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Common sampling and modeling
approaches to analyzing readmission risk
that ignore clustering produce misleading
results
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Abstract

Background: There is little consensus on how to sample hospitalizations and analyze multiple variables to model
readmission risk. The purpose of this study was to compare readmission rates and the accuracy of predictive
models based on different sampling and multivariable modeling approaches.

Methods: We conducted a retrospective cohort study of 17,284 adult diabetes patients with 44,203 discharges
from an urban academic medical center between 1/1/2004 and 12/31/2012. Models for all-cause 30-day
readmission were developed by four strategies: logistic regression using the first discharge per patient (LR-first),
logistic regression using all discharges (LR-all), generalized estimating equations (GEE) using all discharges, and
cluster-weighted (CWGEE) using all discharges. Multiple sets of models were developed and internally validated
across a range of sample sizes.

Results: The readmission rate was 10.2% among first discharges and 20.3% among all discharges, revealing
that sampling only first discharges underestimates a population’s readmission rate. Number of discharges
was highly correlated with number of readmissions (r = 0.87, P < 0.001). Accounting for clustering with GEE
and CWGEE yielded more conservative estimates of model performance than LR-all. LR-first produced
falsely optimistic Brier scores. Model performance was unstable below samples of 6000–8000 discharges
and stable in larger samples. GEE and CWGEE performed better in larger samples than in smaller samples.

Conclusions: Hospital readmission risk models should be based on all discharges as opposed to just the
first discharge per patient and utilize methods that account for clustered data.

Keywords: Logistic models, Patient readmission, Predictive modeling, Sampling strategies, Clustering

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Daniel.rubin@tuhs.temple.edu
4Lewis Katz School of Medicine at Temple University, Section of
Endocrinology, Diabetes, and Metabolism, 3322 N. Broad ST., Ste 205,
Philadelphia, PA 19140, USA
Full list of author information is available at the end of the article

Zhao et al. BMC Medical Research Methodology          (2020) 20:281 
https://doi.org/10.1186/s12874-020-01162-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-020-01162-0&domain=pdf
http://orcid.org/0000-0002-6871-6246
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Daniel.rubin@tuhs.temple.edu


Background
Recent interest in value-based care has focused attention
on quality metrics in healthcare delivery. One metric,
the all-cause emergency (unplanned) 30-day hospital re-
admission rate, has received considerable attention be-
cause it may be related to poor care, and hospitals in the
US with excess readmission rates are subject to financial
penalties [1, 2]. To better understand and ultimately pre-
vent readmissions, numerous studies have examined re-
admission risk factors and/or developed multivariable
predictive models [3–5].
Despite this growing body of literature, there is little

consensus on how to sample hospitalizations and
analyze multiple variables to model readmission risk. It
is possible that different sampling strategies may yield
different readmission rates. For example, the 30-day re-
admission rate for patients diagnosed with diabetes re-
ported in the literature ranges from 10.0%, in which only
the first hospitalization per patient was included as an
observation, to 20.4%, in which all hospitalizations were
considered as observations [6, 7]. While some variation
is expected due to differences in populations across
studies, sampling strategy may independently affect ob-
served readmission rates.
In addition to variation in sampling methods, there are

also multiple approaches to multivariable modeling. The
most common approach is logistic regression, which treats
each observation (hospital discharge) as independent [4,
5]. While this model is the least computationally demand-
ing and the most familiar, the assumption of independ-
ence may not be valid for multiple hospitalizations of an
individual patient during a given study period. The re-
admission risk of a patient at the time of discharge #1 is
likely related to the readmission risk of the same patient at
the time of discharge #2. In this case, the patient may be
considered as a cluster of 2 hospital discharges. Simulation
studies show that analytical approaches on clustered data
that do not take into account the effects of clustering
often yield erroneous results [8, 9].
One method that accounts for longitudinal correla-

tions of data within clusters is generalized estimating
equations (GEE) [10]. In the GEE approach, the intra-
cluster correlation is modeled to determine the weight
that should be assigned to data from each cluster [11]. If
the outcome is independent of cluster size (i.e., cluster
size is uninformative), then this approach is valid. How-
ever, if the outcome is related to cluster size, as is likely
with readmission risk and number of discharges, then
GEE may generate misleading parameter estimates. For
example, people with poor dental health are likely to
have fewer teeth than those with good dental health be-
cause factors that lead to poor dental health also lead to
tooth loss. Therefore, in a study investigating risk factors
for tooth disease, the number of teeth per person

