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Abstract

Background: Network meta-analysis (NMA) provides a powerful tool for the simultaneous evaluation of multiple
treatments by combining evidence from different studies, allowing for direct and indirect comparisons between
treatments. In recent years, NMA is becoming increasingly popular in the medical literature and underlying statistical
methodologies are evolving both in the frequentist and Bayesian framework. Traditional NMA models are often based
on the comparison of two treatment arms per study. These individual studies may measure outcomes at multiple
time points that are not necessarily homogeneous across studies.

Methods: In this article we present a Bayesian model based on B-splines for the simultaneous analysis of outcomes
across time points, that allows for indirect comparison of treatments across different longitudinal studies.

Results: We illustrate the proposed approach in simulations as well as on real data examples available in the
literature and compare it with a model based on P-splines and one based on fractional polynomials, showing that our
approach is flexible and overcomes the limitations of the latter.

Conclusions: The proposed approach is computationally efficient and able to accommodate a large class of temporal
treatment effect patterns, allowing for direct and indirect comparisons of widely varying shapes of longitudinal profiles.

Keywords: Bayesian evidence synthesis techniques, P-splines, Clinical trials, Evidence-synthesis, Longitudinal studies,
Markov chain Monte Carlo methods, Mixed treatment comparison

Background
Scientific and technological advances are steadily adding
to the number of different healthcare interventions.
To fully exploit their potential requires clinicians and
healthcare professionals to make informed and objective
choices, based on clinical studies, between a possibly large
number of treatment options in terms of relative medi-
cal efficacy and cost effectiveness [11, 22]. It is generally
accepted that randomized controlled trials provide the
most rigorous and conclusive evidence on the relative
effects of different interventions. For example, the gold
standard for directly comparing two treatments A and
B is a randomized controlled trial. In practice, however,
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evidence from direct comparison trials may be limited
and it is often impossible to have head-to-head com-
parisons for all relevant comparators of an intervention,
making it necessary to resort to indirect comparisons
[11]. For instance, direct comparison from two different
studies on treatment A versus C, and B versus C, might
be available and indirect methods exploit the common
comparator C to provide an indirect comparison of treat-
ment A versus B. A large number of individual studies
can be mapped out as a network in which treatments
are represented by nodes that are connected by edges
where data from direct head-to-head studies comparing
them are available. Network meta-analysis (NMA) refers
to methods attempting to systematically integrate all the
information provided by such networks of studies via the
entirety of paths between different treatments. The goal
is to provide a comparison of each treatment against a
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common comparator chosen from the network, such as a
placebo or standard treatment, which consequently allows
for a relative comparison among all available treatments
[33, 40–43]. Several statistical methods are available in the
literature to effectively integrate findings from individual
studies and implement NMA in the context of systematic
reviews. Current approaches include the adjusted indirect
comparisonmethodwith aggregate data, meta-regression,
mixed effect models, hierarchical models and Bayesian
methods [43–45], and have the potential to yield use-
ful information for clinical decision-making. The main
methodological idea beyondmost statistical methods is to
extend standard pairwise meta-analysis techniques to the
entire set of trials and to include direct and indirect com-
parisons by exploiting the different paths defined on the
network. In the recent literature the Bayesian approach
has proved successful in addressing the major statistical
challenges associated to the design of a systematic review.
A summary of the most recurring challenges encountered
in NMA is presented in [41]: the total number of tri-
als in a network, the number of trials with more than
two comparison arms (introducing an additional layer of
complexity) [1], heterogeneity (i.e. clinical, methodolog-
ical, and statistical variability within direct and indirect
comparisons, and across studies), inconsistency (i.e. dis-
crepancy between direct and indirect comparisons) [2],
and potential bias that may influence effect estimates [3].
In this work, we focus on NMA techniques for longi-

tudinal data, i.e. on the NMA of studies in which indi-
viduals are assessed at multiple time points throughout
the follow-up period. Among the additional difficulties
this setup brings about are that follow-up times may vary
across studies, and, moreover, that the repeated measure-
ments for each individual during the follow-up tend to be
correlated. The latter needs to be taken into account to
avoid biased estimates of treatment effects. For instance,
in [4] the authors compare alternative approaches to han-
dling correlation in linear mixed effect models for lon-
gitudinal NMA. In a Bayesian framework [5] proposes a
model based on piecewise exponential hazards, while in
[6] the treatment effect in multi-arm trials is modelled
with a piecewise linear function. Our starting point is the
review paper [7], which compares three recently popular
NMA methods for longitudinal data, whose main infer-
ential focus is treatment effect over time and which allow
for a large class of temporal patterns. The three methods
are (i) the mixed treatment comparison (MTC) developed
in [8], which assumes random relative effects and allows
for the relative treatment effects to vary over time, with-
out temporal pattern restriction, (ii) the Bayesian evidence
synthesis techniques – integrated two-component predic-
tion (BEST-ITP) proposed in [9], a parametric model to
describe a non-linear relationship between outcome and
time for each treatment, assuming a diminishing return

time course of treatment responses, and (iii) the more
recent method based on fractional polynomial (FP) tem-
poral patterns of [10], which we will review in more
detail below. Each of the three models is formulated under
a Bayesian hierarchical modelling approach, which pro-
vides a natural tool to combine different (and possibly not
completely homogeneous) sources of evidence by decom-
posing a complex problem in subcomponents which are
modelled individually and then linked together via hyper-
parameters in a probabilistically sound way. Moreover,
using a Bayesian approach, it is in principle straightfor-
ward to incorporate decision making, for example allow-
ing quantification of the impact of model- and parameter-
uncertainty on the optimal decision, given current data.
This process is required by many regulatory agencies (see
[12]) and would simply translate in adding extra layers to
the model hierarchy (see [13, 14]).
The authors of [7] conclude, based on a simulation study

and real data applications, that the MTC method appears
to be most conservative in the estimation of the underly-
ing effect-size, that the BEST-ITP model fails to capture
constant treatment effect over time, and that the FPmodel
seems to offer the most flexible strategy, accommodat-
ing different time patterns. In general, it is challenging
to capture non-monotonic temporal patterns, with the
FP model leading to slightly more accurate estimates (as
shown in their simulation study). In terms of computa-
tional cost, there are no substantial differences in running
time between the three different models, although frac-
tional polynomials require extensive sensitivity analysis
to select the optimal order and power terms, as we will
discuss below.
Although the FP model turns out as the best of the

