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Abstract

Background: Interest in models for calculating the risk of death in traumatic patients admitted to ICUs remains
high. These models use variables derived from the deviation of physiological parameters and/or the severity of
anatomical lesions with respect to the affected body areas. Our objective is to create different predictive models of
the mortality of critically traumatic patients using machine learning techniques.

Methods: We used 9625 records from the RETRAUCI database (National Trauma Registry of 52 Spanish ICUs in the
period of 2015–2019). Hospital mortality was 12.6%. Data on demographic variables, affected anatomical areas and
physiological repercussions were used. The Weka Platform was used, along with a ten-fold cross-validation for the
construction of nine supervised algorithms: logistic regression binary (LR), neural network (NN), sequential minimal
optimization (SMO), classification rules (JRip), classification trees (CT), Bayesian networks (BN), adaptive boosting
(ADABOOST), bootstrap aggregating (BAGGING) and random forest (RFOREST). The performance of the models was
evaluated by accuracy, specificity, precision, recall, F-measure, and AUC.

Results: In all algorithms, the most important factors are those associated with traumatic brain injury (TBI) and organic
failures. The LR finds thorax and limb injuries as independent protective factors of mortality. The CT generates 24
decision rules and uses those related to TBI as the first variables (range 2.0–81.6%). The JRip detects the eight rules with
the highest risk of mortality (65.0–94.1%). The NN model uses a hidden layer of ten nodes, which requires 200 weights
for its interpretation. The BN find the relationships between the different factors that identify different patient profiles.
Models with the ensemble methodology (ADABOOST, BAGGING and RandomForest) do not have greater performance.
All models obtain high values in accuracy, specificity, and AUC, but obtain lower values in recall. The greatest precision
is achieved by the SMO model, and the BN obtains the best recall, F-measure, and AUC.
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Conclusion: Machine learning techniques are useful for creating mortality classification models in critically traumatic
patients. With clinical interpretation, the algorithms establish different patient profiles according to the relationship
between the variables used, determine groups of patients with different evolutions, and alert clinicians to the presence
of rules that indicate the greatest severity.

Keywords: Intensive care unit, Machine learning techniques, Supervised algorithms, Traumatic patient, Mortality

Background
Models for calculating the risk of death are used to as-
sess the severity of the condition of traumatic patients.
Classically, models for calculating the risk of death in
traumatic patients have used two types of approxima-
tions. One approach consists of using physiological vari-
ables, which can define organic failures, which indicate a
greater risk if their values are far from the levels defined
as normality; and another approximation determines the
severity according to the graduation of the anatomical
lesions produced in the different body areas [1].
Although various studies have tried to take advantage

of these two approaches – anatomical and physiological
– there is still a need to look for systems that achieve
better results and to obtain tools that can be used in
healthcare practice [2].
Lesions are divided into groups associated with differ-

ent anatomical areas, and their intensity can be assessed
according to the Abbreviated Injury Scale (AIS) [3]. The
physiological impact is assessed at the neurological,
hemodynamic, and respiratory levels according to the
Triage-Revised Trauma Score (T-RTS) [4].
In order to analyse the relationship between mortality, ana-

tomical extension of the injury and its physiological reper-
cussion, it is necessary to have large databases that include
records of critically traumatic patients. The RETRAUCI (Na-
tional Trauma Registry in ICU) study includes the participa-
tion of 52 ICUs in Spain and almost 10,000 patients [5].
Classification systems that use machine learning tech-

niques (MLT) provide a global methodological vision
and allow us to create multiple algorithms to achieve a
more accurate result [6]. The current interest in MLT
methodology applied to biomedical research is especially
keen, and the development of these techniques requires
adequate standardization and evaluation guidelines [7].
There are platforms that make it possible to work with

multiple algorithms and that make the work more user-
friendly and accurate in the construction and evaluation of
results [8]. Among others, the WEKA (Waikato Environ-
ment for Knowledge Analysis) platform, developed by the
University of Waikato, offers the possibility of using various
algorithms and evaluating them with a single tool [9].
From a theoretical point of view, in the ideal conditions

of a refined database with sufficient records, the No Free

Lunch Theorem establishes that all the algorithms will
optimize their results. With real data, however, this same
theorem forces us to use different algorithms that will ob-
tain different degrees of precision [10].
Some algorithms produce models with clinical interpret-

ation, such as those based on classification trees, decision
rules or Bayesian networks [11, 12]. Understanding the re-
lationships between the variables that influence the classi-
fication of patients according to their severity offers us the
possibility of understanding the different profiles of trau-
matic patients admitted to the ICU.
Our objective is to create different predictive models

of the mortality of critically traumatic patients using ma-
chine learning techniques, to evaluate their performance
and, if they can be interpreted, to evaluate relationships
between the different types of variables included.