(cluster size) would be informative [11]. Cluster-
weighted GEE (CWGEE) has been proposed as a valid
approach to analyzing clustered data with an informative
cluster size [11]. While some examples of the GEE ap-
proach exist in the readmission literature [7, 12, 13], to
our knowledge, CWGEE has not been used in this
context.
Herein, we compare readmission rates and predictive

model accuracy of different sampling and multivariable
modeling approaches in a dataset of diabetes patients
previously used to develop a readmission risk prediction
model [7].

Methods
A cohort of 17,284 patients discharged from an urban
academic medical center (Boston Medical Center) be-
tween 1/1/2004 and 12/31/2012 were selected, and 44,
203 discharges from this cohort comprised the complete
dataset. Inclusion criteria for index discharges were dia-
betes defined by an International Classification of Dis-
eases, Ninth Revision, Clinical Modification (ICD-9-CM)
code of 250.xx associated with hospital discharge or the
presence of a diabetes-specific medication on the pre-
admission medication list. Index discharges were ex-
cluded for patient age < 18 years, discharge by transfer to
another hospital, discharge from an obstetric service (in-
dicating pregnancy), inpatient death, outpatient death
within 30 days of discharge, or incomplete data. Re-
admission documented within 8 h of a discharge was
merged with the index admission to avoid counting in-
hospital transfer as a readmission.
The primary outcome was all-cause readmission within

30 days of discharge. The same 46 variables previously
used to develop a readmission risk prediction model were
evaluated as predictors of the primary outcome to con-
struct and validate all prediction models (see Table, Sup-
plemental Digital Content 1, which presents patient
characteristics on the variables analyzed) [7].
Five different measures of performance were assessed

for each model.

1) Diagnostic discrimination (C statistic): the area
under the receiver operating characteristic curve
(AUC), for which higher values represent better
discrimination [14]. Discrimination is the ability of
a model to distinguish high-risk individuals from
low-risk individuals [15]. The C statistic is the most
commonly used performance measure of general-
ized linear regression models [16].

2) Correlation: the correlation between the observed
outcome (readmission) and the value predicted by
the model [17]. Unlike the C statistic, correlation
represents a summary measure of the predictive
power of a generalized linear model.
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3) Coefficient of discrimination (D): the absolute value
of the difference between model successes (the
mean predicted probability of readmission, p^, for
readmitted patients) and model failures (p^ for
non-readmitted patients) [18]. This is a measure of
overall model performance with a more intuitive in-
terpretation for binary outcomes than the more fa-
miliar coefficient of determination (R2).

4) Brier score: the mean squared deviation between
the predicted probability of readmission and the
observed readmission rate. An overall score that
captures both calibration and discrimination
aspects, the Brier score can range from 0 for a
perfect model to 0.25 for a noninformative model
with a 50% incidence of the outcome. When the
outcome incidence is lower, the maximum score for
a noninformative model is lower [16, 19].

5) Scaled Brier score: the Brier score scaled by its
maximum score (Briermax) according to the eq. 1-
Brier score / Briermax [16, 20]. Unlike the Brier
score, the scaled Brier score is not dependent on
the incidence of the outcome. For the scaled Brier
score, a higher score represents greater accuracy.
Briermax is defined as mean(p)*(1-mean(p)) where
mean(p) is the average probability of a positive
outcome. The scaled Brier score is similar to
Pearson’s R2 statistic [16]. The Brier score and
scaled Brier score were chosen as measures to
highlight potential differences seen when the
incidence of readmission varies due to the sampling
methods described below.