three reviewed approaches, it still presents limitations
both from a methodological and a computational point of
view (see Sections on the FP method and “Real data appli-
cation” section below). In this work, we propose an NMA
method based on B-splines to model temporal behaviour,
which allows for the simultaneous analysis of outcomes at
different time points, automatically accounting for corre-
lation across time. We illustrate the model in simulations
and on real data examples and compare its performance
to the FP model. We also consider a variation of our basic
model based on P-splines, which provides substantially
identical inferential results. The proposed approach has
many advantages in terms of model flexibility, compu-
tational burden and ease of specification. B-splines (and
their extensions such a P-splines) are a natural competitor
of FPs and as such they have been previously compared in
the literature in different setups (see, among others, [15]).
The article is organized as follows. In the “Method”

section, we describe the model likelihood for the general
NMA problem. We review the FP approach, introduce
the proposed B-spline model and highlight its advantages.
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Further, we specify the prior distribution for the param-
eters of the model and introduce the P-spline alternative.
We then briefly describe the MCMC strategy. In the
“Results” and “Discussion” sections we compare the B-
spline, P-spline and FP models in simulations and real
data applications. In Additional file 1, we describe in detail
additional simulation scenarios and their results. We pro-
vide JAGS code to fit the proposed approach in Additional
file 3.

Method
Network meta-analysis
The main objective of NMA of longitudinal studies is the
evaluation of a suitably defined response over time. The
response ysjt in study s ∈ {1, . . . , S} and treatment arm
j ∈ {1, . . . , J} at time t ∈[ 0,T] is distributed as

ysjt ∼ f
(
ysjt | θsjt , σ 2

sjt

)
, (1)

where f is a (usually parametric) probability density. The
main parameter of clinical interest is θsjt , measuring the
treatment effect of intervention j in study s at time t. As
in the generalized linear model framework, a link function
g
(
θsjt

)
specifies the relationship between the main clinical

effects θsjt and the response. For example, in the case of
continuous outcomes we consider

ysjt ∼ Normal
(
θsjt , σ 2

sjt

)
, (2)

with g
(
θsjt

) = θsjt , while in the case of binary outcomes

ysjt ∼ Binomial
(
nsjt , psjt

)
, (3)

g
(
psjt

) = logit
(
psjt

) = θsjt .

Other alternatives include g
(
θsjt

) = ln
(
θsjt

)
if f is mod-

elled as a Poisson distribution. In this work, we focus on
continuous and binary responses as these are the most
common outcomes in clinical trials.
The fundamental difference between theNMAmethods

compared in the review paper [7] is the way the treatment
effect θsjt is modelled. The review shows that among the
considered models FP methods are the most flexible and
can accommodate a variety of treatment effect patterns.
On the other hand, they require intensive computations
for the choice of parameters and present modelling draw-
backs, as discussed in the next Section.
To capture the longitudinal data, in this work we focus

on basis function models which do not require a priori
assumptions on the temporal pattern of the treatment
effect. We model the longitudinal curve as a linear combi-
nation of basis functions

θsjt =
M∑
k=0

βksjhk(t),

where hk denotes a basis function, βksj is the correspond-
ing coefficient for study s and treatment j, and M + 1

is the total number of basis functions. In particular, we
consider spline and fractional polynomial basis functions,
carefully discussing the choice of the type and number of
basis functions in the following sections. They are key fea-
tures of themodel as they influence the level of complexity
and class of temporal profiles that can be accommodated.
Following [10], we set the variances of the main out-

comes in (2) equal to

σ 2
sjt = 1(

1 − ρ2)
(

sdsjt√nsjt

)2

, (4)

i.e. to the standard error (with sdsjt an estimate of the
standard deviation and nsjt the sample size) for the corre-
sponding study, treatment arm and time point, adjusted
by a factor ρ ∈[ 0, 1) taking into account the within-
study correlation between subsequent time points. While
estimates for the correlation coefficient, here assumed
constant over time, may be available from expert knowl-
edge, in a fully Bayesian setting it is an object of inference
and assigned an appropriate prior distribution. In this
study we assume ρ ∼ Uniform(0, 0.95).

Fractional polynomial model
In the FP regression framework, powers of the covariates
of interest (in our case time), usually chosen from the set
S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, are entered into the lin-
ear predictor (see [16] for a detailed account). The authors
of [10] propose an FP approach toNMA inwhich, given an
orderMF and powers p1, . . . , pMF ∈ S, the mean outcome
of the j-th treatment in study s at time t > 0 is modelled as

θsjt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β0sj +
MF∑
m=1

βmsjtpm if p1 �= · · · �= pMF ,

β0sj + β1sjtp +
MF∑
m=2

βmsjtp [ln(t)]m−1 if p1 = · · · = pMF = p,

andMF > 1,

(5)

where t0 := ln(t). Implementing the FP model requires
selecting an order MF and powers p1, . . . , pMF . In both
the original work [10] and the simulation study [7] the
Deviance Information Criterion [DIC, [17]] is used as an
expected predictive error estimate to guide the selection
of the FP order and powers.When using DIC, the aim is to
select order and powers that minimize the sum of a good-
ness of fit term, given by the posterior mean of the model
deviance, and a regularization term, given by the posterior
estimate of the effective number of parameters. The latter
is intended to penalize model complexity in order for the
DIC to be a tool that prevents overfitting.
First and second order FPs allow representations of a

