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Abstract

considerably underestimated.

Public health

Background: Infectious disease predictions models, including virtually all epidemiological models describing the
spread of the SARS-CoV-2 pandemic, are rarely evaluated empirically. The aim of the present study was to investigate
the predictive accuracy of a prognostic model for forecasting the development of the cumulative number of reported
SARS-CoV-2 cases in countries and administrative regions worldwide until the end of May 2020.

Methods: The cumulative number of reported SARS-CoV-2 cases was forecasted in 251 regions with a horizon of two
weeks, one month, and two months using a hierarchical logistic model at the end of March 2020. Forecasts were
compared to actual observations by using a series of evaluation metrics.

Results: On average, predictive accuracy was very high in nearly all regions at the two weeks forecast, high in most
regions at the one month forecast, and notable in the majority of the regions at the two months forecast. Higher
accuracy was associated with the availability of more data for estimation and with a more pronounced cumulative case
growth from the first case to the date of estimation. In some strongly affected regions, cumulative case counts were

Conclusions: With keeping its limitations in mind, the investigated model may be used for the preparation and
distribution of resources during the initial phase of epidemics. Future research should primarily address the model’s
assumptions and its scope of applicability. In addition, establishing a relationship with known mechanisms and
traditional epidemiological models of disease transmission would be desirable.
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Background

Mathematical and simulation models of infectious disease
dynamics are essential for understanding and forecasting
the development of epidemics [1]. The severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic has called increased attention to epidemiological
modeling both as a method of scientific inquiry and as a
tool to inform political decision making [2, 3].
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Among epidemiological modeling methods, a distinc-
tion between mechanistic and phenomenological ap-
proaches is frequently made. While mechanistic
approaches model the transmission dynamics based on
substantial concepts from biology, virology, infectology,
and related disciplines, phenomenological (sometimes
termed ‘statistical’) models are looking for a mathemat-
ical function that fits observed data well without clear
assumptions about the underlying processes [1, 2].
Mechanistic models are usually used to compare pos-
sible scenarios and to estimate the relative effects of
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different interventions rather than to produce precise
predictions. On the contrary, phenomenological models
are commonly optimized for forecasting. From a broader
perspective, mechanistic and phenomenological ap-
proaches can be considered as the epidemiological mod-
eling representatives of the long-standing explanation-
prediction controversy [4]. It should be noted that al-
though the distinction between these two model classes
is instructive and one side usually predominates, most
approaches have both mechanistic and phenomeno-
logical components, and some are explicitly balanced (so
called ‘semi-mechanistic’ or ‘hybrid’ models).

Although the value of any predictive model is ultim-
ately determined by whether it improves critical decision
making [5, 6], a rigorous scientific appraisal should also
include a comparison of what have been predicted to
what have actually happened [1, 7, 8]. Unfortunately, the
predictive accuracy of infectious disease predictions
models is rarely evaluated during or after outbreaks [7,
8]. Notable exceptions include systematic evaluation of
models about the epidemiology of severe acute respira-
tory syndrome (SARS) [9, 10], influenza [11, 12], ebola
[5, 7, 13, 14], dengue [8, 15], foot-and-mouth disease [6],
and trachoma [16].

The SARS-CoV-2 pandemic has prompted a large
amount of epidemiological modeling efforts, including
studies with primarily mechanistic (e.g., references [17—
21]) and primarily phenomenological (e.g., references
[22, 23]) approaches. According to the knowledge of the
author up to October 2020, a truly prognostic evaluation
of existing models using new data that had not yet been
available at the point of model development is not com-
mon practice. In order to start closing this gap, the ob-
jective of the present study was to evaluate the
predictive accuracy of a phenomenologically oriented
model that was calibrated on data up to the end of
March 2020 for forecasting the development of the cu-
mulative number of reported SARS-CoV-2 cases in
countries and administrative regions worldwide [24].

Methods

Data

As described in detail elsewhere [24], the model was fit-
ted using information on the cumulative number of con-
firmed SARS-CoV-2 infections in the COVID-19 data
repository of the Johns Hopkins University Center for
Systems Science and Engineering [25, 26]. Cumulative
case count data from 251 countries and administrative
regions were used for calibrating the model, with daily
time series from the day of the first reported case to 29
March 2020 in each region. For evaluation, data on con-
firmed cases were extracted from the same database two
weeks, one month, and two months after model develop-
ment (12 April, 29 April, and 29 May 2020). Sufficient

Page 2 of 9

information for creating predictions of the most likely
number of cases in all investigated countries and admin-
istrative regions for any time horizon was made publicly
available at the beginning of April 2020 [24].