Sampling was performed by two methodologies. The
first method included only the first index discharge per
patient during the study period (first discharges). The
second method included all index discharges per patient
(all discharges), regardless of whether the hospitalization
was a readmission relative to a prior discharge. The
study sample was then divided randomly into a training
sample and a validation sample [15]. The training sam-
ple, which comprised 60% of the patients in the study
cohort, was used to develop the statistical prediction
models. The validation sample contained the remaining
40% of the patients and was used to evaluate the per-
formance of the prediction models.
Characteristics of the study population were described

and compared between the training and validation sam-
ples. Categorical variables were presented as number (%)
while continuous variables were presented as mean
(standard deviation) or median (interquartile range). For
the first discharge per patient dataset, the validation
sample was compared to the training sample by Chi-
square tests for categorical variables and two sample t-
tests or Wilcoxon rank-sum tests for continuous

variables. For the all discharges dataset, the validation
sample was compared to the training sample by univari-
ate generalized linear model for all variables. When ana-
lyzing all discharges, only current and prior observations
available at the time of each index discharge were used
for modeling.
The models can be described in mathematical terms

as follows. Suppose the ith patient has ni observations
where i = 1, 2, … N and jth discharge where j = 1, 2, …ni.
Suppose Xij is the 46-vector of covariates and Yij is the
vector of discharges where Yij = 1 of ith subject at jth dis-
charge readmitted within 30 days and Yij = 0 otherwise.
Xij can be constant over time such as gender or time-
varying such as age. We further define a general class of
models that specify the potential relation between re-
admission Y and covariates X as f (E(Y | X)) = η, where f
(.) is a link function, such as the logit function, that de-
termines the relationship between Y and X; E (Y | X) de-
notes the conditional mean of Y given X; and η is a
function of covariates, usually a linear function such that
η = α + β X where α and β are log odds ratios. We fit
the readmission prevalence model assuming a logit link
to estimate the effect of covariates β as logit(E(Y|X)) = α
+ β X. Then the probability of readmission within 30
days is P((Y = 1) = exp.(α + β X)/[1 + exp.(α + β X)]. This
probability is estimated and used to compare perform-
ance of four statistical approaches described below.
The four approaches used to predict readmission were:

1) logistic regression using the first discharges, 2) logistic
regression using all discharges, 3) GEE logistic regression
with an exchangeable correlation structure using all dis-
charges, and 4) CWGEE logistic regression with an ex-
changeable correlation structure using all discharges.
CWGEE logistic regression is an extension of GEE logis-
tic regression that accounts for cluster size when the
outcome among observations in a cluster is dependent
on the cluster size (i.e., when cluster size is informative)
[11]. For each approach, univariate analyses were per-
formed for all variables to determine those associated
with 30-day readmission (P < 0.1). Multivariable models
with best subset selection were performed to determine
the adjusted associations of the variables with all-cause
30-day readmission [21, 22]. Variables associated with
30-day readmission at the P < 0.05 level in the multivari-
able models were retained.
To examine the effects of sample size on model per-

formance, we conducted resampling studies across a
range of sample sizes from 2000 to 17,000 patients by
intervals of 1000. We randomly sampled each subset
from the complete cohort of 17,284 patients. Each subset
was then randomly divided 60% for model development
and 40% for validation. For each dataset, the models
were developed and compared as described above.
Changes in model performance measures over sample
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size are displayed by line charts and compared by ana-
lysis of covariance. Lastly, we examined the relationship
between the log of the number of discharges per patient
(cluster size) and the number of readmissions per pa-
tient by Pearson correlation. In addition, correlations be-
tween the number of discharges per patient and
predicted readmission rates were assessed. All statistical
analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC) and Stata 14.0 (StataCorp, College Station,
TX). Institutional Review Board approval was obtained
from Boston Medical Center and Temple University.

Results
There were 17,284 patients with 44,203 discharges, of
which 9034 (20.4%) were associated with 30-day re-
admission for any cause. The study cohort is well-
distributed across middle to older adult age and sex (See
Supplementary Table 1, Additional File 1). A majority of
the patients are unmarried, English-speaking, insured by
Medicare or Medicaid, lived within 5 miles of the hos-
pital, educated at a high-school level or less, disabled, re-
tired, or unemployed, and overweight or obese. This is
an ethnically diverse sample, with 37.4% black, 14.7%
Hispanic, and 39.7% white. The distribution of charac-
teristics is similar between training and validation sets,
with only 3 variables showing statistically significant dif-
ferences despite absolute differences of < 2% (race/ethni-
city [P = 0.03], serum sodium [P = 0.01], and COPD or
asthma [P = 0.049]). Likewise, the distribution of charac-
teristics is similar between training and validation sets of
all discharges, with only 2 variables showing statistically
significant differences despite absolute differences of <
2% (pre-admission sulfonylurea use [P = 0.032], and
serum sodium [P = 0.029], (See Supplementary Table 2,
Additional File 2).
The readmission rate is 10.2% in the sample of first dis-