considerable range of non-linear relationships, and higher
orders are rarely used in medical applications (see, for
instance, [18, 19]). Even considering only the cases MF =
1 and 2, using the DIC often presents a non-negligible
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computational task as it requires the comparison of the
DIC values of eight different first-order fractional poly-
nomial models (one for each possible power from S) and
of 64 different second-order fractional polynomial mod-
els (for all the possible combinations of powers from S).
Besides the computational cost necessary to select the
order and powers, the FP modelling approach lends itself
to more fundamental criticism: (i) any choice of order and
combination of powers imposes strong structural proper-
ties on the curve and therefore on the set of representable
temporal patterns, which may not be supported by the
data.Moreover, the selection of powers and order depends
also on the prior specification of the other parameters
in the model; (ii) FPs generally have singularities at zero
or grow polynomially for large arguments. Consequently,
more complex FPs may only provide poor fit for values of
t that are large or close to zero; (iii) the individual terms
in an FP are functions with support over the entire time
interval and, as discussed in [16], may be less responsive
locally to perturbations of the response at a given point,
while the fit at distant points may be affected considerably.
To avoid such effects, basis functions with short support
may be more appropriate in many situations [see the dis-
cussion in [19]]; (iv) first-order FPs describe effects as a
function of transformed time t in a linear model β0sj +
β1sjtp, in particular they are always monotonic. Higher
order FPs become increasingly complex, with second-
order FPs being either monotonic or unimodal. It may
however be preferable to have a model in which the linear
model is always subsumed in more complex models; (v)
although a second order FP as in (5) has three coefficients
only (two in the case of modelling change from baseline,
where the intercept is equal to zero and can be discarded),
the choice of powers increases model complexity, since
many different FP models need to be fitted to find the
one that best describes the temporal pattern of the treat-
ment effect. Additionally, the use of DIC as model choice
criterion effectively hinges the FP model to any potential
shortcomings of the DIC which have been pointed out
in the literature [e.g. [20, 21]]. We have indeed observed
sub-optimal DIC-based selections in the real data applica-
tions, and therefore present a more detailed discussion in
the “Real data application” section. To address the above
issues we next propose to use B-spline basis functions to
capture the treatment effect over time.

B-spline model
B-splines are a family of basis functions with many desir-
able theoretical and computational properties, making
them widely used in function approximation and count-
less applications in statistics and engineering. For details
we refer to [23]. Univariate (cardinal) B-splines can be
defined inductively, starting from the B-spline of order 1
given by

B1(t) :=
{
1 if t ∈[ 0, 1] ,
0 otherwise.

B-splines of higher order n ∈ N are defined via consecu-
tive convolutions by

Bn(t) :=
∫

R

Bn−1(t − s)B1(t) ds,

i.e. with higher order they become increasingly smoother.
For n ≥ 2, the B-spline Bn is

(i) symmetric and positive valued, with finite support
[ 0, n],

(ii) (n − 2)-times continuously differentiable,
(iii) polynomial of degree n − 1 when restricted to any

interval [ k, k + 1], k ∈ Z, and
(iv) satisfies

∑
k∈Z Bn(t − k) = 1 for all t ∈ R.

The integer translates {Bn(· − k)}k∈Z are thus a set of
highly regular and well structured basis functions. They
span the space of functions that are polynomial on each
interval [ k, k + 1], k ∈ Z, and (n − 2)-times continuously
differentiable in every k ∈ Z. Such piecewise polynomial
functions with global smoothness restrictions are called
splines. In the cardinal case the integers are called the
knots and the above can be easily generalized to any uni-
form knot sequence (hk)k∈Z, where h ∈ R, by considering
the basis functions {Bn (t/h − k)}k∈Z of translates of the
appropriately dilated cardinal B-splines. In applications
in which a finite time interval is considered, only those
finitely many basis functions whose support intersects the
interval are required.
A main advantage of B-spline basis functions comes

from their locality due to their finite support and their
structure as translates of only one generating symmetric
function. Choosing an order and adjacent knot distance
does not impose any overall temporal behavior beyond
smoothness. In fact, for sufficiently largem ∈ N, the func-
tions {Bn (2mt − k)}k∈Z can approximate any integrable
function to arbitrary precision. This has to be contrasted
with the FP model, in which the fractional monomials tpm
may be considered as basis functions, and where choosing
any combination of fractional monomials imposes rather
strong geometrical restrictions on the representable func-
tions. Furthermore, due to the translation structure of the
B-spline bases, all parts of the observation time-interval
are treated equally, with no performance deterioration for
small or large time arguments. The local support of the
basis functions makes the B-spline expansions a local-
influence model (i.e. perturbations of the response only
affect the fit of the model locally), whereas their overlap-
ping support, the size of which goes hand in hand with
the order of smoothness, acts as a regularizingmechanism
that can facilitate stability [see [16]]. B-spline bases are
also stable in the sense that small changes in coefficients
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do not perturb the represented function significantly [see
[24]]. Small changes in a represented function will there-
fore result in small changes in its coefficient sequence and
vice versa. Together with the locality, and the partition
of unity property (iv), these characteristics contribute to
a better interpretability of the coefficients in a B-spline
expansion as compared to the FP coefficients. Indeed, it is
easy to understand changes in the function due to changes
in the coefficients, as every coefficient corresponds to a
particular interval of the domain of the function. On the
other hand, FPs are sums of different global functions and
it is therefore harder to visualize the effect of changes in
coefficients. Finally, B-spline bases have the property that,
with increasing order and additional knots, the spaces of
representable functions become strictly larger, containing
all previously representable function. This nestedness is
desirable since it ensures that simpler models are always
embedded in more complex, a property not shared by the
FP model.
Practical applications of B-splines are dominated by n =

4 as the order of choice, resulting in piecewise cubic poly-
nomials with continuous curvature. In fact, given a num-
ber of data points, it is well known [e.g. [25]] that among
all smooth regression functions, the unique solution to
minimizing a weighted sum of squared approximation
errors and the integral squared curvature as regularization
is given by a cubic spline with knots at the data time-
points. As such, in the remainder of this paper, we will
restrict our attention to cubic B-splines.
The smoothness property of the spline functions at

their knots makes them relatively insensitive to the pre-
cise locations of the knots. While observation times differ
across studies, the B-spline basis functions, and in partic-
ular their knot positions, have to coincide across studies
in order to guarantee the consistency assumption of the
NMA in this modelling framework (see next Section).
Since studies in NMA of longitudinal data typically have
very few observation time points in the interval [ 0,T],
we choose h = 3/T , i.e. we consider the four uni-
formly spaced knots 0,T/3, 2T/3,T , over the observation
interval [ 0,T]. We conducted a sensitivity analysis for
the number of knots ranging from two to ten and gen-
erally four knots provided the best choice (results not
shown).
For cubic B-splines with four knots over the observation

time interval, six of the generator translates have sup-
port intersecting [ 0,T]. We denote those by {Bk}MB

k=0 with
MB = 5 and model the mean outcome of treatment j
in study s at time t > 0 as cubic spline using the basis
expansion

θsjt =
MB∑
k=0

βksjBk(t). (6)

Despite having a greater number of coefficients, the B-
spline model provides a conceptually simpler and compu-
tationally more attractive strategy than the FP model (5)
since all order and power parameter choices (for instance
evaluated via the DIC) have to be additionally considered
for (5), whereas we keep the model (6), i.e. the spline order
and number of knots, fixed in all applications. The local-
ized support of B-splines allows us to propose a default
model choice, with good performance in most applica-
tions. This strategy is not possible for FPs, as they lack this
property and impose global assumptions on the behaviour
of representable functions.