Model

A hierarchical logistic model was fit to observed data
[24]. The logistic part of the model was based on the
ecological concept of self-limiting population growth
[27] and used a formulation with five parameters [28],
controlling the expected final case count at the end of
the outbreak (parameter «), the maximum speed of
reaching the expected final case count (parameter b), the
approximate time point of the transition of the outbreak
from an accelerating to a decelerating dynamic (param-
eter c¢), the case count at the beginning of the outbreak
(parameter d), and the degree of asymmetry between the
accelerating and decelerating phases of the outbreak
(parameter g). The predicted number of cumulative case
counts in region i at day ¢ from the first reported case
was estimated as

a; —d;
<1 + (é)bi>gi

with log-normally distributed errors.

The hierarchical part of the model was inspired by
random-effect meta-analysis assuming that the parame-
ters of the logistic equation are similar, but not necessar-
ily identical, across the investigated regions [29, 30].
This was implemented by restricting the parameters of
the logistic equation to follow a normal distribution in
the population of regions. With respect to interpretation,
this means that the model was based on the hypothesis,
that the pandemic runs a similar course in all countries
and regions, even though they are expected to differ to a
certain degree regarding the number of cases in their
first report, the expected final case count, the time point
and speed of the accelerating and decelerating phases of
the outbreak, as well as the time point, extent, and ef-
fects of control measures.

Npred,it = di +

Estimation

The statistical procedures and program code are de-
scribed in detail elsewhere [24]. Computations were per-
formed in a Bayesian framework using Markov chain
Monte Carlo sampling methods in WinBUGS version
1.4.3 [31]. Parameter estimates were given uninformative
priors, and results were obtained from three independ-
ent Markov chains with a total of 60,000 iterations and a
thinning rate of 60, after dropping 40,000 burn-in
simulations.
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Evaluation metrics
For evaluating each individual estimate i at time point ¢,
four measures were calculated.

The difference between logarithmic predicted and
observed counts (“error in logs”, EIL) was defined as

EIL; = lnnpred,it - lnnabs.it;

with In being the natural logarithm, and 7,,.; and 7,y
being the predicted and the observed cumulative case
counts, respectively.

The absolute error in logs (AIEL) was calculated as

AEILit = | lnnpred.it - lnnobs,it{‘

The percentage error (PE) was calculated as

Mpred,it — Mobs,it
'pred, i obs,i
PE; = —FX——
Mobs,it

and the absolute percentage error (APE) as

APEit _ |npred7it - nobs,it| )
Hops, it
Summary estimates of predictive accuracy across all k
regions at a given time point ¢ are listed in the following.
The root mean squared error in logs (RMSE) was
defined as

RMSEt =

k 2
( In Npred.it — In nobsjt) )
i=1

and the mean absolute percentage error (MAPE) was
calculated as

Zk |”pred.,it — Hobs,it
i=1
Hobs, it

k

MAPE, =

The coefficient of determination R? was additionally
determined from a linear model regressing the logarith-
mic observed values on the logarithmic predictions with
the intercept fixed at zero. Furthermore, the intraclass
correlation coefficient ICC(3,1), was calculated for quan-
tifying the level of absolute agreement between predicted
and observed values from a two-way mixed-effects
model [32]. Bootstrapping was used with 1000 samples
to create 95% confidence intervals for summary esti-
mates of predictive accuracy.

Factors associated with accuracy

In order to identify factors associated with the accuracy
of the predictions, the AEIL was regressed on the num-
ber of available data points, the difference in the loga-
rithm of the first and the last case count at the moment
of estimation (as a proxy for progress of the epidemic),

Page 3 of 9

and their interaction term. Estimates are reported with
95% parametric confidence intervals.

Furthermore, strongly affected regions (defined by a
minimum of 10,000 cases at the forecasted time point)
with the most extreme under- and overestimation were
identified to gain additional qualitative insights on model
performance.