charges and 20.3% in the sample of all discharges. The
AUCs are comparable among logistic regression with first
discharges, logistic regression using all discharges, and
GEE using all discharges, ranging from 0.803–0.821 (See
Supplementary Table 3, Additional File 3, which compares
performance of the four modeling methods in the whole
cohort). CWGEE using all discharges yielded a lower
AUC than logistic regression with first discharges and lo-
gistic regression with all discharges. Logistic regression
with all discharges resulted in the highest coefficient of
discrimination, followed by the GEE, first discharge and
WGEE models. Analyzing all discharges both with and
without GEE produced the highest predictive power by
correlation, while the first discharge showed the least pre-
dictive power. Analysis of the first discharges yielded the
smallest (best) Brier score while the other three methods
yielded comparably higher (worse) Brier scores. Analysis
of the first discharges generated the smallest (worst)

scaled Brier score, which is borderline different from the
largest (best) scaled Brier score produced by logistic re-
gression with all discharges.
The observed rates of readmission were stable with in-

creasing sample size from 2000 to 17,000 patients for
the first discharges and all discharges samples. With
sample sizes less than 6000, the AUCs, coefficients of
discrimination, correlations and Brier scores were vari-
able (Figs. 1,2,3 and 4). These measures of model per-
formance were relatively stable at sample sizes of 6000
to 17,000. The scaled Brier scores were relatively stable
at sample sizes of 8000 to 17,000. The AUCs were com-
parable among the four approaches, with the first dis-
charges models generally having the greatest AUC and
CWGEE having the smallest AUC over the sample size
range (Fig. 1). The coefficients of discrimination were
greatest for the analysis of all discharges using logistic
regression and generally smallest with CWGEE and first
discharges (Fig. 2). The correlations were highest for lo-
gistic regression with all discharges and lowest for the
first discharges (Fig. 3). The first discharges analysis
yielded the lowest (best) Brier score by a substantial
margin compared to the other 3 methods, which were
comparable across all samples sizes (Fig. 4). In contrast,
the first discharges approach generally produced the
lowest (worst) scaled Brier score and all discharges logis-
tic regression yielded the highest (best) across samples
sizes (Fig. 5).
There were no statistically significant readmission rate

changes over sample size for both the first discharges
(P = 0.48) and all discharges (P = 0.24). The slopes for
AUC, coefficients of discrimination, correlations, Brier
score, and scaled Brier score were flat for both first dis-
charges and all discharges logistic regression (See

Fig. 1 AUC of models tested in validation samples of adult patients
with diabetes. The x-axis shows the size of the initial cohort from which
training and validation samples were drawn. Boston, Massachusetts,
2004–2012. GEE = generalized estimating equations. CWGEE = cluster-
weighted generalized estimating equations. AUC = Receiver operating
characteristic area under the curve
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Supplementary Table 4, Additional File 4, which com-
pares change over sample size across the model per-
formance measures). However, the slopes for these
measures were significantly different from zero for GEE
and CWGEE. As sample size increases, the AUC, coeffi-
cients of discrimination, correlation measures, and
scaled Brier scores increase for GEE and CWGEE, indi-
cating more predictive accuracy. Similarly, the Brier
scores decrease for GEE and CWGEE as the sample size
increases, indicating greater predictive accuracy.
The distribution of discharges per patient is presented

in Supplementary Table 5, Additional File 5. There are
9780 (56.6%) patients with one discharge, 2936 (17.0%)
with 2 discharges, and 4568 (26.4%) with at least three

discharges. A total of 919 (13.3%) patients experienced
one readmission and 686 (9.9%) had 2 or more readmis-
sions. As expected, the number of discharges is posi-
tively correlated with the number of readmissions (r =
0.87, P < 0.001). The correlation coefficients between
number of discharges and predicted readmission rates
for all discharges logistic regression, GEE and CWGEE
are 0.44, 0.38 and 0.31, respectively. Furthermore, the
risk of readmission increases as the number of dis-
charges increases (r = 0.45, P < 0.001, Fig. 6).