Methods
RETRAUCI database
RETRAUCI is an observational, prospective, and multi-
centre nationwide registry that currently includes 52
ICUs in Spain. The RETRAUCI database only collects
traumatic patients admitted to the ICU. It has the en-
dorsement of the Neurointensive Care and Trauma
Working Group of the Spanish Society of Intensive Care
Medicine (SEMICYUC) and currently operates in a web-
based electronic format [13]. We include a five-year
study period (2015–2019). Ethics Committee approval
for the registry was obtained (Hospital Universitario 12
de Octubre, Madrid: 12/209). Due to the retrospective
analysis of de-identified collected data, informed consent
was not obtained. Hospital mortality was used as the
outcome variable.
The variables collected were classified into several

groups (Table 1).
First, we considered patient variables, such as Age and

Sex. Variables were used that describe the importance of
injuries by anatomical area according to the AIS model
(2005 version) - severity levels ranging from 1(least se-
vere) to 4–6 (most severe) [3]. The anatomical areas
were head (AHEAD), neck (ANECK), face (AFACE),
thorax (ATHORAX), abdomen (AABDOM), spine (ASPI
NE), upper extremity (AUPPEREXT), lower extremity
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(LOWEREXT) and external and thermal injuries
(AEXTERNAL).
Also, we considered variables derived from the T-RTS,

obtained from first medical attention before initiating re-
suscitation and/or mechanical ventilation, such as the
Respiratory Rate (PointRF), Systolic Blood Pressure
(PointSBP) and the Glasgow Coma Score (PointGCS),
which range between 0 points (greater severity) and 4
points (normality) [4].
Next, patient treatment variables, such as the presence

at the ICU of mechanical ventilation (MV) or the occur-
rence of a Massive Haemorrhage (MASSIVEHEM) re-
quiring activation of the massive transfusion protocol,
were also included [14].
Finally, variables that defined organic failures during

the ICU stay: hemodynamic failure (HEMODINAM) in-
dicated by the presentation of an SBP lower than 90
mmHg requiring the administration of volume, blood
products, and vasoconstrictor support; respiratory failure
(RESPIRATORY), indicated by the presence of PO2/
FiO2 below 300; renal failure (AKIDNEY), indicated by
an increase in creatinine > 1.5 times the initial, or 25%
reduction in urine flow to less than 0.5 ml/kg/h for at
least 6 h; and the presence of coagulopathy (COAGU-
LOP), indicated by the prolongation of prothrombin and
activated partial thromboplastin times in > 1.5 times the

control or by levels of fibrinogen < 150 mg / dl or
thrombocytopenia < 100,000 [13, 15, 16].

Conventional statistics
Variable distribution was tested with the Kolmogorov–
Smirnov test. The variable AGE did not meet the criteria
of normality (p > 0.05). Variables are described as me-
dian (interquartile range) or as a percentage. For the
comparison of survivors (A-ALIVE) and non-survivors
(D-DIED), the Mann-Whitney test was used for continu-
ous variables, and the chi-square test or Fisher’s exact
test for categorical variables. A p-value of < 0.05 was
taken as significant.

Machine learning techniques
We used the WEKA Platform (version 3.8). We first
use attribute selection methodology. Attribute selec-
tion is a technique used to extract the ranking of at-
tributes and can help us by reducing the work of
processing algorithms by discarding irrelevant vari-
ables. WEKA incorporates various attribute selection
techniques. We use the Information Gain Attribute
evaluation method. This method measures the signifi-
cance of attribute by measure of information gain cal-
culated with respect to target class and orders the
variables according to their importance [17].

