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Abstract

Background: In a cross-sectional stepped-wedge trial with unequal cluster sizes, attained power in the trial
depends on the realized allocation of the clusters. This attained power may differ from the expected power
calculated using standard formulae by averaging the attained powers over all allocations the randomization
algorithm can generate. We investigated the effect of design factors and allocation characteristics on attained
power and developed models to predict attained power based on allocation characteristics.

Method: Based on data simulated and analyzed using linear mixed-effects models, we evaluated the distribution of
attained powers under different scenarios with varying intraclass correlation coefficient (ICC) of the responses,
coefficient of variation (CV) of the cluster sizes, number of cluster-size groups, distributions of group sizes, and
number of clusters. We explored the relationship between attained power and two allocation characteristics: the
individual-level correlation between treatment status and time period, and the absolute treatment group
imbalance. When computational time was excessive due to a scenario having a large number of possible
allocations, we developed regression models to predict attained power using the treatment-vs-time period
correlation and absolute treatment group imbalance as predictors.

Results: The risk of attained power falling more than 5% below the expected or nominal power decreased as the
ICC or number of clusters increased and as the CV decreased. Attained power was strongly affected by the
treatment-vs-time period correlation. The absolute treatment group imbalance had much less impact on attained
power. The attained power for any allocation was predicted accurately using a logistic regression model with the
treatment-vs-time period correlation and the absolute treatment group imbalance as predictors.

Conclusion: In a stepped-wedge trial with unequal cluster sizes, the risk that randomization yields an allocation
with inadequate attained power depends on the ICC, the CV of the cluster sizes, and number of clusters. To reduce
the computational burden of simulating attained power for allocations, the attained power can be predicted via
regression modeling. Trial designers can reduce the risk of low attained power by restricting the randomization
algorithm to avoid allocations with large treatment-vs-time period correlations.
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imbalance
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Background

Use of the stepped-wedge cluster randomized controlled
trial (SW-CRT) design has increased dramatically in re-
cent years [1-3]. In a standard stepped-wedge design
(Fig. 1), every cluster (C;, Cy, C3, Cy) begins (time-point
T,) with delivery of the existing standard-of-care (shown
as white cells) to participants.

Clusters then transition to delivery of a new interven-
tion (shown as gray cells) at randomly determined time-
points (71, ..., T4), until all clusters are delivering the
new intervention. The SW-CRT design often is used
when there is a desire or need to implement and evalu-
ate the intervention at the population level [4], or when
it would not be logistically feasible to implement the
intervention in every cluster at the same time [3], or
when recruitment of clusters could be enhanced by en-
suring all clusters eventually receive the new interven-
tion. It has been implemented in trials exploring both
single interventions as well as pathways of care in mul-
tiple settings [5—8]. Copas et al. [9] described three main
SW-CRT designs: the “closed cohort”, the “open cohort”,
and the “continuous recruitment short exposure” de-
signs. In the first two designs, the treatment received by
a participant during follow-up matches the treatment
being delivered by his/her cluster at each time-point and
each participant contributes multiple outcome measure-
ments over time. In the third design, participants receive
the treatment being delivered by his/her cluster at the
time of study entry, remains on this treatment through-
out follow-up, and contributes a single outcome meas-
urement. For simplicity, we will refer to the continuous
recruitment short exposure design as a “cross-sectional”
design, a term which although less precise, is more com-
monly used [3, 10]. The results presented throughout
this paper were derived using a cross-sectional SW-CRT.

Methods for calculating power and sample size in SW-
CRTs with equal cluster sizes have been discussed
widely in the literature [2, 11-14]. Code for calculating
the power of a SW-CRT with equal cluster sizes are also
available for commonly used statistical software (R [15,
16], Stata [17] and SAS [18]). Although it has been rec-
ognized that unequal cluster sizes in a parallel cluster
randomized trial (P-CRT) leads to loss of power and
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efficiency [19, 20], limited work has been conducted on
power and sample size calculations in unequal cluster
size SW-CRTs. Hussey and Hughes [2] described a pro-
cedure for calculating approximate power based on a
Wald test which allows for unequal cluster sizes in the
SW-CRT, but they did not explore the impact of un-
equal cluster sizes. Kristunas et al. [21] conducted simu-
lations that showed that the power of a SW-CRT with
unequal cluster sizes was only slightly lower than if the
cluster sizes had been equal. Girling [22] extended the
method for evaluating the precision of regular single-
period P-RCT with unequal cluster sizes to the stepped
wedge design. Harrison et al. [23] derived first-order ap-
proximation formulae for the expected treatment effect
variance given either known cluster sizes or the mean
and coefficient of variation of the cluster sizes. They
then used this treatment effect variance formula in a
Wald test to conduct sample size calculations as well as
to investigate the relative efficiency comparing equal and
unequal cluster size SW-CRT designs and the design ef-
fect relative to individually randomized designs. How-
ever, it is important to recognize that these results
focused on the expected power, that is, the power ob-
tained through averaging over both 1) the randomness
in the allocation of the clusters and 2) the random out-
come variation across participants. Distinguishing be-
tween the two components is important. The latter
source of variation is an intrinsic attribute of the popula-
tion and outside the control of the investigator. How-
ever, the trial investigator has control over the former
source through the choice of the randomization algo-
rithm, and this choice impacts on trial power.