Prior specification
We follow the prior specification proposed for the FP
approach in [10], which extends earlier approaches of
[8] and [9]. The regression coefficient vector βsj =(
β0sj, . . . ,βMsj

)ᵀ for both the FP model (5), with M =
MF , and the B-spline model (6), with M = MB, is
expressed as a sum of a study-specific random effect
and a study-specific arm deviation from the reference
treatment:

βsj = μs + δsj

where the study specific means μs = (μ0s, . . . ,μMs)
ᵀ in

our implementation are assigned a vague prior distribu-
tion

μs ∼ Normal
(
0, 104I

)
,

with 0 denoting the zero vector and I the identity matrix
of appropriate dimensions. The study specific treatment
effects δsj = (

δ0sj, . . . , δMsj
)ᵀ in study s of treatment j

relative to a reference treatment, indexed as j = 1, are
modelled as “structured random effects”

δsj ∼ Normal
(
dj − d1,�

)
, (7)

dj ∼ Normal
(
0, 104I

)
, (8)

for j > 1, with d1 = (d01, . . . , dM1)
ᵀ := 0 and

δs1 = (δ0s1, . . . , δMs1)
ᵀ := 0. Clinical effects in (5)

and (6) are therefore expressed as change from base-
line (CFB) with respect to the reference treatment. The
covariance matrix � = (σmσnλmn)m,n=0,...,M captures
heterogeneity between studies, where σ 2

m (often referred
to as the heterogeneity parameter) represents the vari-
ance in

(
δmsj

)
sj and captures how much variation exists

between the results of different studies. We assume σm to
be constant for all treatment comparisons. This assump-
tion also implies that the between-study variance over
effect estimates remain constant over time [see [26]]. The
covariances λmn quantify the correlation between these
treatment effect parameters.
When assuming a (partially) fixed-effects model, (7) (or

certain components of it) is replaced by δsj = dj − d1 (i.e.
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all or some σm are zero) and it is not necessary to estimate
(the respective) between-study covariances. However, in
the B-spline case of this work we only consider models
including random effects μs per study, allowing for het-
erogeneity in the regression coefficients between studies,
but fixed effects for δsj. For the FP model, as suggested in
[10], we impose a random effect only on one of the com-
ponents δsj. In particular, whenMF = 1, there is only one
between-study heterogeneity parameter, related to the rel-
ative treatment effects for β1sj. In this case we have only
one heterogeneity parameter σm to which we assign a uni-
form distribution on the interval (0, 10). For all real data
applications we also consider a uniform distribution on
(0, 5) and (0, 50) for σm. Posterior inference results are
essentially identical to the ones obtained for the interval
(0, 10), showing that inference is robust to prior specifi-
cation for the between study heterogenity. Moreover, if
MF = 2, we consider also the case in which the between-
study heterogeneity concerns treatment effects in terms of
β2sj.
Note that for the Bayesian NMA model described here,

i.e. for (7), to facilitate consistent comparisons of treat-
ments that are not directly compared by the same study
with those that are, the implicit assumption regarding the
relative treatment effects is that dj1 − dj2 = (

dj1 − d1
) −(

dj2 − d1
)
[10]. Inconsistency can occur if there are sys-

tematic differences in relative treatment effect modifiers
between different direct comparisons. For the consistency
assumption to transfer through (6) and (5), the same B-
splines (i.e. order and knots) and the same FPs (i.e. order
and powers) have to be used across all studies and treat-
ment arms. Finally, note that the describedmodel does not
account for correlations stemming from trials with more
than two treatment arms but can be easily extended to
consider them [see [26]].

Bayesian p-splines
A possible variation to the B-spline model that arises from
a different prior specification for (8) is related to the penal-
ized spline (P-spline) least squares curve fitting approach
[27–29], in which B-splines with a relatively large num-
ber of equally spaced knots are used to fit a function of
desired degree of smoothness by penalizing the curvature.
The frequently used regularization introduced in [27]
penalizes the sum of second-order differences between
consecutive coefficients in the B-spline expansion, and
can be adapted to incorporate other potentially avail-
able information about the shape and degree of smooth-
ness of the target function. Most importantly, in the P-
spline approach the number and location of the knots
are not crucial: A relatively large number of uniformly
spaced knots (large enough to ensure sufficient flexibil-
ity thus preventing oversmoothing) can be fixed a priori
since the penalty term prevents overfitting. For a more

thorough discussion on the P-spline penalized least
squares approach see [30].
We implement a Bayesian version of the P-spline

approach that has been introduced in [31]. The specifi-
cation of appropriate prior distributions in (9) and (10)
introduces locally adaptive smoothing parameters. As
before, we assume model (6) for the treatment effects,
however, the prior on dj in (8) is now replaced by a second
order random walk. This provides a Bayesian counterpart
to the second order penalty in [27]. Precisely, the prior
specification on the dj are as follows: we set d1 = 0, and
for j > 1 and k ≥ 0 we assume, following [31],

dkj ∼ Normal
(
2dk−1,j − dk−2,j, ηj

)
(9)

ηj ∼ InverseGamma(1, 0.0005) (10)

In case dk−1,j or dk−2,j are not available, we let dkj ∼
Normal(0, 1000).

MCMC algorithm
Posterior inference for all simulated examples and real
data applications is performed via standard Gibbs sam-
pling, implemented in JAGS [see [32]]. The first 5000
iterations are discarded as ‘burn-in’ and the final sam-
ple size on which inference is based is 10000 samples.
Convergence of the chain is checked through the Gelman-
Rubin potential scale reduction factor [see [34]]. The
Gelman-Rubin diagnostic is evaluated by running multi-
ple chains from different initial values and comparing the
estimated between-chains and within-chain variances for
each model parameter. Large differences between these
variances would indicate that convergence has not been
reached yet. MCMC convergence is not a major issue
in this model since most prior distributions are conju-
gate and therefore the chain mixes well. Moreover, we are
working with aggregate data that in general exhibits less
variability than individual level data. In Additional file 2,
we show the traceplots of μs and ds for one of the repli-
cas of the non-monotonic scenario for the B-spline model.
Indeed, good mixing of the chain is also evident from
Table 1 in which we report summary statistics of some
convergence diagnostics for the non-monotonic scenario
with continuous and binary responses. We note that all
diagnostics are satisfactory, with the Gelman-Rubin diag-
nostic close to one, the Effective Sample Size close to
10000 and small MCMC standard error. JAGS code to fit
the models is provided in Additional file 3.