Table 1 Risk factors associated with mortality. Description and attribute evaluation

Variable abbreviation Type Group Description Attribute evaluation (weight)

Age N Patient Age in years 0.04767

Sex C Patient Male / Female 0.00168

AHEAD S AIS AIS scale for Traumatic brain injury (0–6) 0.08977

ANECK S AIS AIS scale for neck injury (0–5) 0

AFACE S AIS AIS scale for face injury (0–4) 0.00120

ATHORAX S AIS AIS scale for thorax injury (0–6) 0.00949

AABDOM S AIS AIS scale for abdomen injury (0–6) 0.00373

ASPINE S AIS AIS scale for spine injury (0–6) 0.00380

AUPPEREXT S AIS AIS scale for upper extremity injury (0–4) 0.00507

ALOWEREXT S AIS AIS scale for lower extremity injury (0–5) 0.01186

AEXTERNAL S AIS AIS scale for external and thermal injury (0–6) 0.00245

PointRF S T-RTS Points of Respiratory Frequency (4–0) 0.02438

PointSBP S T-RTS Points of Systolic Blood Pressure (4–0) 0.02855

PointGCS S T-RTS Points of Glasgow Coma Score (4–0) 0.09633

MV C Status Mechanical Ventilation (Yes/No) 0.05836

MASSIVEHEM C Status Massive Haemorrhage (Yes/No) 0.01503

HEMODINAM C Failure Hemodynamic failure (Yes/No) 0.04002

RESPIRATORY C Failure Respiratory failure (Yes/No) 0.02438

AKIDNEY C Failure Kidney failure (Yes/No) 0.02234

COAGULOP C Failure Coagulopathy (Yes/No) 0.02234

N Numerical, C Categorical, S Scale, T-RTS Triage-Revised Trauma Score, AIS Abbreviated Injury Scale. Attribute evaluation (weight): Ranking of attribute with
respect to Information Gain Attribute Evaluation method (in bold the most important)
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Second, we use WEKA’s EXPLORER module to deter-
mine the optimal parameters for each algorithm used.
The parameters chosen were those that achieved the
best performance values (see Algorithm evaluation sec-
tion). A ten-fold cross-validation process system was
used in all algorithms [18].
And third, using WEKA’s EXPERIMENTER module,

run all algorithms 10 times, using repeated ten-fold
cross-validation, to facilitate comparison of the predict-
ive performance based on the different evaluation cri-
teria that are available in WEKA [18].

Algorithm selection
Of the multiple algorithms included in WEKA, we se-
lected nine supervised algorithms classified in traditional
and ensemble methodology. The first six are traditional

models based on logistic regression binary (LR) func-
tions, a neural network according to multilayer percep-
tron (NN), sequential minimal optimization (SMO),
classification rules (JRip), classification trees (CT) and
Bayesian networks (BN), respectively. We also included
three models that use ensemble classification algorithms:
adaptive boosting (ADABOOST), bootstrap aggregating
(BAGGING), and random forest (RFOREST) [18]. With
the WEKA EXPLORER module we select the optimal
parameters of the different algorithms used.
For the LR model, we used a backward stepwise re-

gression system with variable input with p < 0.05 and
removal with p < 0.10. Odds ratios (OR) with a 95%
confidence interval were calculated.
In the CT model, we used the J48 algorithm based on

C4.5, obtaining a pruned tree [19]. The JRip algorithm
uses a rule learner: Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) [20]. We limited tree
growth (CT) and the number of rules (JRip), with a
minimum of 20 instances.
For the BN, we used the TAN (Tree Augmented Net-

work) variable relation search algorithm, which gener-
ates a graph that can be interpreted. This method does
not assume the independence of the variables [21, 22].
The SMO implements John Platt’s sequential minimal

optimization algorithm for training a support vector
classifier [23]. In NN, we used the automatic mode for
selecting the number of nodes in the hidden layer, with
a learning rate of 0.3 and a momentum of 0.2 [24]. In
RFOREST, we selected ten trees with the C4.5 algorithm
[25]. In the rest of the algorithms (ADABOOST and
BAGGING), we used the parameters that WEKA incor-
porates by default [18, 26].

Algorithm evaluation
To evaluate the performance of the algorithms, we used
the calculation of accuracy, specificity, precision, recall,
F-measure, and the area under curve ROC (AUC).
A patient who dies can be classified correctly (true

positive-TP) or incorrectly (false negative-FN) and a pa-
tient who survives can be classified correctly (true
negative-TN) or incorrectly (false positive-FP). We de-
fine the evaluation indices as:

Accuracy. The proportion of patients that are correctly
labelled among the total number of patients.
Accuracy = (TP + TN)/(TP + TN + FP + FN).
Specificity. The proportion of patients predicted as
survivors and are correctly identified. Specificity = TN/
(TN + FP).
Precision. The proportion of patients that are correctly
predicted as dead among those labelled as dead.
Precision = TP/(TP + FP)

