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Abstract

Background: Studies of agreement examine the distance between readings made by different devices or observers
measuring the same quantity. If the values generated by each device are close together most of the time then we
conclude that the devices agree. Several different agreement methods have been described in the literature, in the
linear mixed modelling framework, for use when there are time-matched repeated measurements within subjects.

Methods: We provide a tutorial to help guide practitioners when choosing among different methods of assessing
agreement based on a linear mixed model assumption. We illustrate the use of five methods in a head-to-head
comparison using real data from a study involving Chronic Obstructive Pulmonary Disease (COPD) patients and
matched repeated respiratory rate observations. The methods used were the concordance correlation coefficient,
limits of agreement, total deviation index, coverage probability, and coefficient of individual agreement.

Results: The five methods generated similar conclusions about the agreement between devices in the COPD
example; however, some methods emphasized different aspects of the between-device comparison, and the
interpretation was clearer for some methods compared to others.

Conclusions: Five different methods used to assess agreement have been compared in the same setting to facilitate
understanding and encourage the use of multiple agreement methods in practice. Although there are similarities
between the methods, each method has its own strengths and weaknesses which are important for researchers to be
aware of. We suggest that researchers consider using the coverage probability method alongside a graphical display of
the raw data in method comparison studies. In the case of disagreement between devices, it is important to look
beyond the overall summary agreement indices and consider the underlying causes. Summarising the data graphically
and examining model parameters can both help with this.
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Background

Studies of agreement examine the distance between
readings made by different devices or observers measur-
ing the same quantity. If the values generated by each
device are close together most of the time such that it
makes no practical difference which device is used, then
we conclude that the devices agree. An example of an
agreement study is when we are interested in determin-
ing the extent to which two observers using the same in-
strument generate similar readings. A second example is
determining whether the mode of delivery of a question-
naire matters when given to the same set of participants
on the same day. For example, Chen and colleagues in-
vestigated whether two different versions of the Epworth
Sleepiness Scale (electronic and paper) generated the
same scores when both were given to patients with ob-
structive sleep apnoea on the same day [1]. Since the dif-
ferences between electronic and paper versions were
within + 4 most of the time, this was deemed to consti-
tute acceptable agreement in this case [1]. Agreement
has both accuracy and precision components: disagree-
ment between devices could be due to a systematic bias
of one device relative to the other, or if at least one of
the devices is imprecise [2].

Several different methods for assessing the agreement
of continuous data have been proposed in the literature,
of which the concordance correlation coefficient [3, 4],
and limits of agreement [5] methods are the most widely
used. The coverage probability [6], total deviation index
[6, 7], and coefficient of individual agreement methods
[8, 9] have also been described. All five methods can be
computed via linear mixed effects models. With an em-
phasis on practical application and interpretation, the
aim of this study is to show how these five approaches
can be applied to the same agreement problem and
showcase the strengths and weaknesses of each method
so that researchers can decide which methods to use in
their own studies. Reviews of agreement indices have
already been presented in the literature by Barnhart
et al. (2007) [2], Obuchowski et al. (2015) [10], Barnhart
et al. (2016) [11], and Barnhart (2018) [12]; with the lat-
ter three papers including real life examples to compare
between agreement indices. However, the examples pro-
vided were almost exclusively sourced from the fields of
quantitative imaging and core laboratory research. In
this article we extend the methodological work already
accomplished to the area of analysing clustered unbal-
anced data in applied clinical research, specifically in the
area of measuring respiratory rate in patients with
COPD. Furthermore, we focus specifically on the linear
mixed effects model implementation of the methods ra-
ther than the more general approach used in the afore-
mentioned papers. For limits of agreement in particular,
this implementation of the method is not considered in
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previous reviews. The justification of this focus is be-
cause mixed effects modelling is increasingly used in
clinical research and has advantages over fixed effects
methods (e.g. Analysis Of Variance (ANOVA)) for sev-
eral reasons outlined in Brown (2015) [13]. In particular,
(i) missing or unbalanced data poses fewer problems for
analysis, and (ii) inference can be made based on a wider
population of patients [13]. We also focus on agreement
problems with repeated observations because these are
recommended when assessing agreement [14]. Finally, to
help practitioners of agreement methods, we have also
provided the R code needed to implement the methods
in a Supplementary Materials file.