Results
Simulation study
We have replicated the simulation study of [7] to compare
the B-spline and P-spline model with the FP approach.
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Table 1 Median, minimum and maximum evaluated over the 50 replicates of the average across all the parameters of the
convergence diagnostics: Gelman-Rubin dignostic, effective sample size (ESS) and Monte Carlo standard error (SE). Results are reported
for our model applied to the non-monotonic scenario with binary and continuous responses

Non-monotonic Non-monotonic (binary)

Median Minimum Maximum Median Minimum Maximum

Gelman-Rubin 1.005 1.002 1.008 1.008 1.003 1.010

ESS 9996.289 9993.762 9998.571 9114.788 9076.123 9480.754

Monte Carlo SE 0.015 0.009 0.023 0.017 0.012 0.019

In [7] various simulation scenarios are designed for con-
tinuous and binary responses that involve widely differ-
ing temporal patterns of treatment effects. Moreover, the
authors consider data sets simulated from the models of
[8] and [9], as well as simulated data from non-closed net-
works. In this context, a network is called closed if for
all possible pairs of treatments there is at least one study
providing direct comparisons. A detailed description of
the simulation study setup and our results is contained in
Additional file 1. Moreover, in Additional file 4 we provide
R code to simulate data from all the considered scenar-
ios. Here we only discuss one scenario in detail, which
highlights the advantages of our proposed approach.
For each scenario of the simulation study, we fit the

B-spline, P-spline and FP models to 50 randomly gener-
ated data sets and report results as averages. The data sets
are generated as follows. Given a network structure with
studies s, treatments j and observation times t, individual
level observations for continuous outcomes are modelled
by Zisjt ∼ Normal

(
θsjt , τ 2s

)
, for i = 1, . . . , ns, where

ns is the number of observations in study s. The mean
outcomes θsjt = γjt + αs are modelled as a sum of treat-
ment effects γjt over time and independent study effects
αs ∼ Normal(0, 10). Since our main interest is to inves-
tigate the performance of the models in describing the
temporal patterns of the main outcomes, we will assume
the variances τ 2s of the study outcomes as constant over
time and across treatment arms. (This assumption may
not hold in practice; see the real data applications below.)
The main outcomes of each study, treatment and time
point are reported as the sample means of the respective(
Zisjt

)
i=1,...,ns , i.e. Ysjt = (∑ns

i=1 Zisjt
)
/ns or

Ysjt ∼ Normal
(
γjt + αs, τ 2s /ns

)
.

Binary outcomes are simulated by taking the inverse logit
transformation of θsjt and then generating individual level
outcomes from a Bernoulli distribution (see (3)).
Different scenarios are created through various specifi-

cations of the treatment effect curves γjt . Here we consider
a closed network and simulate data from three hypo-
thetical studies with two treatment arms each. See Fig. 1
(left panel) for a graphical representation. Study 1 directly
compares treatments A and B with follow-up at four time

points (weeks 4,8,12 and 24). Study 2 compares treatments
A and C at three time points (weeks 4,12,24). Finally,
study 3 compares treatments B and C at three time points
(weeks 4, 8, 12). The number of subjects per treatment
arm in the different studies are chosen as n1 = 100, n2 =
120 and n3 = 130. Variances are set τ 21 = 1, τ 22 = 2 and
τ 23 = 4.
In Figs. 2 and 3 we present, for continuous and binary

outcomes respectively, a comparison of the estimated
profiles obtained using the B-spline model, the P-spline
model and the FP model, along with the true values
used to simulate the data, assuming as treatment effects
over time the non-monotonic continuous piecewise linear
curves

γAt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3t
4 , t ∈[ 0, 4]

− 5t
2 + 2, t ∈ (4, 8]

− t
2 − 4, t ∈ (8, 12]

t
2 − 16, t ∈ (12, 24]

, γBt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3t
2 , t ∈[ 0, 4]

−t − 2, t ∈ (4, 8]
t − 18, t ∈ (8, 12]
t
4 − 9, t ∈ (12, 24]

,

γCt =

⎧⎪⎨
⎪⎩

−2t, t ∈[ 0, 4]
t
4 − 9, t ∈ (4, 12] .
t
6 − 8, t ∈ (12, 24]

(11)

From the Figures it is evident that the spline mod-
els are able to accurately estimate non-monotonic time
effects in both the continuous and binary cases, which

Fig. 1 Network of studies used in the simulation scenarios.
Treatments are represented as nodes and connected by an edge if a
direct comparison study between them is available. The left network
is closed, with one study comparing all possible pairs of treatments,
while in the right network it is extended to become non-closed,
containing treatment pairs not directly compared by at least one
study
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Fig. 2 Posterior estimated profiles of θsjt obtained under the non-monotonic scenario (11). Red lines indicate the values used to simulate the data.
Estimates and 95% credible intervals obtained from the respective models are indicated in blue (FPs), black (B-splines) and green (P-splines). Due to
their small size, credible intervals are not visible for B-splines and P-splines

the FP model fails to capture. The 95% credible intervals
obtained with the splines are narrow and always cover
the true value used to generate the data. In Fig. 4, we
show estimated differences in treatment effects for one of
the 50 simulation replicates in the continuous case. It is
evident that the spline models are able to capture the non-
monotonic curve shape for difference in treatment, while
the FP model flattens out the difference in treatment with
consequent increase of uncertainty. These conclusions are
confirmed by the extensive simulation study presented in
Additional file 1 for other temporal patterns. We report
for an overall quantitative comparison of goodness of fit

the mean squared error (MSE) evaluated for each simu-
lation scenario across all replicates. The MSE is defined
as

MSE = 1
R

R∑
r=1

∑
s,j,t

(
Ysjt − Ŷ (r)

sjt

)2

where Ŷ (r)
sjt denotes the predicted value of the response

for study s, treatment j, time t and MCMC iteration r.
The number of saved MCMC iterations is R = 10000.
For all simulation scenarios the MSEs for the B-spline,
P-spline and FP model are summarized in Table 2. The