Both Wong et al. [24] and Martin et al. [25] showed
that the attained power (Wong et al.), also called the ac-
tual power (Martin et al.), defined as the power associ-
ated with a specific allocation, can vary substantially
across realized allocations and can be much lower than
the expected power. Through deriving an analytic ap-
proximation, Matthews [26] showed how the variance of
the treatment effect estimate varies across allocations.
Thus, a trial that was expected to achieve a specified
power prior to allocation of the clusters might turn out
to be underpowered due to an “unlucky” allocation. For
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Fig. 1 Diagram for a standard stepped-wedge cluster randomized controlled trial design. Cells in white correspond to periods during which
participants receive standard-of-care, cells in grey correspond to periods during which participants receive the new intervention
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example, we are involved in a SW-CRT [27] with 20
hospitals (clusters) in which the two largest hospitals
were expected to enrol more than 200 participants each,
while the four smallest hospitals were expected to enrol
less than 10 participants each, with a cluster size coeffi-
cient of variation of 1.17. Power calculations obtained
via simulation showed that although using an unre-
stricted randomization algorithm would yield an ex-
pected power of 80%, the attained power varied from a
low of 68% to a high of 83% depending on the
allocation.

Martin et al. [25] observed larger variation in attained
powers in designs with a smaller number of clusters, and
a smaller intraclass correlation coefficient (ICC). In
addition, they observed that the absolute difference in
the numbers of participants allocated to the two treat-
ment groups, referred to hereafter as the “treatment
group imbalance (TGI)”, explained only a small portion
of the variability in attained power across allocations in
the SW-CRT and that contrary to intuition, the attained
power was relatively higher for allocations with a large
TGIL In limited scenarios, Wong et al. [24] found that
the (Pearson) correlation between the participant-level
treatment assignment and the time-period with cluster-
ing ignored, referred to hereafter as the “treatment-vs-
time period correlation (TTC)”, had a large impact on
the attained power. They observed that the allocations
with the greatest attained power were those in which the
large clusters transitioned during the first or last steps
(equally split) and that these allocations had the lowest
TTC. In the SW-CRT, it is important to adjust for the
time period to avoid bias in the treatment effect estimate
because treatment group and time period inherently are
highly correlated. They proposed that as TTC increases,
this adjustment increases the standard error of the esti-
mated treatment effect, which leads to a greater loss in
attained power. However, we are not aware of a compre-
hensive study on these topics.

In this study, we investigated how different allocation
characteristics interacted with design factors to affect
attained power and the risk of obtaining low attained
power in cross-sectional SW-CRTs. This risk can be
assessed by constructing the pre-randomization power
distribution (PD) [24], defined as the distribution of
attained powers obtained from all possible allocations
that a randomization algorithm can generate. A good
randomization algorithm will ensure that the risk of
obtaining a low attained-power allocation is acceptably
small. Identifying such an algorithm requires an under-
standing of what factors cause low attained power. The
first aim of this work was to gain an understanding of
the factors that affect the risk of low attained power. We
used simulation to evaluate the attained power across
different allocations under a wide variety of scenarios.
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While it is possible to assess the attained power using
approximate analytic formulae (e.g., Hussey & Hughes
[2]), the accuracy of those formulae has not been well
investigated in the context of SW-CRTs, especially when
the number of clusters or the cluster sizes are low. How-
ever, the computational time needed to simulate the
attained powers for all possible allocations often is not
feasible. Hence, our second aim was to develop regres-
sion models that could accurately predict the attained
power for any allocation based on allocation characteris-
tics (specifically TGI and TTC) and the attained powers
from a sample of allocations. The results of this work
provide guidance on how to assess attained power and
avoid having an unacceptably low attained power when
designing a SW-CRT with unequal cluster sizes.