The agreement problem investigated in this paper
originates from a study in COPD patients which we de-
scribe in more detail below. As such, our focus is on
clustered and unbalanced designs: that is, repeated mea-
sures data for which the number of observations per
cluster may not be the same, and for which there may
be multiple levels of clustering. Here we treat subjects as
clusters. Such data structures are common in medical
research due to necessary observational designs and
missing data. Most of the methods rely on parametric
assumptions, although other approaches are possible
which do not require these assumptions and are men-
tioned briefly below.

Methods

lllustrative example

By means of an illustrative example, we compare and
contrast the five different agreement methods mentioned
before and provide guidance for selecting among them.
Our example consists of respiratory rate measurements
(in breaths per minute) from 21 subjects with COPD,
which were measured simultaneously by six devices (in-
cluding a gold standard device) worn at the same time.
This was the dataset used in the study by Parker and
colleagues [15], and has been made publicly available via
data sharing [15]. Multiple time-matched respiratory
rate measurements were taken on each patient, so there
was clustering of repeated observations by participant.
Eleven different activities were performed by participants
during a laboratory-based protocol that was 57 min in
duration. These were sitting, lying, standing, slow walk-
ing, fast walking, sweeping, lifting objects, standing and
walking, climbing stairs, treadmill (flat walking), and
treadmill (4% slope). The balance of activities was
chosen to be representative of the activities encountered
in daily life [16]. Not everyone performed exactly the
same number of activities because some tasks were too
difficult for some participants (e.g. the treadmill), and so
this is an example of an unbalanced study design. Most
activities had just one respiratory rate reading per par-
ticipant, but “sitting” and “standing and walking” had 6—
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7 and 1-3 observations per participant, respectively (see
Figure 1 in the Supplementary File), and therefore there
was clustering of observations within activities as well as
within participants. Eight of the participants (38%) were
female, with an overall mean age of 69 (Standard Devi-
ation (SD) 8) and mean Body Mass Index (BMI) of 26
(SD 6). Full details about the study are given elsewhere
[16]. For simplicity, in this article, we only consider the
comparison of one of the devices (chest-band) with the
gold standard device (Oxycon mobile, Carefusion).
Among the six devices used in the study, the chest-band
device and the gold standard were the only two devices
which had no missing data. The chest-band device was
also one of the devices which showed the best agreement
with the gold standard.

Terminology

In what follows, the five statistical methods for assessing
agreement with repeated measures data are described in
turn with corresponding model formulae. As described
above, linear mixed effect models are particularly appro-
priate for analysing data from clustered and unbalanced
designs because they incorporate random effect terms.
The basic linear mixed model is of the form:

Vi = H+ i+ Bty + € (1)

where y;;; represents the respiratory rate reading/meas-
urement made on subject i by device j when performing
activity / at time & y is the overall mean; a; ~ N(0,02) is
the random subject effect; f5; is the fixed effect of the de-
vice which, for identifiability reasons, we require f; +
B2=0; y, ~ N(O, oi) denotes the random activity effect,

and &, ~ N(0,0?) is the residual error. We extend and
modify this basic model for each of the specific agree-
ment methods below. In other settings, “device” may
refer to “systems”, “raters”, “methods”, “instruments” or
“observers”. Likewise, “subject” may refer to “partici-
pant”, “patient”, “site”, “experiment”’, “mode” in other
settings. In the COPD example, the y;; are time-
matched repeated measurements collected by each de-
vice on each subject. For the limits of agreement
method, the linear mixed model is instead fitted to

Table 1 Standard agreement model assumptions (with
suggested procedures to check their validity in brackets)

« Independent subjects
« Normally distributed random effects (diagnosed by Q-Q plots)
+ Normally distributed error terms (diagnosed by Q-Q plots)

« Fixed mean bias across the range of measurement (plots of
standardized residuals against fitted values)

« Constant between-subject and within-subject variabilities across the
range of measurements (plots of residuals against fitted values)
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“paired differences” denoting the between-device differ-
ences measured at exactly the same time in each subject.

