduced sample and the known birthdates; the dashed line and the surrounding shade are the estimate and the 95% Cls under the Andersen-Gill
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Discussion

In this paper, we used a large, administrative PMHC
data and the HR approach to estimate the age-dependent
effects of sex, rural/urban, and health zone of residence
on the intensity of ED visits for mental health reasons.
The HR approach deals with coarsened censoring times
due to the unreleased birthdates by randomly generating
collections of possible birthdates from uniform distribu-
tions associated with study subjects. The availability of the
true birthdates allows us to evaluate the performance of
the HR approach against the known birthdates in differ-
ent situations including the situation where there is useful
additional age information, the situation where an empiri-
cal birthdate distribution for missing birthdates is applied,
and situations where the sample size is smaller and addi-
tional years of data may become available. We found that
the HR approach generally captures the main trends of the
estimates given by the known birthdates for a large sam-
ple size regardless of the number of generated birthdates,
W. As expected, the coefficient estimates are smoother for
higher values of W.

Our results provide some practical insights on the appli-
cation of the HR approach with the PMHC data. In Sce-
narios 2 and 3, we examined how additional age data and
the use of the empirical birthdate distribution for missing
birthdates influence the time-dependent coefficients for a
large sample size, respectively. The results show that there
is no meaningful change in the estimates in both scenar-
ios. For simplicity, we can assume a uniform distribution
for the missing birthdates and use the PMHC data exclud-
ing the fiscal year end data to estimate the coefficients in
a large sample. In Scenario 4, we investigated the perfor-
mance of the HR approach against the known birthdates
and the full dataset for a small sample size. The estimates
for missing birthdates detect the main trends of the esti-
mates with the full data and the known birthdates for ages
when data are available. There were some extreme esti-
mates when there were few visits at lower ages and these
jumps suggest that we would have to have a larger sam-
ple size to fully capture the effect across the age range. In
Scenario 5, we were motivated by the ongoing study and
evaluated how adding an additional year of data influences
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Fig. 6 Local constant (LC) estimates and approximate 95% pointwise confidence intervals (Cls) for the effects of sex and Calgary vs Edmonton zone
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the estimates. The estimates have similar trends to the
ones using the full dataset while the difference between
the estimates for sex is notable for ages between 5 and
10. Therefore, including an additional year of data helps
to increase the sample size and narrow birthdate intervals
that may be especially important for ages where fewer ED
visits occur and these changes improve the performance
of the HR approach.

Conclusion

Overall, the HR approach for missing birthdates with
additional information from the database, which results in
coarsened censoring times in the data analysis, performs
well when compared to estimation using the known birth-
dates. Our paper provides insights on the practical aspects
of applying this approach. Further, our examinations illus-
trate the effects of sample size on estimates, particularly
for values of the time-varying covariate that may be less
prevalent in the distribution of events.
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