Methods

Aim one: evaluating attained power and the impact of
different factors on the risk of low attained power

In this study, we assumed that individual outcomes, Y,
were generated from the following linear mixed-effects
model:

Yijk:ai+/J)Xj+6><Xi/+8ijk (1)

where i indexed the cluster, j indexed the time period
(=0 denotes baseline), and k indexed the individual
within cluster i and time period j. The error terms &;;
were assumed to be independently sampled from a
standard normal distribution (mean zero and variance
O'z = 1). The treatment group indicator (0 = standard-of-
care, 1 = intervention) was denoted as Xj; and the treat-
ment effect, 6, was set to 0.26. As o2 = 1, the standard-
ized effect size, 0/0,, also equaled 0.26. Because the
variance of the treatment effect estimate does not de-
pend on the linear time effect coefficient, f5, its value was
set to 1 without loss of generality. (For simplicity, we as-
sumed a fixed linear time effect rather than a separate
fixed effect for each time period as assumed in the
Hussey-Hughes model. This difference has no material
impact on the findings of this work). The cluster-specific
effects, a;, were assumed to be independently sampled
from a normal distribution with mean zero and variance
0% . The value of 02 was calculated from set values of

the ICC, where ICC was defined as % The treatment-

vs-time period correlation (TTC) was defined as the
Pearson correlation coefficient between treatment and
the time-period, corr(X;, ), across all individual observa-
tions with clustering ignored. The treatment group im-
balance (TGI) was defined as the difference in the
numbers of participants who received the new interven-
tion versus the standard-of-care.
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Computational challenge and a practical solution

Our aim was to obtain the set of attained powers by
simulation and their corresponding power distribution
for a specified randomization algorithm. First, we needed
to obtain a list of all possible allocations that the
randomization algorithm can generate, and then to
evaluate the attained power associated with each pos-
sible allocation.

However, the evaluation of attained power for all
potential allocations can be computationally challenging,
given the potentially huge number of possible
allocations. For example, a twenty-cluster cross-sectional
SW-CRT with unique cluster sizes and four clusters
transitioning at each of five steps has more than 300
billion unique allocations.

One strategy to reduce the number of unique alloca-
tions was by categorizing the clusters into size groups
(e.g., (S)mall/(L) arge or (S)mall/(M)edium/(L)arge) and
treating the clusters within each size group as identical,
thereby reducing the number of unique allocations while
increasing their multiplicities. Doing so will lead to only
an approximate solution. However, this is often adequate
in practice, given that the anticipated number of individ-
uals that a cluster will enroll often can be only approxi-
mated at the start of a trial. In practice, we do not
recommend having more than four size categories, as
then the number of unique allocations likely will be too
large to evaluate.

Simulation specifications

As shown in Table 1, we investigated the impact of the
total number of clusters (12, 24 or 48), the number of
cluster size groups (2 — S/L or 3 — S/M/L), the distribu-
tion of clusters across cluster size groups (equal or un-
equal), the coefficient of variation (CV) of the cluster
sizes (0.4, 0.7, 1.0, and 1.3), defined as the ratio of stand-
ard deviation of cluster sizes to the mean, and the ICC
of the response variable (0.01, 0.05, and 0.10). A full fac-
torial layout was investigated for all of these factors ex-
cept the CV. An equal distribution of clusters across
cluster size groups corresponded to an equal number of
clusters in each cluster size group; an unequal distribu-
tion corresponded to distribution of clusters in a S:L
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ratio of 3:1 for scenarios with two cluster size groups or
3:2:1 to S:M:L for scenarios with three cluster size
groups. For unequal distributions, CVs of 0.4. 0,7, 1.0,
and 1.3 were investigated for all unequal distribution
scenarios, but for equal distribution scenarios, CVs of
only 0.4 and 0.7 were investigated as a CV larger than
one cannot be obtained with equal distributions. (Thus,
when the actual cluster sizes have a CV larger than one,
trial designers need to use unequal distributions to apply
the approach presented here.) Thus, there were a total
of 108 scenarios.