Fig. 3 Posterior estimated profiles of psjt for binary outcomes under the non-monotonic scenario described in (11). Red lines indicate the values
used to simulate the data. Estimates and 95% credible intervals obtained from the respective models are indicated in blue (FPs), black (B-splines)
and green (P-splines). Due to their small size, credible intervals are not visible for B-splines and P-splines
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Fig. 4 Difference in treatments for the non-monotonic simulation scenario. Treatments for A versus B (blue), and treatments A versus C (red) are
shown in the left panel for the B-spline model and in the right panel for the FP model

table reports the means (and standard deviations) of the
MSEs across the 50 simulations, quantitatively showing
an increase in estimation accuracy for the spline models
as compared to the FP model in all scenarios, and partic-
ularly in the non-monotonic scenario simulated in (11).
Further, in Table 3 we report summary statistics of the
posterior estimates of σsjt obtained with the B-spline and
FPmodel. The table confirms that the B-spline model per-
forms better in terms of model fit and precision of the
estimates. The estimates are in line with the values used
to generate the data.

Real data application
We consider five real NMA data sets. The networks of
studies for all data sets are provided in Figs. 5 and 6. Main
features of all data sets are summarized in Table 4.

(i) The first data set contains information from 13
studies on patients affected by chronic obstructive
pulmonary disease (COPD) and is described in [35]
and [7]. COPD is a long term lung condition affecting

adults worldwide, for which there is no cure but
treatment can help slow down disease progression.
Subjects receive one of three possible treatments:
Aclidinium 400μg BID (AB400), Tiotropium 18μg
QD (TIO18), or placebo. Three studies compare
AB400 with placebo, nine compare TIO18 with
placebo, and one compares AB400 and TIO18 with
placebo. There is one closed loop, providing direct
evidence. As all studies are placebo-controlled,
placebo is used as the reference treatment.

(ii) The second data set contains information from 16
studies on treatments for osteoarthritis (OA) of the
knee and is described in [10] and [7]. OA is a painful
chronic degenerative joint condition. The treatments
in the systematic review are based on different
hyaluronan (HA)-based viscosupplements. The
different treatments considered are: three, four, or
five injections of HA with a molecular weight (MW)
of 0.5-0.73 million Da (Hyalgan) (3 Hy-0.5-0.73; 4
Hy-0.5-0.73; 5 Hy-0.5-0.73); three injections of HA
MW of 0.62-11.7 million Da (Supartz) (3

Table 2 Mean Square Error (MSE) comparison for B-spline, P-spline and fractional polynomial (FP) network meta-analysis models.
Displayed are the mean and standard deviation (SD) of the respective MSEs averaged over 50 simulated data sets for each scenario.
Unless stated otherwise, considered outcomes are continuous. Scenarios that contain non-monotonic temporal behaviors appear to
be challenging for the FP method

Scenario B-spline model P-spline model FP model

Mean SD Mean SD Mean SD

Linear 0.0019 0.0213 0.0021 0.0243 0.3505 0.0388

Logarithmic 0.0014 0.0111 0.0015 0.0135 0.3505 0.0118

Piecewise linear monotonic 0.0011 0.0923 0.0052 0.1437 1.3069 0.1823

Mixed 0.0037 0.0313 0.0040 0.0931 1.5747 0.1338

Non-monotonic 0.0019 0.0389 0.0027 0.1039 41.7533 1.8354

MTC 0.0374 0.0483 0.0402 0.0984 0.9198 0.2864

BEST-ITC 0.0397 0.0503 0.0402 0.1003 0.1701 0.2898

Piecewise linear monotonic (binary) 0.0034 0.0118 0.0053 0.0978 0.0897 0.3698

Non-monotonic (binary) 0.0004 0.0019 0.0004 0.0178 0.9748 0.2976

Piecewise linear (non-closed network) 0.0172 0.0173 0.0235 0.0774 0.0903 0.3854
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Table 3 Comparison between estimates of σsjt (psjt for binary outcomes) obtained with the B-spline, P-spline and Fractional
Polynomial (FP) network meta-analysis models. We report median, minimum and maximum evaluated over the 50 replicates of the
average σsjt (respectively psjt) for each scenario

Scenario B-spline model FP model

Median Min Max Median Min Max

Linear 0.1007 0.1003 0.1010 0.1423 0.1172 0.1867

Logarithmic 0.1016 0.1014 0.1018 0.1439 0.1258 0.1761

Piecewise linear monotonic 0.1300 0.1190 0.1468 0.5701 0.5552 0.5875

Mixed 0.1321 0.1200 0.1497 0.6794 0.6666 0.6850

Non-monotonic 0.1399 0.1240 0.1760 0.9321 0.9321 0.9322

MTC 0.0829 0.0746 0.0939 0.1831 0.1236 0.3685

BEST-ITP 0.1352 0.1262 0.1426 0.2507 0.1712 0.4110

Piecewise linear monotonic (binary) 0.6128 0.5923 0.6246 0.6989 0.6830 0.7037

Non-monotonic (binary) 0.5940 0.5763 0.6011 0.7732 0.7372 0.8189

Piecewise linear (non-closed network) 0.1483 0.1203 0.1749 1.0382 1.0365 1.0408

Hy-0.62-11.7); three injections of HA MW of 2.4-3.6
million Da (Euflexxa) (3 Hy-2.4-3.6); and three
injections of Hylan GF-20 MW 6 million Da (Synvisc)
(3 HyGF20). Placebo is the baseline treatment.

(iii) The third data set contains information from 4
studies on patients affected by type 2 diabetes (T2D)
and is described in [9] and [[7], Supplementary
Materials]. Diabetes poses an enormous individual
and societal burden, with high risk of major
complication and diminished quality and length of

life. The authors consider four treatments of which
one is placebo and the others are oral anti-diabetic
agents. Since the authors do not give further details
we also label the treatments as 1 through 4, the
baseline being the placebo treatment 1. The primary
clinical outcome of interest is the hemoglobin A1c
(HbA1c, %) reduction from baseline, with larger
absolute value indicating better efficacy.