Results

Data

In 251 regions, the number of available data points at es-
timation ranged from 2 to 68 with a median of 25 and a
mean of 31.48 days. The cumulative number of reported
cases at the point of the first non-zero count ranged
from 1 to 444 with a median of 1 and a mean of 4.09
across regions. The cumulative number of reported cases
at model estimation (29 March 2020) ranged from 1 to
140,886 with a median of 139 and a mean of 2869.

Individual estimates of predictive accuracy

The probability density function of the percentage error
(PE) at the day of estimation as well at the forecasts after
two weeks, one month, and two months, respectively, is
displayed in Fig. 1. At the day of estimation, the median
relative error indicated an average underestimation of
the cumulative case count by about one third across re-
gions. The relative error distribution was rather narrow,
with only a tenth of predictions showing an underesti-
mation exceeding — 62.8% and none of the predictions
having more than 36.9% error. Across forecasts, the me-
dian percentage error was always less than 20%, al-
though an overestimation by more than two hundred
percent was observed in 7.2, 19.1, and 19.5% of the cases
at the two weeks, one months, and two months fore-
casts, respectively. The proportion of regions with an
underestimation exceeding minus two thirds (- 66.6%)
was 12.4, 19.5, and 28.7% at the two weeks, one months,
and two months forecasts, respectively.

The calibration plots suggest an increasing number of
regions for which case counts are substantially under- or
overestimated with increasing length of the forecast
period (Fig. 2). Nevertheless, a strong positive associ-
ation between predicted and observed case counts is ap-
parent even after two months.

Summary estimates of predictive accuracy

All parameters show an increasing amount of error with
increasing length of the forecast period (Table 1). The
MAPE shows that, on average, estimates are off by more
than one hundred, two hundred, and four hundred per-
cent at the two weeks, one month, and two months fore-
casts, respectively. The coefficient of determination
indicates a very strong relative association between pre-
dicted and observed case counts, and the intraclass
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Fig. 1 Probability density function of the percentage error at different forecast horizons. The solid line shows the median, the dashed lines show
the first and third quartiles, and the dotted lines show the first and ninth deciles. The x-axis is trimmed at 2.5
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correlation coefficient suggests that the level of absolute
agreement is excellent after two weeks and still high
after one month, but sinks to a moderate level after two
months.

Factors associated with accuracy

Visual analysis suggests that a larger number of available
data points at estimation (Fig. 3) and a more extensive
growth of the logarithmic case counts from the first re-
ported case until estimation (Fig. 4) are associated with a
lower prediction error. This is confirmed by regression
analyses indicating statistically significant associations
that are becoming stronger with increasing forecast hori-
zon (Table 2). These two factors have also a multiplica-
tive effect, as indicated by the statistically significant
interaction term.

Strongly affected regions (a minimum of 10,000 cases)
with extreme under- or overestimation of the cumulative
case counts are presented in Table 3. Among the listed
regions, the extent of underestimation was considerable
(an EIL below -1.6, roughly corresponding to an

underestimation by a factor of five) at the one and two
months forecasts, with most regions being located in
Asia. Among strongly affected regions, overestimation
was rather moderate (an EIL below 0.7, roughly corre-
sponding to an overestimation by a factor of two) in
most cases. Substantial overestimation (an EIL between
0.7 and 1.6) was present in Austria and Switzerland at
the one and two months forecasts and in the United
States at the one month forecast. No strongly af-
fected region with a considerable overestimation (EIL
above 1.6) was identified.

Discussion

In the present study, a hierarchical logistic model was
used to predict cumulative counts of confirmed SARS-
CoV-2 cases in 251 countries and administrative regions
with two weeks, one month, and two months forecasting
horizons in the early phase of the pandemic. Several
metrics were used to evaluate predictions visually and
statistically. In summary, case counts could be predicted
in the majority of the regions with a surprising accuracy.
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Fig. 2 Calibration plots at different forecast horizons. Points refer to regions. The solid black line indicates no prediction error, the blue area
indicates a prediction error by a factor of two or less, and the green area indicates a prediction error by a factor of ten or less. Both axes
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In spite of the facts that at the time of estimation (29
March 2020) only about one month’s data were available
on average in each region, and that most regions were at
the very beginning of the epidemic, a massive difference
between forecast and observation was rather the exception
than the rule. Summary metrics of predictive accuracy
suggested very strong prognostic validity the model for a
horizon of two weeks, substantial accuracy after one
month, and still notable, although markedly lower, accur-
acy after two months. This is in good agreement with