Trial parameter values for all 108 scenarios are listed
in the Additional file (S.1). The number of transition
steps was fixed at four. To determine the total number
of individuals needed to obtain approximately 80%
power in each scenario, we used Hussey and Hughes’s
[2] sample size formula for a SW-CRT with equal cluster
sizes as implemented by Baio et al. [11] in the R package
“SWSamp [16]” (implementation of the Hussey and
Hughes’s formula). Then, we re-distributed the total
number of individuals to create unequal sized clusters
that matched the CVs we set under each scenario (see
Additional file, S.2 for details) [28]. If a resulting cluster
size was not an integer, we set it at random to one of
the two bracketing integers such that the expected value
matched the initially calculated cluster size. For example,
if the calculated cluster size was 12.3, the cluster size
was set at random to either 12 or 13, such that its ex-
pected value was 12.3. Within a cluster, individuals were
allocated to the time periods using a multinomial distri-
bution with equal probability for each period. The total
number of unique allocations is presented in the third
column from the right in Additional file S.1. Among the
108 scenarios, 72 scenarios (referred to as ‘completed
scenarios’) had less than 2000 unique allocations. For
these scenarios, the attained power for every allocation
was evaluated via simulation. For the other 36 scenarios
(referred to as ‘sampled scenarios’), we evaluated the
attained power for only a sample of 2000 allocations.
Subsequently, the attained power for two sampled sce-
narios, one with a relatively small number of allocations
(scenario #64, with 8623 allocations) and one with a
relatively large number of allocations (scenario #103,

Table 1 Factors and their specific values explored in the simulation study

Factor Values
Number of clusters 12, 24, 48
Number of cluster size groups 2,3

Distribution of clusters to cluster

size groups
ICC 0.01, 0.05, 0.1
cv 04,07,1.0%1.3°

Equal (6S+6L, 12S+ 121,245+ 241,4S+4M+41,85+8M+8L, 165+ 16 M+ 16 L), Unequal (9S+3 L, 185+
6L,365+12L,65+4M+2L, 12S+8M+41L,24S+16 M+8L)

For equal distribution of clusters to cluster size groups, only CVs of 0.4 and 0.7 were investigated as a CV of 1 or larger is not possible
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with 113,949 allocations), had all of their allocations
evaluated to enable validation of the prediction models
that were constructed using only the original 2000
allocations.

Performance metrics

For each selected allocation, 10,000 datasets were simu-
lated and analyzed using the model (1). Analysis was
performed using the /me function in R [29]. This P-value
is calculated through comparing the Wald statistic to
quantiles from a ¢-distribution with degrees of freedom
equivalent to what would be used in a balanced, multi-
level ANOVA designs [30]. The attained power was esti-
mated using the proportion of P-values less than 0.05.
Assuming a power near 80%, the simulation standard
error of each attained power was approximately 0.4%.
The PD associated with the unrestricted randomization
algorithm was then constructed from the estimated
attained powers by weighting each attained power by the
probability of the corresponding allocation. Two mea-
sures of the risk of low attained power were then ob-
tained from the PD: (1) the probability that the attained
power falls more than 5% below the expected power (ob-
tained in the simulations), and (2) the probability that
the attained power falls more than 5% below the nom-
inal 80% power (ie., less than 75%) that would be
achieved in a trial with equal cluster sizes. The first
measure provides an indication of whether potential low
attained power is a concern when power is calculated
using the approach presented here for handling unequal
cluster sizes. The second measure would be of greater
interest when one is assessing whether power calcula-
tions obtained under the assumption of equal cluster
sizes are adequate. We set a 5% power loss as being
meaningful, but trial designers may wish to choose a dif-
ferent value more relevant to their context. In this paper,
the phrase “risk of low attained power” will be used as a
short form to refer to either of these measures. All com-
putations were conducted using R version 3.5.0 on
Cedar, Compute Canada [31, 32].

Aim two: explaining the variation in attained power
across allocations and predicting attained power using
allocation characteristics

Using the simulation results from Aim One, we first
constructed scatterplots to examine the bivariate rela-
tionship between the simulated attained power and each
of TTC and TGI separately. Then, to predict the
attained power for each scenario, we fitted logistic re-
gression models of the proportion of simulations in each
allocation that achieved statistical significance (at level
0.05) as a function of linear and quadratic terms for
TTC and TGL
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Based on the relationships observed in the bivariate
scatterplots, we chose to investigate a sequence of four
nested models. The terms included in the four models
that were considered were: (Model 1: TTC), (Model 2:
TTC, TGI), (Model 3: TTC, TGL, TTC?), and (Model 4:
TTC, TGL, TTC? TGI).