Table 2 Demographic and clinical characteristics of patients
according to mortality

Variable ALL
N = 9625

SURVIVORS
N = 8413

NON-SURVIVORS
N = 1212

p-value

Age (years) 48 (33–64) 46 (32–61) 66 (47–78) < 0.001

Sex (% male) 77.8 78.5 72.4 < 0.001

PointRF < 0.001

4 84.1 86.4 68.2

3 6.0 6.0 6.5

2 1.9 1.2 6.9

1 0.7 0.4 2.9

0 7.3 6.1 15.5

PointSBP < 0.001

4 84.5 87.2 66.1

3 6.3 6.0 8.6

2 5.5 4.5 12.4

1 0.5 0.3 1.8

0 3.1 2.0 11.1

PointGCS < 0.001

4 66.5 72.1 27.8

3 10.1 10.2 9.2

2 9.2 8.6 13.2

1 4.5 3.6 11.1

0 9.7 5.6 38.8

MV 48.0 42.8 84.1 < 0.001

MASSIVEHEM 6.0 4.5 16.5 < 0.001

HEMODINAM 34.5 30.1 64.9 < 0.001

RESPIRATORY 11.8 9.5 27.2 < 0.001

AKIDNEY 16.9 14.1 35.8 < 0.001

COAGULOP 15.9 12.8 37.4 < 0.001

Values expressed as percentages or median (Interquartile range), RF
Respiratory frequency, SBP Systolic blood pressure, GCS Glasgow coma score.
MV Mechanical ventilation. p-value: calculated using chi-square test or
Mann-Whitney test
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Table 3 Values in the AIS model scale according to anatomical zone and mortality

Variable ALL
N = 9625

SURVIVORS
N = 8413

NON-SURVIVORS
N = 1212

p-value

AHEAD < 0.001

0 45.9 49.6 20.7

1 3.8 4.1 1.7

2 8.6 9.3 3.4

3 16.0 17.0 9.4

4 12.3 11.6 17.2

5 13.2 8.4 47.1

6 0.1 0.0 0.6

ANECK 0.306

0 98.3 98.3 98.3

1 0.4 0.5 0.4

2 0.5 0.5 0.6

3 0.5 0.5 0.3

4 0.2 0.2 0.2

5 0.1 0.0 0.2

AFACE < 0.001

0 79.2 79.0 80.7

1 7.7 7.9 5.9

2 10.1 10.2 9.6

3 2.6 2.6 2.6

4 0.4 0.3 1.2

ATHORAX < 0.001

0 50.8 49.6 59.1

1 2.2 2.2 1.7

2 9.2 9.7 5.9

3 23.3 24.6 13.8

4 10.7 10.4 12.9

5 3.8 3.4 6.6

6 0.1 0.0 0.1

AABDOM < 0.001

0 79.0 78.3 83.5

1 0.9 1.0 0.3

2 7.9 8.3 5.0

3 6.9 7.3 4.5

4 4.0 4.0 4.1

5 1.3 1.1 2.4

6 0.1 0.0 0.1

ASPINE < 0.001

0 72.5 71.9 76.7

1 0.0 0.0 0.0

2 17.3 17.9 13.2

3 6.0 6.1 5.4

4 1.9 1.9 1.2
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Recall (Sensitivity). The proportion of dead patients
that are correctly labelled. Recall = TP/(TP + FN)
F-measure. A measure that combine both Precision and
Recall. F-measure = (2 x Precision x Recall)/ (Precision
+ Recall).”

WEKA’s Experimenter module, with ten repetitions,
allows one to establish whether there are statistical dif-
ferences between the evaluated properties of the algo-
rithms using the paired T-Test (corrected) [18].