Discussion
This study explored the impact of different sampling
and multivariable modeling approaches on readmission

Fig. 2 Coefficients of discrimination of models tested in validation
samples of adult patients with diabetes. The x-axis shows the size of
the initial cohort from which training and validation samples were
drawn. Boston, Massachusetts, 2004–2012. GEE = generalized estimating
equations. CWGEE = cluster-weighted generalized estimating equations

Fig. 3 Correlation measures of models tested in validation samples of
adult patients with diabetes. The x-axis shows the size of the initial
cohort from which training and validation samples were drawn. Boston,
Massachusetts, 2004–2012. GEE = generalized estimating equations.
CWGEE = cluster-weighted generalized estimating equations

Fig. 4 Brier scores of models tested in validation samples of adult
patients with diabetes. The x-axis shows the size of the initial cohort
from which training and validation samples were drawn. Boston,
Massachusetts, 2004–2012. GEE = generalized estimating equations.
CWGEE = cluster-weighted generalized estimating equations

Fig. 5 Scaled Brier scores of models tested in validation samples of
adult patients with diabetes. The x-axis shows the size of the initial
cohort from which training and validation samples were drawn.
Boston, Massachusetts, 2004–2012. GEE = generalized estimating
equations. CWGEE = cluster-weighted generalized estimating equations
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risk prediction. We found that sampling only the first
discharge per patient substantially underestimates the
readmission rate relative to all discharges and is associ-
ated with misleading measures of model performance,
particularly the Brier score. As expected, the number of
readmissions per patient and the risk of readmission is
highly correlated with the number of discharges per pa-
tient. In resampling studies across a range of sample
sizes, most measures of model performance are unstable
below a sample size of 6000 and stabilize at sample sizes
of 6000 or greater. We also found that the accuracy of
GEE and CWGEE is better in larger samples than in
smaller samples. Lastly, we showed that using modeling
approaches that account for clustering (GEE) and cluster
size (CWGEE) yield generally more conservative mea-
sures of model performance than logistic regression.
Multiple methods for sampling hospitalizations and

analyzing risk factors are used in studies that model pre-
dictors of readmission risk. Sampling only the first dis-
charge per patient is a commonly used approach [6, 23–
32]. This approach eliminates clusters of multiple hospi-
talizations per patient, enabling the valid analysis of such
data by logistic regression. One disadvantage of sampling
the first discharges, however, is that informative data
from subsequent discharges are excluded. We show that
models based on all discharges perform better on most
measures of model performance than models based on
first discharges. A second disadvantage of sampling only
the first discharges is that the observed readmission rate is
substantially lower than the readmission rate observed for
all discharges during the study. In our study, the readmis-
sion rate in the sample with all discharges was nearly

double the readmission rate in the first discharges sample.
This occurs because excluding repeat discharges per pa-
tient minimizes the influence of patients with multiple dis-
charges, who are at higher risk of readmission.
Such variation in observed readmission rates by

different sampling methods is reflected in the litera-
ture. For example, among studies modeling readmis-
sion risk factors of patients with diabetes, we
identified 14 English-language papers on PubMed
published before 2019 that reported models of all-
cause 30-day readmission risk [6, 7, 12, 23–28, 33–
37]. Among the 7 studies that sampled all discharges
in their respective datasets [7, 12, 33–37], the mean
readmission rate was 18.9% with a range of 16.0–
21.5%. Among the 7 studies that sampled only first
discharges [6, 23–28], the mean readmission rate
was 13.5% with a range of 10.0–17.1%. Given that in
clinical practice a provider may be treating a patient
experiencing their first hospitalization or one of
many hospitalizations, we believe it is more
generalizable to sample all discharges for analysis so
the entire experience of the study population is cap-
tured. Although studies that sample only first dis-
charges can provide insights into readmission risk
factors, reports of readmission rates in these samples
should not be broadly interpreted to represent the
readmission rate for the target population. We be-
lieve this is an important methodological insight that
has not been previously published.
As with approaches to sampling hospitalizations, mul-

tiple methods of modeling readmission risk are used.
The most common multivariable modeling approach by