We measured the predictive accuracy of each
model by using five-fold cross-validation, conducted
using cv.glm [33] in R, to estimate the root mean

squared prediction error (RMSPE), defined by
RSMPE = 3 "—k(iz““k b _ﬁ)2) here C,
= i1 m , where C; repre-

sented the set of allocations in the k-th partition, n
was the number of allocations in the k-th partition,
p; and p; were the simulated and predicted powers,
respectively, for the i-th allocation, and n was the
number of unique allocations in the scenario. From
these models, we selected the one for which no
meaningful improvement in RMSPE was achieved by
adding another term to the model. For the selected
model, we examined additional predictive perform-
ance measures for each scenario, including maximum
and average absolute prediction errors (| p,—p; |). For
two sampled scenarios (#64, #103), we validated the
selected model with respect to both prediction of
attained power for individual allocations, and estima-
tion of the risk of low attained power. For the
former objective, we compared the predicted attained
power to the simulated attained power for each allocation
that was not in the set used to fit the predictive model. For
the latter objective, we repeatedly sampled (10,000 times)
2000 allocations and estimated the risk of low attained
power from the fitted model. We then compared these
estimated risks to the “true” risk derived from the simulated
attained powers.

Results

Aim one: evaluating the attained powers and factors
affecting the risk of low attained power

In the body of this paper, we report on the scenarios
with an unequal distribution of clusters to cluster size
groups. The results for scenarios with an equal distribu-
tion of clusters to cluster size groups were similar when
matched on the remaining factors (see Additional file,
S.3.1 and S.3.2).

Substantial variation in attained powers was observed
in all the scenarios. Across all simulations, attained
power ranged from 0.62 to 0.86. As examples, the PDs
for selected scenarios (#85 to #87) are displayed in Fig. 2.
The expected powers obtained from the simulations
(Additional file, S.1, the “Weighted expected power”)
usually were quite close to the nominal 80% power asso-
ciated with an equal cluster size design, but losses of up
to roughly 4% were seen when the CV was large.
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Figure 3 shows the risk of low attained power (for both
measures) as a function of ICC for different combina-
tions of the total number of clusters, the CV, and the
distribution of clusters to the size groups. The risk of
low attained power varied greatly with ICC. For both
risk measures, with a total of 24 or 48 clusters, the risk
of obtaining low power was smaller in the scenarios with
larger ICCs. If nominal power is used as the reference,
the risk was as high as 38% when the ICC was 0.01 but
dropped to nearly zero even when the ICC was 0.1.
When there were 12 clusters in total, the risk of low
attained power often continued to be high even with lar-
ger ICCs, and the patterns were not as evident. However,
it should be noted that in these scenarios, the number of
unique allocations is quite low so the combined effect of
simulation error and discretization effects may have dis-
rupted the monotonic patterns that were expected.

Coefficient of variation

Figure 4 plots the risks of low attained power as a func-
tion of the CV. The risk of low attained power varied
greatly across the CVs and depended on the ICC. Except
for the scenarios with 12 clusters and two size groups,
the risk was near zero when the CV was 0.4. However,
as the CV increased above 0.7, the risk increased rapidly
up to more than 30% when the CV was 1.3 and the ICC
was 0.01.

Aim two: explaining the variation in attained power
across allocations and predicting attained power using
allocation characteristics

Relationship among transition time-points of large clusters,
treatment-vs-time period correlation (TTC) and absolute
treatment group imbalance (TGl)

Understanding the relationship between the time-
points when the large clusters transition, TTC, and
TGI will be helpful for interpreting the predictive
models presented later. Figure 5 summarizes the
relationship typically seen between the transition
time-points of the large clusters with TTC and TGI
across simulation runs from one representative
scenario (#37).