Table 1 Summary estimates of predictive accuracy

studies finding that the horizon for reasonable epidemio-
logical predictions covers a few weeks at most [7, 15].
Although most predictions were fairly accurate, some
were still considerably off. They were most likely to be
found in regions with a lower amount of available data at
the date of estimation and/or with a more limited growth
between the date of the first case and the date of estima-
tion. In general, underestimation seems to be somewhat
more pronounced than overestimation, particularly in
strongly affected regions (i.e., with cumulative case counts

RMSE
(95% ClI)

MAPE
(95% ClI)

R?
(95% ClI)

ICC
(95% ClI)

Day of estimation
Two weeks forecast
One month forecast

Two months forecast

0.640 (0.577 to 0.707)
0.900 (0.803 to 1.05)

1.393 (1.271 to 1.546)
1.958 (1.791 to 2.157)

0.323 (0.295 to 0.356)
1.085 (0.673 to 2.598)
2.133 (1.600 to 2.953)
4.250 (2.907 to 6.735)

0.989 (0.986 to 0.992)
0.980 (0.971 to 0.984)
0.958 (0.948 to 0.966)
0.931 (0914 to 0.943)

0.984 (0.979 to 988)

0.935 (0.905 to 0.950)
0.828 (0.777 to 0.866)
0.679 (0.606 to 0.748)

RMSE root mean squared error in logarithmic case counts, MAPE mean absolute percentage error in case counts, R? coefficient of determination, ICC intraclass

correlation, C/ confidence interval
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above 10,000 at the point of validation). The strongly af-
fected regions for which the model provided too low pre-
dictions included several countries in which mitigation
strategies might have been less effective than in other re-
gions, as suggested by the only slowly or not at all deceler-
ating cumulative case growth curves at the beginning of
June 2020 (e.g., India, Bangladesh, Qatar). On the other
hand, the strongly affected regions with a substantial over-
estimation of cumulative case counts are characterized by
an extremely successful mitigation of the initial phase of
the epidemic (mainly Austria and Switzerland). Hence,
predictive errors are likely to be closely related to one of
the central assumptions of the model, i.e,, that timing, ex-
tent, and effectiveness of control measures are comparable
across regions. Obviously, the forecasts based on the pre-
sented model are likely to reach their limits in regions that
deviate too strongly from the average case. As shifting in-
dividual estimates towards the group mean is also a statis-
tical property of hierarchical models [33], extreme cases
are likely to fall outside the scope of validity of the

presented approach. As the variation in the course of epi-
demic trajectories among regions is likely to increase with
time, the similarity assumption is expected to become
more and more problematic with an ongoing epidemic. In
consequence, generalizing the presented findings beyond
the initial phase of epidemics is not warranted.

A notable feature of the model that it provides predic-
tions without any reference to measures taken to control
the epidemic. This “ignorance” towards interventions,
paired with fairly accurate predictions, may be misinter-
preted as evidence of dispensability of the mitigation
and containment measures implemented in most coun-
tries. However, it is far more likely that the key model
assumption suggesting similarity of the course of the
epidemic and of the control measures taken across re-
gions in the early phase of the epidemic holds to a sub-
stantial extent. In cases when it does not, model
performance is very poor, as discussed above. Bringing
these issue together, the hierarchical structure of the
model appears to have both benefits and risks:
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sufficiently accurate predictions for a large number of
regions even at a very early stage of the epidemic come
with the price of considerably erroneous predictions for
atypical regions. Consequently, if used with the aim of
generating locally applicable predictions for a particular
region, forecasts may be improved by using data from
comparable regions with a higher probability than from
rather dissimilar regions [34].

The presented evaluation study has several limitations.
First, the case counts were not standardized in any form.