(iv) The fourth data set is part of a large collection of
studies on benefits and risks of drugs for treating

Fig. 5 Networks of studies of the COPD data set (top left), the T2D data set (bottom left) and the OA data set (right). Edges indicate the number of
studies providing direct comparison between adjacent treatments



Heinecke et al. BMCMedical ResearchMethodology          (2020) 20:261 Page 11 of 16

Fig. 6 Networks of studies of the CMP data set (left) and the MDD data set (right). Edges indicate the number of studies providing direct comparison
between adjacent treatments

chronic musculoskeletal pain (CMP) in patients with
osteoarthritis or rheumatoid arthritis. CMP disorders
are associated with some of the poorest health related
quality of life. Patients with pain experience severe
restrictions on their functioning and ordinary daily
activities. The data are collected in [36] and the
authors conduct a Bayesian NMA. Here we
concentrate on pain relief as the outcome of interest,
measured by visual analogue scale (VAS), and only
include studies with two follow-ups. Treatments are
Diclofenac, Naproxen, Ibuprofen, Celecoxib, and
Etoricoxib, which are compared to placebo.
Outcomes are reported at 6 and 12 weeks (within
2-week range).

(v) The fifth data set is taken from a comparative review
of efficacy and tolerability of interventions for
treatment resistant major depressive disorder (MDD)
[37]. MDD is a mental disorder affecting about
10 − 15% of the general population. It is associated
with depressed mood and/or loss of interest or
pleasure in daily activities for more than two weeks.
MDD is associated with significant morbidity and
mortality, and often patients fail to achieve full

remission. Here we focus on efficacy outcome
measured as CFB in the Montgomery-Asberg
Depression Rating Scale (MADRS). Interventions are
Aripiprazole, Fluoxetine, Lamotrigine, Lithium,
Nortriptyline, Olanzapine, Olanzapine/Fluoxetine
combination (OFC), Quetiapine, Risperidone,
Venlafaxine, which are compared to placebo/sham.
Outcomes are reported at 4,6 or 8 weeks.

For the data sets for which no information about the loss
to follow-up is available, we assume that the sample sizes
remain the same as at the start of the study. For stud-
ies within the NMAs that do not report the number of
patients, we generate the sample size from a uniform dis-
tribution ranging from the minimum to the maximum
number of patients across all studies of the respective
NMA. Finally, following [8], we impute any missing stan-
dard deviation information specifying the prior distribu-
tions

sdsjt ∼ Gamma (α1,α2) ,
αi ∼ Uniform(0, 10).

Posterior inference results are shown in Figs. 7, 8, 9, 10, 11.
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Table 4 Summary of main features of the chronic obstructive pulmonary disease (COPD), osteroarthritis (OA), type 2 diabetes (T2D),
chronic muskuloskeletal pain (CMP), and treatment resistant major depressive disorder (MDD) data sets

COPD OA T2D CMP MDD

Number of studies 13 16 4 27 13

of treatments 3 7 4 6 10

Number of follow ups 2–6 1–10 2–5 2 3–4

Number of patients per study 46–3006 20–295 88–575 12–6769 24–1147

Network type closed non-closed non-closed non-closed non-closed

Discussion
From the simulation study (see Figs. 2, 3 and Table 2)
(see Additional file 1 for further scenarios) it appears
evident that the results obtained from the B-spline and
the P-spline models are virtually identical. This is not
surprising due to the use of the same basis functions
and the small number of time points and knots in our
application, resulting in a very small number of second
order differences. Hence the local smoothing, the most
attractive feature of P-splines, has very limited opportu-
nity. Moreover, penalization is naturally incorporated in
the Bayesian framework through the prior distribution.
Indeed, the prior in (8) already shrinks small coefficients
to zero while keeping substantial effects large. Further-
more, it is well known that the prior distribution performs
a similar role as the penalty term in classical penalized
regression, with the advantage that the penalty parame-
ters can be estimated jointly with the other parameters of
the model. From a Bayesian perspective, the main differ-
ence between the priors in (8) and in (9) is that the former
assumes globally constant smoothing while the latter facil-
itates locally adaptive smoothing. This is relevant in appli-
cations with larger time horizon and appealing when the
underlying function is oscillating. Given the limited num-
ber of time observations and the often regular behaviour
of treatment effects over time in our application, the dif-
ference between B-splines and P-splines is negligible. For

this reason we only fit the B-spline model in the real data
applications.
The simulation study results show that the spline based

models offer a flexible strategy that is able to accom-
modate different time patterns and non-linearities in the
underlying curve without the computational burden of
the FP model, while still leading to better results. Cubic
splines with four uniformly spaced knots appear to be able
to provide accurate estimates and seem a natural choice,
since it is common in NMA that few time measurements
are available per treatment arm and study.
A possible extension of our model is the inclusion of

within-study correlation between different time points. It
has been shown that ignoring it might lead to increased
residual variability, standard error of the pooled estimates
and mean squared error. Including a specific parame-
ter for within-study variability influences the borrowing
of strength between time points and ultimately across
studies. These considerations have been discussed in the
literature and different methods to accommodate within-
study correlation in meta-analysis have been proposed
[see, e.g. [38, 39]]. In our work, the within-study corre-
lation is mostly accounted for by flexibly modelling the
mean function, which describes the time evolution of
the treatment effect, by using B-splines. This strategy
allows to capture structure in the data. Conditionally on
the mean function and the remaining parameters in the

Fig. 7 Results for the chronic obstructive pulmonary disease (COPD) data set. Shown are estimation results as mean differences in treatment effects
over time for AB400 versus placebo (red), TIO18 versus placebo (blue) and AB400 versus TIO18 (grey) generated by the B-spline model (left panel)
and the FP model (right panel). Dashed lines denote 95% credible intervals, while solid lines represent the posterior mean. These results are in
agreement with the conclusions in [35]
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Fig. 8 Results for the osteoarthritis (OA) data set. Shown are treatment effects relative to placebo over time for 5 HY-0.5-0.73 (magenta), 4
HY-0.5-0.73 (black), 3 HY-0.5-0.73 (red), 3 HYGF20 (green), 3 HY-0.62-11.7 (blue) and 3 HY-2.4-3.6 (light blue) estimated by the B-spline model (left
panel) and the FP model (right panel). Dashed lines denote 95% credible intervals, while solid lines represent the posterior means. Both models
suggest that the best results are obtained by 3 HYGF20, in agreement with the result obtained originally for this data with FPs by [10]

Fig. 9 Results for the type 2 diabetes (T2D) data set. Shown are mean differences in treatment effects over time for treatments 1 versus 2 (blue), 1
versus 3 (red), 1 versus 4 (green), 2 versus 3 (orange), 2 versus 4 (grey) and 3 versus 4 (magenta) generated by the B-spline model (left panel) and FP
model (right panel). Dashed lines denote 95% credible intervals, while solid lines represent posterior means