Plotted symbols represent different allocations. The
number used as the plotting symbol indicates the
number of large clusters transitioning at the two ends
(i.e., at either the first or last step). Setting aside the
values of TGI, this plot shows that the number of
large clusters transitioning at the ends strongly deter-
mines TTC, with TTC decreasing as this number in-
creases. When the transition time-points of the large
clusters are equally split between the two ends, both
TTC and TGI are low (numbers plotted in red), but
when these transitioning times are concentrated at
one end, TTC remains low while TGI is high (num-
bers plotted in blue). When all of the large clusters
transition at the middle steps (numbers plotted in
green), TGI will be low and TTC is high.
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Figure 6 displays the relationship between the attained
power for a given allocation and TTC for a selected set
of 16 scenarios (two size groups, 12 or 48 clusters, ICC =
0.01 or 0.1). Within this grid of panels, columns corres-
pond to different CV values (0.4, 0.7, 1.0, 1.3 from left to
right) and rows correspond to the number of clusters
(12 in the first row; 48 in the second row).

Within each panel, points in blue correspond to an
ICC of 0.1, while those in red correspond to an ICC of
0.01. A graph for all scenarios is included in the Add-
itional file, S.4.1 Across all scenarios, TTC consistently
exhibited a strong negative, and mildly non-linear, rela-
tionship with the attained power. Greater variation in

attained power was observed in the scenarios with a lar-
ger CV, a lower ICC, and a smaller number of clusters.

Impact of treatment group imbalance on attained power

Figure 7 displays the relationship between attained
power and TGI, using the same layout and for the same
scenarios used in Fig. 6. A graph for all scenarios is in-
cluded in the Additional file, S.4.2 Across all scenarios,
the association exhibited a “triangle” pattern with much
weaker associations than were seen for TTC. In 90%
(97/108) of the scenarios, univariate regression model
fits showed that allocations with a large TGI were asso-
ciated with a relatively higher attained power. This is
counter-intuitive and opposite to the P-CRT setting,
where attained power decreases with increasing TGI.
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When TGI was low, the attained power ranged over
both low and high values across different allocations.
This unexpected result is resolved in the following sec-
tion. Essentially, the complicated relationship between
TTC and TGI as described earlier leads to the true im-
pact of TGI on attained power being confounded by its
association with TTC, with the latter being a much
stronger determinant of attained power.

Predictive model

Without any predictors (i.e., the null model with only an
intercept term), the RMSPE of the predicted attained
power ranged across the 108 scenarios from 0.0060 to
0.0454 with a median of 0.0157. When TTC alone (Model

1) was added to the model, the RMSPE decreased in every
scenario with the median RMSPE shrinking down to
0.0037 (range: 0.0022, 0.0103). When TGI was then added
(Model 2), the RMSPE decreased in 93 of the scenarios
and the median RMSPE dropping down to 0.0035 (range
0.0020 to 0.0085). Note that in comparison to the crude
effect of TGI, after adjustment for TTC, the percentage of
scenarios with a positive TGI coefficient declined from 90
to 68% (74/108) and the distribution of TGI coefficients
was compressed much closer to zero compared to the dis-
tribution of TGI coefficients from the unadjusted models
(see Additional file, S.5).

On adding the TTC? term (Model 3), the RMSPE de-
creased in 99 scenarios, with the median RMSPE
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shrinking to 0.0031 (range 0.0017, 0.0065). Further add-
ing TGI? (Model 4), resulted in the RMSPE decreased in
71 scenarios but the median RMSPE changed negligibly
(i.e., on the order of 107°). Hence, we selected the Model
3 as the final model.

Figure 8 displays a contour plot of the predicted
attained power derived from the regression model for
one scenario (#79).

The almost-vertical curves indicate that attained
power decreased substantially as TTC increased. How-
ever, when TTC was fixed, the attained power decreased
only slightly as TGI increased.

RMSPE, maximum absolute prediction error, and
average absolute prediction error for each scenario are
shown in S.6 in the Additional file.

Validation of prediction model

The medians of the differences between the predicted and
the simulated attained powers for the allocations not used
in model fitting for scenarios #64 and #103 were near zero

and 95% of the predicted attained powers fell within
0.0069 (#64) and 0.0094 (#103) of the simulated attained
powers (See Additional file, S.7 for the distribution of dif-
ferences). This magnitude of prediction error is compar-
able to the expected error in the simulated attained
powers (i.e., 95% of simulated attained power within 2 x
0.004 = 0.008), suggesting the selected model performs
nearly as well as simulation. The true risks of low attained
power (>5% below nominal 80%), calculated from the
simulated attained powers, were 0.0201 (#64) and 0.0697
(#103). In repeated sampling and fitting of the selected
model, the median absolute difference between the
model-based estimate and the true risk of low attained
power was 0.0010 (#64) and 0.0019 (#103), with 95% of
the values falling within 0.0018 (#64) and 0.0034 (#103).