Results
The RETRAUCI database enrolled 9790 patients in the
2015–2019 period. With 165 records, the data was not
complete. The study group includes 9625 patients with a
median age of 48 (33–64) years, 77.8% men and a hos-
pital mortality of 12.6% (1212 patients).
Table 2 show demographic and clinical characteristics

of patients according to mortality. Table 3 show values
in the AIS model scale according to anatomical zone
and mortality. It is observed that the factors without sig-
nificant differences between survivors and non-survivors

also have less weight (see last column of Table 1) ac-
cording to WEKA’s attribute selection criteria. The
ANECK and AFACE variables, with the lowest values,
were not used in the construction of the models. The
most important factors (PointGCS and AHEAD) are
those associated with traumatic brain injury (TBI).
Table 4 shows the results of the LR model. 13 vari-

ables are included. Do not include SEX or PointFR vari-
ables, and that there are three anatomical areas with
some OR with values less than 1 (THORAX, LOWER-
EXT and UPPEREXT).
The CT algorithm (Fig. 1) generates 24 decision rules

and uses those related to TBI as the first variables. A
range of probability of death is obtained between 2.0 and
81.6%.
The JRip algorithm detects eight classification rules

(Fig. 2) that define the patients with the highest risk of
mortality. The mortality rate ranges between 65.0 and
94.1%. Patients who do not comply with any of these
rules have a lower mortality of 5.8%.
The NN model was established automatically with a hid-

den layer of ten nodes. The model is fully interconnected

Table 3 Values in the AIS model scale according to anatomical zone and mortality (Continued)

Variable ALL
N = 9625

SURVIVORS
N = 8413

NON-SURVIVORS
N = 1212

p-value

5 2.2 2.2 2.5

6 0.2 0.1 1.1

AUPPEREXT < 0.001

0 74.3 73.0 83.6

1 2.4 2.5 1.7

2 20.5 21.6 12.7

3 2.6 2.7 1.9

4 0.2 0.3 0.1

ALOWEREXT < 0.001

0 70.4 69.3 78.0

1 2.1 2.2 1.2

2 10.0 10.5 6.0

3 11.1 11.8 6.6

4 4.6 4.9 2.5

5 1.9 1.4 5.7

AEXTERNAL < 0.001

0 96.1 96.0 96.9

1 2.6 2.8 1.2

2 0.3 0.3 0.2

3 0.3 0.4 0.1

4 0.2 0.2 0.2

5 0.5 0.3 1.3

6 0.1 0.0 0.1

Values expressed as percentages. p-value: calculated using chi-square test or Fisher’s exact test
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Table 4 Logistic Regression Binary model for mortality prediction
Variable B coefficient Standard error OR (95% CI) p-value