Expressing them as cumulative incidence rates (e.g., per
100,000 persons) is likely to have increased homogeneity
across regions and enhanced interpretability. As it has
been shown in a specific analysis of the development of
the SARS-CoV-2 epidemic in German federal states,
standardization has rendered using log-transformation
of case counts for homogenization superfluous [35]. Sec-
ond, in the present study uncertainty of the predictions
remained unconsidered, although measures of uncer-
tainty, such as reliability and sharpness, can be just as

Table 2 Linear regression coefficients for factors associated with prediction accuracy (AEIL)

Number of data points in weeks Growth in logarithmic case counts Interaction term
(95% Cl) until estimation (95% Cl)
(95% CI)
Day of estimation —0.077*** (= 0.114 to — 0.040) —-0.016 (- 0.055 to 0.023) 0.002 (= 0.005 to 0.009)
Two weeks forecast —0.073% (- 1.304 to — 0.015) —0.100** (- 1.614 to —0.039) 0.011* (0.000 to 0.022)
One month forecast —0.131** (- 0.216 to — 0.046) —0.145** (- 0.235 to —0.054) 0.017* (0.001 to 0.034)
Two months forecast —0.242%** (- 0.361 to — 0.124) —0.242%** (—=0.368 to — 0.117) 0.032** (0.010 to 0.055)

AEIL = absolute difference between logarithmic predicted and observed case counts; Cl = confidence interval; *p <.050; **p <.010; ***p <.001
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Table 3 Most extreme under- or overestimation for regions
with a minimum number of 10,000 cases

Underestimation Overestimation

Region EIL Region EIL
Day of estimation Belgium —0.565  Hubei, China 0.022
United States —0444  Germany 0.020
of America
Netherlands ~ —0422 NA NA
Switzerland -0322 NA NA
[taly -0301 NA NA
Two weeks forecast ~ Belgium —1.274  Austria 0.657
Sweden -1.171  Quebec, Canada 0.498
Russia —0939  Switzerland 0.399
France —0.651  United States 0.336
of America
Iran -0556  Germany 0.096
One month forecast ~ Belarus —3719  Austria 1.281
Qatar —3.159  Switzerland 0.889
Singapore —3.155  United States 0.714
of America
India —2301  Quebec, Canada 0.638
Russia —2.290  Portugal 0402
Two months forecast  Bangladesh —6.097  Austria 1.398
Belarus —4.730  Switzerland 1.012
Qatar —4.597  United States 0.399
of America
Kuwait —4.104  Israel 0.358
India —-3.864 Portugal 0.302

EIL difference between logarithmic predicted and observed case counts, NA
not applicable

important for forecasting as bias [7]. Third, predictions
only at selected time points were analyzed, and it cannot
be excluded that choosing other time points would have
led to different results. Nevertheless, the general pattern
of findings is unlikely to have changed substantially.

The forecasting model itself has some weaknesses as
well [24, 35]. Most importantly, it models the reported
rather than the true number of cases and therefore can
be subject to different forms of testing and reporting
bias. Considerable improvement regarding this point can
realistically be expected first when regional findings
form well-conducted epidemiological studies become
available. Second, using cumulative rather than new case
counts for modeling can lead to serious errors [36]. An-
other major limitation of the model is that it works only
as long as the conditions of the epidemic remain largely
unchanged in each region, i.e., within a single epidemic
wave with fairly constant testing and reporting practices
and without serious disruptions. This issue could per-
haps be addressed by using dynamic (time-dependent)
rather than fixed (time-invariant) model parameters [37].
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Finally, the primarily phenomenological nature of the
model warns to be careful with interpretation [38-40]
and calls for integration with mechanistic components,
in order to create a hybrid approach that is capable of
producing widely generalizable conclusions [41].

Conclusions

As stated by one of the most prominent epidemiologist
of the SARS-CoV-2 pandemic, Neil Ferguson, models
are “not crystal balls” [3]. However, without rigorous sci-
entific evaluation, they run the risk of becoming one,
characterized not by correct predictions but by obscur-
ity. Some state that epidemiological forecasting is “more
challenging than weather forecasting” [42], and complex-
ity of modeling and reliance on assumptions make it dif-
ficult to assess the trustworthiness of models based
solely on their inherent structure. Just like we trust wea-
ther forecasts that prove to be accurate by experience,
empirical comparison of modeling predictions with ac-
tual observations should become an essential step of epi-
demiological model evaluation.

Abbreviations

AEIL: Absolute error in logs; APE: Absolute percentage error; EIL: Error in logs;
ICC: Intraclass correlation coefficient; MAPE: Mean absolute percentage error;
PE: Percentage error; RMSE: Root mean squared error in logs; SARS-CoV-

2: Severe acute respiratory syndrome coronavirus 2

Acknowledgements
Not applicable.