Discussion

Understanding the risk of obtaining low power

Using simulation, we have examined how and why the
attained power in an SW-CRT with unequal cluster sizes



Ouyang et al. BMC Medical Research Methodology (2020) 20:166

Page 10 of 14

0.80

0.75

0.70

0.65

0.85

Attained power

0.80

0.75

0.70

0.65

060 065 070 075 080 060 065 070 075 0.80

correlation increases

12 12 12 12
0.4 0.7 1.0 1.3
0.85

ICC
0.4 0.7 1.0 1.3
0.1

Treatment-vs-time period correlation

Fig. 6 The relationship between treatment-vs-time period correlation and attained power among 16 scenarios. Columns represented difference
CV values (from left to right: 0.4, 0.7, 1.0, 1.3). Rows correspond to the number of clusters (12 in the first row; 48 in second row). The colors of the
plotted points correspond to ICC of 0.1 (blue) and ICC of 0.01 (red). The attained power decreases considerably as the treatment-vs-time period

065 070 075 080 060 065 070 075 0.80

may be different from the expected power that typically
is the focus of power calculations. We have argued that
even if the expected power is adequate, the risk that the
randomization leads to a trial with low attained power
should be considered. The extension of the CONSORT
2010 statement [34] recommends that researchers report
the unequal cluster sizes in trials. This study highlights
the importance of knowing the cluster sizes to enable
appropriate assessments of power. The power distribu-
tion constructed from the set of attained powers can be
used to evaluate the risk that a given randomization al-
gorithm will yield a trial with unacceptably low power.
As shown in our study, the CV of the cluster sizes
strongly impacted the risk of low attained power. For
CV values below 0.7, the risk of the attained power fall-
ing more than 5% below the expected power across the
investigated ranges of values for the other parameters
was sufficiently low that this risk may not be a concern.
As the CV increased above 0.7, the risk of low attained

power increased substantially, especially when the ICC
was low. As the ICC increased, the risk of low attained
power decreased. This result is consistent with Mat-
thews et al. [35], who showed that in a “row-column”
analysis of a SW-CRT, which corresponds to a linear
mixed effects analysis, the variance of the treatment ef-
fect decreased as the ICC increased. Our heuristic ex-
planation is that when the ICC was large, the effective
sample sizes of large clusters were reduced greatly,
which in turn reduced the effective CV of the cluster
sizes. As expected, the risk of low attained power de-
creased as the number of clusters increased. However,
even with 48 clusters, this risk was not ignorable when
the CV was large, and the ICC was small.

Explaining the variation in attained power

A key contribution of this study is clarifying how
attained power is impacted by the joint effects of
treatment-vs-time period correlation and absolute
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treatment group imbalance. TTC was shown to be the
dominating factor. Our results suggest that the observa-
tion that TGI on its own is only weakly related to
attained power and in the direction opposite to what is
expected, made by Martin et al. [25] and confirmed here,
is a consequence of confounding with TTC. After
adjusting for TTC, the impact of TGI on the attained
power was reduced or the direction reversed in nearly
every scenario. That the direction was not reversed for
every scenario may be due in part to simulation noise,
but it could also reflect residual confounding due to the
model mis-specifying the true dependence of attained
power on TTC, or the omission of other important
predictors.

We have shown that a model containing TTC, TTC? ,
and TGI can accurately predicts attained power for any al-
location, and hence to construct the power distribution for
any randomization algorithm and to estimate the risk of

low attained power, when the number of allocations is too
large to evaluate their attained powers using simulation.