Model assumptions

In what follows, the five statistical methods for assessing
agreement with repeated measures data are described in
turn. The five main methods are all based on linear
mixed effects models, and so they rely on similar (if not
identical) model assumptions. Logically if the mixed
model assumptions are not valid, then neither is the
agreement index calculated on the basis of this model.
See Table 1 for a list of common model assumptions
and techniques that may be used to evaluate them.

Concordance correlation coefficient for repeated
measures

The concordance correlation coefficient (CCC) method
was developed by Lin in 1989 [3], with the longitudinal
repeated measures version of the CCC developed by
King et al. [4], Carrasco et al. [17] and Carrasco and
Jover [18]. The CCC is a standardized coefficient taking
values from -1 to 1, where 1 indicates perfect agree-
ment and -1 indicates perfect disagreement. For the
CCC model, the individual readings are modelled using
a combination of random effects and fixed effects. Inter-
action terms are often also included. In particular, in the
context of our COPD example, we assume the following
linear mixed effects model

Vi =#+ai+B;+y + (0‘/3)1‘,‘ + (ay)y + (ﬁ)’)ﬂ + Eijie
(2)

where y;;, represents the respiratory rate reading/meas-
urement made on subject i by device j when performing
activity / at time £ y is the overall mean; a; ~ N(0,02) is
the random subject effect; f; is the fixed effect of the de-
vice (as before, we assume that 8; + 8, =0); and y, ~ N(

0,03,) denotes the random activity effect. Further, (af);;

(ay)i» and (By);; denote, respectively, the random inter-
action between subject and device, between subject and
activity, and between device and activity and we follow
the usual assumption that they are normally distributed
with mean zero and with variance 074,07, and o3 , re-
spectively. Finally, & ~ N(0,02) is the error. All ran-
dom effects are assumed to be independent.

We justify these modelling choices as follows. In line
with Parker et al. [15] we regard subjects as random ef-
fects, therefore implicitly assuming they are a sample
from a wider population of COPD patients (rather than
treating them as consisting of the entire population of
interest); this maximises generalisability of the results to
the true population of interest (i.e. all COPD patients).
We regard activity as a random effect as well, mainly so
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that we can generalize the results to any activity from a
wider “population” of activities performed by partici-
pants in daily life, but also so that activities with small
numbers of respiratory rate readings are not weighted
too highly in the model (i.e. shrinkage causes the effect
of individual activities to be drawn towards the
population-averaged effect). All possible two-way inter-
actions were included in the model and they take into
account the variability in subjects across devices, in sub-
jects across activities, and in devices across activities. In
this example, it was not expected that the respiratory
rate measured under the same device, activity and sub-
ject would change at different measurement times, and
so the time ordering of measurements was not deemed
to be relevant. We therefore treat all measurements
taken under the same device, activity and subject as rep-
lications, and assume y;j, to be identically and independ-
ently distributed given subject, device and activity.
Under the assumption of a fixed device effect, Car-
rasco et al. [17] showed that the CCC for repeated mea-
surements coincides with the Intra-class Correlation
Coefficient (ICC) and as such it can be written as

_ Covyuaus Yiote)
Pccc =
Var (yijlt)
o)+ o)+,

02 + g+ 02 + 02, + 02y + 0 + 02

2

Note that the variance due to the random part is o}

2, 2 2 2 2 :
+0y + 05y + 045 + 05, + 0, and the variance due to the
fixed factor (device) is ¢/§ = Z?ZI/)’?, which accounts for
the systematic differences between the two devices. If
this latter term is not included, one is measuring
consistency between devices rather than their agreement.
: : 2 2, 2 2 2
The total variance is then o, + ¢5+ 0y + 05, + 05
2 2
+og, + 0.

The CCC, in this particular case, thus reflects the pro-
portion of the total overall variability explained by the
subject and activity effects (and their interaction) and a
CCC of 1 implies that there is no variability in the device
across subjects and activities.