Author’s contributions

LK designed and performed the study, analyzed the data, interpreted the
results, and wrote the manuscript. The author(s) read and approved the final
manuscript.

Funding
The study was not externally funded. Open Access funding enabled and
organized by Projekt DEAL.

Availability of data and materials

The datasets generated and/or analysed during the current study are
available in the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Reposi-
tory of the Johns Hopkins University Center for Systems Science and Engin-
eering, https//github.com/CSSEGISandData/COVID-19.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 September 2020 Accepted: 9 November 2020
Published online: 16 November 2020

References

1. Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C,
et al. Modeling infectious disease dynamics in the complex landscape of
global health. Science. 2015;347:aaa4339.

2. Holmdahl I, Buckee C. Wrong but useful - what Covid-19 epidemiologic
models can and cannot tell us. N Engl J Med. 2020;383:303-5.


https://github.com/CSSEGISandData/COVID-19

Kriston BMC Medical Research Methodology

20.

21.

22.

23.

24.

25.

26.

27.

(2020) 20:278

Adam D. Special report: the simulations driving the world's response to
COVID-19. Nature. 2020;,580:316-8.

Shmueli G. To explain or to predict? Stat Sci. 2010;25:289-310.

Li S-L, Bjernstad ON, Ferrari MJ, Mummah R, Runge MC, Fonnesbeck CJ,

et al. Essential information: uncertainty and optimal control of Ebola
outbreaks. PNAS. 2017;114:5659-64.

Probert WIM, Jewell CP, Werkman M, Fonnesbeck CJ, Goto Y, Runge MC,
et al. Real-time decision-making during emergency disease outbreaks. PLoS
Comput Biol. 2018;14:21006202.

Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, Edmunds WJ. Assessing
the performance of real-time epidemic forecasts: a case study of Ebola in
the Western area region of Sierra Leone, 2014-15. PLoS Comput Biol. 2019;
15:21006785.

Johansson MA, Reich NG, Hota A, Brownstein JS, Santillana M. Evaluating
the performance of infectious disease forecasts: a comparison of climate-
driven and seasonal dengue forecasts for Mexico. Sci Rep. 2016,6:33707.
Hsieh Y-H, Cheng Y-S. Real-time forecast of multiphase outbreak. Emerg
Infect Dis. 2006;12:122-7.

Zhou G, Yan G. Severe acute respiratory syndrome epidemic in Asia. Emerg
Infect Dis. 2003;9:1608-10.

Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC-H, Hickmann KS, et al.
Results from the centers for disease control and prevention’s predict the
2013-2014 influenza season challenge. BMC Infect Dis. 2016;16:357.

Hsieh Y-H, Fisman DN, Wu J. On epidemic modeling in real time: an
application to the 2009 novel a (H1N1) influenza outbreak in Canada. BMC
Res Notes. 2010;3:283.

Chowell G, Viboud C, Simonsen L, Merler S, Vespignani A. Perspectives on
model forecasts of the 2014-2015 Ebola epidemic in West Africa: lessons
and the way forward. BMC Med. 2017;15:42.

Pell B, Kuang Y, Viboud C, Chowell G. Using phenomenological models for
forecasting the 2015 Ebola challenge. Epidemics. 2018;22:62-70.

Reich NG, Lauer SA, Sakrejda K, lamsirithaworn S, Hinjoy S, Suangtho P, et al.
Challenges in real-time prediction of infectious disease: a case study of
dengue in Thailand. PLoS Negl Trop Dis. 2016;10:20004761.

Liu F, Porco TC, Amza A, Kadri B, Nassirou B, West SK, et al. Short-term
forecasting of the prevalence of trachoma: expert opinion, statistical
regression, versus transmission models. PLoS Negl Trop Dis. 2015;9:
€0004000.

Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al.
Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19
mortality and healthcare demand; 2020. https://doi.org/10.25561/77482.
Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis Cl, Russell TW, et al.
Feasibility of controlling COVID-19 outbreaks by isolation of cases and
contacts. Lancet Glob Health. 2020;8:2488-96.

Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early
dynamics of transmission and control of COVID-19: a mathematical
modelling study. Lancet Infect Dis. 2020,20:553-8.

Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCoV outbreak originating in
Wuhan, China: a modelling study. Lancet. 2020;395:689-97.

Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, et al. Interventions to
mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet
Infect Dis. 2020,20:678-88.

Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, et al. Real-time
forecasts of the COVID-19 epidemic in China from February 5th to February
24th, 2020. Infect Dis Model. 2020;5:256-63.

IHME COVID-19 health service utilization forecasting team, Murray CJ.
Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-
days and deaths by US state in the next 4 months. medRxiv. 2020; 2020.03.
27.20043752.

Kriston L. Projection of cumulative coronavirus disease 2019 (COVID-19) case
growth with a hierarchical logistic model. Bull World Health Organ COVID-
19 Open Preprints. Published 7 April 2020. https://doi.org/10.2471/BLT.20.
257386.

Dong E, Du H, Gardner L. An interactive web-based dashboard to track
COVID-19 in real time. Lancet Infect Dis. 2020;20:533-4.

Johns Hopkins University Center for Systems Science and Engineering. 2019
Novel Coronavirus COVID-19 (2019-nCoV) Data Repository. 2020. https.//
github.com/CSSEGISandData/COVID-19. Accessed 1 Jun 2020.

Kingsland S. The refractory model: the logistic curve and the history of
population ecology. Q Rev Biol. 1982,57:29-52.

28.

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

42.

Page 9 of 9

Gottschalk PG, Dunn JR. The five-parameter logistic: a characterization and
comparison with the four-parameter logistic. Anal Biochem. 2005;343:54-65.
Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-
analyses. BMJ. 2011;342:d549.

Kriston L. Dealing with clinical heterogeneity in meta-analysis. Assumptions,
methods, interpretation. Int J Meth Psych Res. 2013;22:1-15.

Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian
modelling framework: concepts, structure, and extensibility. Stat Comput.
2000;10:325-37.

Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability.
Psychol Bull. 1979,86:420-8.

Diez R. A glossary for multilevel analysis. J Epidemiol Community Health.
2002;56:588-94.

Kriston L, Meister R. Incorporating uncertainty regarding applicability of
evidence from meta-analyses into clinical decision making. J Clin Epidemiol.
2014,67:325-34.

Kriston L. Aktuelle Entwicklung der kumulativen Inzidenz bestatigter SARS-
CoV-2-Infektionen und infektionsbedingter Todesfalle in Deutschland.
[Modeling the cumulative incidence of SARS-CoV-2 cases and deaths in
Germany]. [German]. OSF Preprints. Published 5 May 2020. https.//doi.org/
10.31219/0sf.io/q2yws.

King AA. Domenech de Celles M, Magpantay FMG, Rohani P. Avoidable
errors in the modelling of outbreaks of emerging pathogens, with special
reference to Ebola. Proc Biol Sci. 2015,282:20150347.

Scarpino SV, Petri G. On the predictability of infectious disease outbreaks.
Nat Commun. 2019;10:898.

May RM. Uses and abuses of mathematics in biology. Science. 2004;303:
790-3.

Razum O, Becher H, Kapaun A, Junghanss T. SARS, lay epidemiology, and
fear. Lancet. 2003;361:1739-40.

Jewell NP, Lewnard JA, Jewell BL. Caution warranted: using the Institute for
Health Metrics and Evaluation Model for predicting the course of the
COVID-19 pandemic. Ann Intern Med. 2020;173:226-7.

Kriston L. Machine learning's feet of clay. J Eval Clin Pract. 2020,26:373-5.
Moran KR, Fairchild G, Generous N, Hickmann K, Osthus D, Priedhorsky R,
et al. Epidemic forecasting is messier than weather forecasting: the role of
human behavior and internet data streams in epidemic forecast. J Infect
Dis. 2016;214(Suppl 4):5404-8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://doi.org/10.25561/77482
https://doi.org/10.2471/BLT.20.257386
https://doi.org/10.2471/BLT.20.257386
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://doi.org/10.31219/osf.io/q2yw5
https://doi.org/10.31219/osf.io/q2yw5

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	Model
	Estimation
	Evaluation metrics
	Factors associated with accuracy

	Results
	Data
	Individual estimates of predictive accuracy
	Summary estimates of predictive accuracy
	Factors associated with accuracy

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