Age 0.051 0.002 1.05 (1.04–1.06) < 0.001

AHEAD

0 Reference

1 0.091 0.281 1.10 (0.63–1.90) 0.746

2 0.114 0.202 1.12 (0.75–1.66) 0.573

3 0.150 0.147 1.16 (0.87–1.55) 0.307

4 0.911 0.135 2.49 (1.91–3.24) < 0.001

5 2.011 0.128 7.47 (5.82–9.60) < 0.001

6 4.394 1.200 80.99 (7.72–849.01) < 0.001

ATHORAX

0 Reference

1 −0.256 0.305 0.77 (0.43–1.41) 0.401

2 −0.048 0.169 0.95 (0.68–1.33) 0.777

3 −0.513 0.124 0.60 (0.47–0.76) < 0.001

4 −0.122 0.140 0.88 (0.67–1.16) 0.381

5 −0.036 0.195 0.96 (0.66–1.41) 0.855

6 −1.263 1.199 0.28 (0.03–3.12) 0.303

AUPPEREXT

0 Reference

1 0.107 0.306 1.11 (0.61–2.02) 0.727

2 −0.315 0.121 0.73 (0.57–0.92) 0.009

3 −0.544 0.295 0.58 (0.33–1.03) 0.065

4 −1.17 1.082 0.31 (0.03–2.57) 0.278

ALOWEREXT

0 Reference

1 −0.783 0.380 0.46 (0.22–0.96) 0.039

2 −0.559 0.169 0.57 (0.41–0.79) 0.001

3 −0.509 0.158 0.60 (0.44–0.82) 0.001

4 −0.931 0.251 0.39 (0.24–0.64) < 0.001

5 0.400 0.228 1.49 (0.95–2.33) 0.079

PointSBP

4 Reference

3 0.316 0.152 1.37 (1.01–1.85) 0.038

2 0.356 0.148 1.43 (1.07–1.91) 0.016

1 0.815 0.375 2.26 (1.08–4.71) 0.030

0 1.325 0.185 3.76 (2.62–5.40) < 0.001

PointGCS

4 Reference

3 0.063 0.142 1.07 (0.81–1.41) 0.658

2 0.392 0.137 1.48 (1.13–1.94) 0.004

1 1.072 0.157 2.92 (2.15–3.97) < 0.001

0 1.810 0.122 6.11 (4.81–7.76) < 0.001

MV 0.858 0.142 2.36 (1.93–2.89) < 0.001

MASSIVEHEM 0.554 0.153 1.74 (1.29–2.35) < 0.001

HEMODINAM 0.818 0.099 2.27 (1.86–2.75) < 0.001

RESPIRATORY 0.541 0.106 1.72 (1.39–2.11) < 0.001

AKIDNEY 0.641 0.098 1.89 (1.57–2.30) < 0.001

COAGULOP 0.610 0.109 1.84 (1.49–2.28) < 0.001

RF Respiratory frequency, SBP Systolic blood pressure, GCS Glasgow coma score. MV Mechanical ventilation, OR Odds Ratio, CI Confidence interval
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and requires 200 weights - 180 × 10 nodes in hidden layer
and 10 × 2 in output layer - to be used for its interpretation.
The BN model offers us a graph (Fig. 3) with which

we can identify the relationships between the different
factors, which, in turn, can help us identify different pa-
tient profiles. For example, the relationships are ob-
served in the variables associated with TBI (AHEAD and
PointGCS), hemodynamic failure with COAGULOP and
AKIDNEY, respiratory failure with ATHORAX and
AUPPEREXT and the relationship between ALOWER-
EXT injury with MASSIVEHEM and COAGULOP.
The performance data of the nine algorithms evaluated

are shown in Table 5. No great differences were found
in the precision measurements. All models obtained high
values in accuracy, specificity, and AUC, but obtained
lower values in recall. The highest precision was
achieved by the SMO model, and the BN obtained the
best recall, F-measure, and AUC.

Despite using more complex algorithms, models with
the ensemble methodology (ADABOOST, BAGGING
and RandomForest) did not manage to increase the per-
formance of the classification.

Discussion
The availability of a database such as RETRAUCI gives us
the opportunity to apply classification model methodology
to stratify the risk of mortality and, therefore, establish the
severity of traumatic patients admitted to the ICU [27].
Critical trauma patients have different characteristics from
those who do not require admission to the ICU. There-
fore, specific models for these patients should be devel-
oped using databases such as RETRAUCI [2, 28].
Classifying these patients in groups of different sever-

ity can help to prioritize the allocation of healthcare re-
sources for the most seriously ill patients. There are

Fig. 1 Mortality Classification Tree Model in Critically Traumatic Patients. A: Alive. D: Died

Fig. 2 JRip-based classification rules. Output: Mortality. A: Alive. D: Died
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several studies on the application of MLT in biomedical
problems and in other aspects of critically ill patients
[29, 30]. The WEKA platform enables us to carry out
multiple classification models using a single tool [31].
In our results, the different algorithms have found cer-

tain common factors to be the most important in deter-
mining the risk of mortality. The most influential factors
are those derived from TBI, both measured by anatom-
ical involvement and by physiological repercussion.
These results have already been studied in other studies
on the severity of critical trauma patients [32]. The pres-
ence of an organic failure has also been shown to influ-
ence mortality [33]. Age is also a particularly important
factor in the evolution of these patients [34].
In general, with some differences, the algorithms used

have achieved similar levels of performance. The models
have failed to classify the group of deceased patients
with moderate recall values. Although this result

coincides with other studies with different groups of pa-
tients, it requires us to continue searching for more pre-
cise algorithms [8].
The algorithms used have specific characteristics based

on the clinical interpretation of the groups of patients
with different severities and on the relationships of the
different variables studied, which must be considered.
The LR results identify the variables that are inde-

pendently associated with higher mortality. They also in-
dicate that in critically ill patients, those with only more
severe chest or limb injuries are a group which requires
intensive surveillance, but which has a lower mortality
rate among those admitted to the ICU [35].
The CT model serves to establish a hierarchy of vari-

ables and, through decision rules, establish different
groups of patients according to their mortality rate.
There are two large groups of patients: those with TBI
and those without. It is also interesting to observe the

Fig. 3 Bayesian network model (TAN) of mortality classification in critically traumatic patients. Output: Mortality