The original rationale for creating size groups was to
reduce the number of unique allocations that needed to
be evaluated to obtain the power distribution. However,
given the high accuracy seen in these predictive models,
creating cluster size groups may not be necessary. In-
stead, a predictive model could be built based on a rep-
resentative sample of allocations without grouping of
clusters and this model could be used to predict the
attained powers associated with each non-sampled allo-
cation. The caveats here are that some effort may be
needed to determine how large a sample is needed to
achieve a target predictive accuracy, and when the num-
ber of unique allocations is large, simply listing out all
possible unique allocations may require excessive (com-
putational) effort in which case size groups will still be
needed.
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Examination of attained power can assist in the identi-
fication of the allocation characteristics that lead to low
attained power. For example, our study verified the re-
sults from previous work [24] showing that transitioning
large clusters during the middle steps can increase the
treatment-vs-time period correlation and lead to low
attained power. This result is also consistent with Kasza
and Forbes [36], who showed that for an equal-cluster-
size design, the sequences (i.e., allocations) that transi-
tion during the middle steps contribute less information
than those that transition at the end steps. Therefore, al-
locating large clusters to transition during the middle
steps should (as a heuristic) yield less information than
if they were allocated to transition at the end steps.
Identifying these allocations affords trialists the oppor-
tunity to take pre-emptive actions to mitigate this prob-
lem. The simplest option would be to restrict the
randomization algorithm to exclude low power alloca-
tions. However, this approach risks violating the criteria
needed for valid randomization inference, as it could re-
sult in some clusters having no chance of being random-
ized to transition at particular time-points (e.g., large
clusters may not be allowed to transition during the
middle step(s)). A more conservative option could be to
stratify randomization based on cluster size. This would
ensure that every large cluster has a chance to be allo-
cated to any transition step, while ensuring even

distribution of large clusters across all of the steps. This
would tend to yield a low-variability power distribution,
as the excluded allocations would tend to be both those
with low and high power. Further exploration of poten-
tial restricted randomization algorithms and their valid-
ity, benefits and limitations is needed.

Limitations

The Wald test we used to evaluate statistical significance
is known to yield higher-than-nominal Type I error rates
[37]. Therefore, the powers that are reported here will
tend to be higher than what would be obtained using a
test that achieved the nominal size. We have no reason
to expect that the patterns of findings that we have re-
ported would be different if the test used achieved the
nominal size. However, important future work would be
to ascertain which test(s) provide the most accurate size
and power values to ensure that real-life trial designs ful-
fill the desired statistical criteria. Some work towards
this goal has been conducted by Tanner [38], using vari-
ous analytic models (GLMM, GEE, cluster-level analysis)
for binary outcomes.

Our study left several design factors as fixed values, in-
cluding the number of transition steps at four, and a
standardized effect size of 0.26. Others [25] have re-
ported that the trial power is only weakly affected by the
number of steps. Results from limited simulations we
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conducted with six steps were concordant with those re-
ports (data not shown), so we did not pursue a compre-
hensive investigation in this regard. The standardized
effect size of 0.26 arose from a calculation performed to
achieve 80% power in one particular scenario. We
adopted this value as being within the typical range seen
in real trials [39]. Assuming a larger effect size would
have led to smaller cluster sizes needed to achieve 80%
power. Again, we have no reason to expect different pat-
terns to our findings, but smaller sample sizes may lead
to greater Type I error and inaccuracy in the estimated
power. The numbers of clusters (12/24/48) were chosen
primarily to reflect our belief that these are typical num-
bers seen in real SW-CRTs (but also for convenience as
these choices allowed the numbers of clusters to be bal-
anced across steps and cluster size groups). While we
found that increasing the number of clusters reduces the
risk of low attained power, we did not establish a bound
above which this risk is ignorable. When the CV is large
and the ICC is small, this risk will need to be evaluated
even when a trial includes a larger number of clusters.

Due to limits on available computational time, we vali-
dated the predictive model for only two scenarios. The
selected predictive model was shown to predict the
attained power with accuracy similar to that achieved
using simulation with 10,000 replicates. However, be-
cause this model may be mis-specified, there is no guar-
antee that this model will yield sufficiently accurate
predictions if greater precision is required. Alternative
models may need to be developed, perhaps including
other allocation characteristics. In addition, simulating
attained power for 2000 allocations required substantial
computational time. An attractive goal would be devel-
oping accurate analytic formulae, like the one derived by
Matthews [26] for the treatment effect variance, to sup-
port faster calculation of attained power.

This work considered only a continuous outcome within
a cross-sectional SW-CRT. Further work is needed to ex-
tend the results to other types of outcomes (binary, count,
survival, etc.) and to other SW-CRT designs.

Conclusion

In a stepped-wedge trial with unequal cluster sizes, the
risk that randomization yields an allocation with inad-
equate attained power is a function of the ICC, the CV
of the cluster sizes, and the total number of clusters. To
reduce the computational burden of simulating attained
power for every allocation, the attained power can be
predicted from the treatment-vs-time period correlation
and the treatment group imbalance via regression mod-
eling. Trial designers can reduce the risk of low attained
power by restricting the randomization algorithm to re-
duce the chance of obtaining an allocation which yields
a large treatment-vs-time period correlation.
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