Fig. 10 Results for chronic musculoskeletal pain (CMP) data set. Shown are treatment effects relative to placebo over time for Celecoxib (black),
Naproxen (red), Etoricoxib (green), Ibuprofen (blue), and Diclofenac (light-blue) estimated using the B-Spline model (left panel) and the FP model
(right panel). Dashed lines denote 95% credible intervals, while solid lines represent posterior means. Both figures are in agreement with the result
of [36] that Diclofenac is the most effective
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Fig. 11 Results for the major depressive disorder (MDD) data set. Shown are treatment effects relative to placebo over time for Nortriptyline (black),
Lithium (red), Fluoxetine (green), Olanzapine (blue), OFC (ligth-blue), Risperidone (magenta), Aripiprazole (yellow), Venlafaxine (grey), Quetiapine
(orange) and Lamotrigine (dark green) estimated using the B-Spline model (left panel) and the FP model. Dashed lines denote 95% credible
intervals, while solid lines represent posterior means. The results are in qualitative agreement with [37]

model, the observations are independent. Borrowing of
strength for inference across studies is mainly achieved
through the joint modelling of the study-specific mean
functions. In this framework it is in principle possible to
include correlated errors among observations at differ-
ent time points, and some proposals in this direction can
be found in the literature. Here we do not introduce this
further source of uncertainty given the limited amount
of time-points per study per treatment, the fact that the
observations are rarely close in time, the use of aggre-
gated data, and finally because often (as shown in our
data examples) the time pattern of the treatment effect
is not noticeably oscillating but, on the contrary, is often
linear or piecewise linear. Moreover, in the case of contin-
uous responses we rescale in (4) the variances of the main
outcomes, which achieves a similar effect as the rescal-
ing of the variance by the autoregressive coefficient in an
Autoregressive Model of order 1. For different types of
responses other rescaling strategies need to be adopted.
For example, for binomial or count data explicit correla-
tion between time points could be introduced by mod-
elling the outcome variables using a multivariate Binomial
or a multivariate Poisson distribution, respectively.
The results of the real data applications confirm those

of the simulation study. For the FP fit we considered first
and second order FPs. The estimated profiles using the B-
spline and FP models are presented in Figs. 7-9. B-splines
provide narrower credible intervals for the posteriormean
estimates, while still being able to detect slight changes
over time. As a rule of thumb, if the 95% credible inter-
val of the posterior distribution of the difference between
two treatments does not cover zero, then we can conclude
there is evidence in support of different effectiveness
between them. In the results for the OA data it is evident
that the B-spline model is able to detect non-monotonic
time patterns, while the FP model forces a monotonic
trend given the parameter choice which is dictated by the
DIC. Furthermore, for the T2D and the CMP examples,
the shape and size of the credible intervals obtained with

the FP model is due to the choice (by DIC) of a first order
polynomial with power p = −2. Any choice of FP param-
eters generally imposes structure on the temporal pattern,
which might not always be supported by the data. In par-
ticular, this is the case for the choice of the function β/t2
when, as for the CMP data, only two data points per study
and treatment arm are available. In Table 5 we report
the specific FP selected by DIC for each data set. These
examples confirm that the DIC might not be the optimal
model choice criterion when confronted with non-linear
effects. Indeed, while the DIC has been shown to be an
approximation to a penalized loss function based on the
deviance with a penalty derived from a cross-validation
argument, it has been warned that this approximation is
in fact only valid when the effective number of parameters
peff in the model is considerably smaller than the number
of independent observations n [see [20]]. Since the latter
assumption is usually not satisfied in the case of NMAs
the DIC can tend to under-penalize more complex mod-
els. The poor empirical performance of DIC compared to
cross-validation when the assumption peff � n is violated
has also been highlighted by [21].

Conclusions
In this article we propose a random effect model for
NMA of repeated measurements based on splines. The
model is able to accommodate a large class of temporal

Table 5 Real data sets: DIC selection of the orderMF and of the
power terms pm in the FP model. RE and FE refer to random and
fixed effects

Data set MF p1 p2 RE/FE

COPD 2 -0.5 0 RE on β2

OA 2 0.5 1 RE on β2

T2D 1 -2 RE on β1

CMP 1 -1 FE

MDD 2 0.5 0 FE
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treatment effect patterns, allowing for direct and indi-
rect comparisons of widely varying shapes of longitudinal
profiles. We argue for a fixed choice of the order and
automatic selection of uniformly spaced knots of the B-
spline. Themodel is not restricted to continuous or binary
outcomes, but can be extended to any type of response
variable by specifying an appropriate link function. An
important extension of themodel is to account for the cor-
relation structure between trial specific treatment effects,
δsji and δsjk , in multiple treatment arm studies. This can be
achieved by decomposing the multivariate Normal distri-
bution into a sequence of conditional univariate distribu-
tions as described in [10, 26]. In the context of longitudinal
NMA, B-spline and P-spline models provide equivalent
posterior inference but we believe that B-splines achieve
a satisfactory level of penalization and smoothness for
this application. Furthermore, we show that the B-spline
model overcomes the methodological and computational
limitations of the FP approach, which, beyond requiring
extensive sensitivity analysis for each new scenario, might
also suffer from potential shortcomings of the DIC. In
detail investigation of model choice criteria for FP selec-
tion is needed, but it is beyond the scope of this work.
One of the main consequences of a sub-optimal choice of
the polynomial can be observed in the uncertainty quan-
tification as represented by the credible intervals for the
FP model. The B-spline model is useful in understand-
ing treatment effects as well as between-study variability
and naturally allows for different numbers of observa-
tions per study, different times of observations, different
sample sizes across studies, as well as missing data, and
there are arguments for better interpretability of its coef-
ficients as compared to the FP model. The concerns of
[10], about splines with fixed number of uniformly spaced
knots being too restrictive in possible curve shapes, are
not supported by our results in simulations and real data
applications, which highlight the flexibility and efficiency
of the B-spline approach.
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generated according to the mixed treatment comparison (MTC) model.
Figure S18 shows estimated profiles for a scenario in which temporal
patterns have been generated from the Bayesian evidence synthesis
techniques – integrated two-component prediction (BEST-ITP) model.
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