Fig. 6 Percent of discharges followed by a readmission within 30 days by number of discharges per patient. The risk of readmission increases as
the number of discharges increases (r = 0.45, P < 0.001 by Pearson correlation with log-transformed number of discharges)
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far is logistic regression [4, 5]. Interestingly, logistic re-
gression is utilized in some studies that sample all dis-
charges without acknowledging the probable violation of
the independence assumption [13, 34, 37]. In addition,
some studies of readmission risk factors that utilize lo-
gistic regression do not report how hospitalizations were
sampled [38–40]. The most often utilized statistical
modeling approach to account for correlations within
clustered hospitalization data is GEE [7, 12, 33, 41]. We
are unaware of any readmission risk models that employ
CWGEE.
While some studies have compared readmission risk

models generated by different methods [42, 43], few
have explored broader methodologic issues involved
with analyzing readmissions. One study found that the
LACE+ model, which was derived in a patient-level sam-
ple based on one randomly selected hospitalization per
patient, performed worse in the parent sample that in-
cluded all hospitalizations of the patients [44]. The au-
thors concluded that frequent hospital utilizers probably
have characteristics that were not adequately captured in
the patient-level model and that capturing these charac-
teristics may improve readmission models. Another
study showed that readmission risk model performance
varied by restricting samples to different reasons for re-
admission, that different types of data (visit history and
laboratory results) contributed more predictive value
than other types of data, and that limiting the cohort to
patients whose index admission and readmission diagno-
ses matched was associated with worse model perform-
ance compared with a cohort that did not match
admission and readmission diagnoses [45]. Lastly, simu-
lation studies outside the readmission literature show
that analytical approaches on clustered data that do not
take into account the effects of clustering often yield er-
roneous results [8, 9].
Our study has some limitations. First, 30-day readmis-

sions that may have occurred at other hospitals were not
captured. However, in our cohort the 30-day readmis-
sion rate was 20.4%, which is one of the highest readmis-
sion rates reported among patients with diabetes.
Therefore, it seems unlikely that a significant number of
patients were readmitted elsewhere. Second, no external
validation was conducted because the data were drawn
from a single center. Although it is possible that the spe-
cific models generated in our study population would
yield different results in other populations, the types of
administrative and clinical data analyzed are likely to be
generalizable to most hospitals. Therefore we believe the
general concepts revealed by our findings are broadly
applicable to analyses of readmissions in hospital cohorts
across other settings and other chronic conditions than
diabetes. Finally, we did not assess calibration by the
commonly used Hosmer-Lemeshow goodness-of-fit test

[46]. The standard approach with this test compares ob-
served and predicted outcomes by decile of predicted
probability. However, this test can give different results
depending on the number of groups used [46]. In
addition, performance of the test varies by sample size
[46, 47], and 4 of the 5 measures of model performance
we used incorporate calibration.
These limitations are balanced by a number of

strengths. We analyzed a large enough cohort to exam-
ine performance of different modeling approaches across
a broad range of sample sizes. Furthermore, this was a
population well-characterized on 46 different variables
used for modeling procedures. In addition, our analyses
on the effects of different sampling and modeling ap-
proaches on model performance are novel in the field of
readmission risk prediction.

Conclusions
This study demonstrates the impact of different meth-
odological approaches to analyzing hospital readmission
data. All discharges in a cohort of hospitalized patients
should be analyzed because sampling only the first dis-
charge per patient produces low population estimates of
readmission rates and misleading results with Brier
scores. Studies should therefore transparently report
how discharges are sampled. In addition, the number of
readmissions per patient and the risk of readmission is
highly correlated with the number of discharges per pa-
tient. Not surprisingly, modeling methods that account
for clustering and cluster size yield different, generally
more conservative, estimates of model performance. Re-
searchers should be aware of the pitfalls associated with
these measures of model performance and modeling
procedures. Future studies of readmission risk may gen-
erate more valid results if they include all discharges and
utilize modeling methods that account for clustered
data.
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