Table 5 Performance properties of the 9 algorithms analysed

Algorithm Accuracy Specificity Precision Recall F-measure AUC

LR 0.901 0.970 0.685 0.459 0.623 0.912

CT 0.899 0.966 0.647 0.438 0.603 0.856

JRip 0.899 0.962 0.638 0.462 0.624 0.730

BN 0.894 0.955 0.603 0.469 0.630 0.915

NN 0.889 0.952 0.576 0.451 0.612 0.890

SMO 0.901 0.978 0.710 0.366 0.533 0.672

ADABOOST 0.892 0.971 0.630 0.337 0.500 0.891

BAGGING 0.902 0.968 0.668 0.444 0.609 0.910

RFOREST 0.901 0.964 0.650 0.460 0.623 0.905

LR Logistic regression model, CT Classification tree, JRip Repeated Incremental Pruning to Produce Error Reduction, BN Bayesian network, NN neural network, SMO
Sequential Minimal Optimization, ADABOOST Adaptive boosting, BAGGING Bootstrap aggregating, RFOREST Random forest, AUC Area under ROC curve. In bold
values with statistically significant differences
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different cut-off points for age according to each deci-
sion rule. Other models have been built into classifica-
tion trees for both traumatic patients and other critical
pathologies, and these have also found an increased risk
of mortality associated with TBI [19, 36].
The JRip model shows easily interpretable classification

rules [32]. In our work, it identifies the groups of patients
with the highest mortality rate. This set of classification
rules should become an alert system that identifies those
patients with the highest risk of mortality early. In these
groups of patients, the most important factors are ad-
vanced age, the presence of TBI and organic failure.
The BN-based model shows the relationship between

the different factors studied. The relationship between
factors dependent on head trauma can be appreciated.
For example, the relationship between thoracic injury,
respiratory involvement and upper extremity injuries is
observed. On the other hand, the relationship between
the presence of lower limb injuries (including the pelvis),
coagulopathy, hemodynamic alteration and massive
bleeding is observable. The study of these relationships
is capable of differentiating groups of patients with dif-
ferent profiles of anatomical involvement and physio-
logical repercussions. Traumatic patients admitted to the
ICU share a critical process, but they express different
forms of involvement that can be grouped into different
profiles with specific characteristics in their severity and
treatment. As in other works, the BN algorithm obtained
better precision values [37].
The NN works with all possible relationships between

the analysed factors. This characteristic has resulted in
NN models obtaining the best classification results in
other databases [24, 38]. In our case, it did not manage
to improve the performance. In addition, the great com-
plexity of its structure turned the model into a black box
that It is difficult to interpret due to the large number of
parameters to evaluate.
The ensemble algorithms, although more complex in

their methodology, have been shown to obtain greater
performance in other works. In our results, however, they
also did not achieve greater performance values [39].
The ideal mortality risk calculation model must take

two aspects into account. On the one hand, it must have
the highest possible performance that can be achieved
using more complex techniques in its calculation and/or
include more predictor variables and their relationships.
Complex models usually use specific programs for their
use and are difficult to interpret due to the large number
of parameters to be evaluated (for example NN). And,
on the other hand, simpler models that have a great fa-
cility of clinical interpretation (R-TS and based on classi-
fication rules). We believe that they are not two
divergent aspects, the creation of complex models can
help to achieve that interpretable models improve their

performance, for example, identifying variables and their
relationships to incorporate them into models of clinical
use.

Limitations
Our work has several limitations. Other variables con-
cerning the type or mechanism of the trauma, analytical
or evolutionary, could have been included. Our objective
required working with variables of anatomical involve-
ment and physiological repercussion. More types of clas-
sification algorithms could also have been used [40, 41].
Also consider that an interpretable model may not

learn ground truth relationships. For example, a causal
interpretation of the Bayesian network in Fig. 3 would
indicate that a person’s sex is caused by their age.
The incorporation of new records, which is carried out

continuously in the RETRAUCI database, will allow the
validation of the algorithms created and will incorporate
more patients in the less numerous groups, such as in
the neck lesions. The WEKA platform is a dynamic pro-
ject that continuously improves the learning method-
ology by incorporating new algorithms and further
automating the construction process [25].

Conclusions
Machine learning techniques are useful for creating
mortality classification models in critically traumatic pa-
tients. Even with some differences, the different algo-
rithms achieved similar performance values. In addition,
the algorithms that have a clinical interpretation help us
to establish different patient profiles according to the re-
lationship between the variables used and establish
groups of patients with different evolutions, and some of
the rules can even become alert systems to identify pa-
tients with the highest severity.
The models for classifying the severity of critically ill

patients should have the common objective of determin-
ing the variables and their relationship in order to im-
prove precision by establishing groups of patients with a
greater probability of dying who could benefit from pri-
ority care that improves their survival.
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