Mixed effects limits of agreement

Bland and Altman first proposed the limits of agreement
(LoA) method over 30 years ago in their 1986 paper [5]
as an alternative to correlation-based methods which
they believed did not accurately characterize agreement
[19]. The 95% limits of agreement are simply calculated
as m + 2 *SD, where m is the mean of the paired differ-
ences in readings (e.g. differences in respiratory rate
measured at the same time in the same participant using
two different devices) and SD is the standard deviation
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of the paired differences. The limits of agreement are
meant to quantify dispersion among the paired differ-
ences. The wider the limits of agreement, the more dis-
similar the devices’ readings are expected to be,
suggesting a lack of agreement between devices. To for-
mally judge this level of agreement, the limits are com-
pared to a clinically acceptable difference (CAD): a range
within which differences are considered practically negli-
gible. If the limits are contained within the range of the
CAD then it is concluded that the devices agree and
could be used interchangeably. The CAD should be de-
cided before data analysis to avoid any bias in the deci-
sion, though strictly speaking the statistical validity of
the method does not require this. The limits of agree-
ment are typically shown overlaid on a Bland-Altman
plot of the paired differences against the averages of the
paired readings.

In the repeated measures case, applying the standard
limits of agreement to the data will result in limits that
are too narrow because they do not take into account
the reduction in variability that arises when working
with averages of readings. In this case we need to use a
specially adapted version of the limits of agreement, for
which there are several methods available. Bland and
Altman first described a fixed effects ANOVA method
to extend the LoA method to account for repeated mea-
sures [20] and this method is succinctly described in the
Supplementary Materials.

There have also been a diverse range of mixed effects
models proposed that vary in complexity as a means to
quantify dispersion in differences and hence calculate
limits of agreement. Some of these models are similar to
the CCC in that they model the raw outcome data and
include interaction terms; while other authors suggest
modelling the differences directly [15, 21-24]. The rela-
tively simple methodology that Parker et al. [15] recom-
mend, and that we adopt here (see Eq. (3)), directly
models the differences through a linear mixed effects
model, and is highly adaptable to different data struc-
tures. Indeed, the methodology has the flexibility and
versatility to accommodate complex variability struc-
tures [25, 26].

For our COPD motivating example, and letting D;;, be
the difference between the readings made by the two de-
vices when subject i is performing activity [ at time ¢,
i.e., Dy:=Yi;— Y, we model these paired differences
through the following linear mixed effects model

Dig=p"+a" +y +ée
a* ~N(0,02.),y;" ~ N(O, ai*),sflt ~N(0,02)
(3)

where y” is the overall mean of the between-device dif-
ferences, a;" is the random effect of the i ™ subject, y;" is
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the random effect of the / ™ activity, and gy is the
error term. We use asterisks to distinguish these quan-
tities from their counterparts in model (1) which is de-
fined in terms device readings directly (as opposed to
their differences). In order to generate an appropriately
weighted estimate of the mean bias, Parker et al. [15]
proposed to fit a separate regression model only includ-
ing a constant term and a random effect for subjects
(i.e., without considering activity), that is

Dy = po + a; + &
at. ~N(0,6%), ¢, ~N(0,0c?
0i s Yag )0 “0ilt Ve

where u is the mean bias of interest. The limits of
agreement are then calculated as

Ho £ 1.96/03. 4 07. + 0%

with the square root of the total variance giving an esti-
mate of the standard deviation for use in the conven-
tional Bland-Altman limits of agreement formula.

It is worth remarking that the limits of agreement can
also be calculated from the model in Eq. (2), which leads
to the following expression for the paired differences

Dy = You=Yaur = Br—=B1) + [(“ﬁ)ﬂ‘(“ﬁ)n]
+ [(BY) = (By)ui] + (eiaue—einie)

The mean bias is then quantified by (8, - 1) and fur-
ther Var(Djy,) = 2075 + 205, + 207 and, therefore, the
limits of agreement are computed as

BB, + 1.96\/2a§ﬁ +20% + 202

The benefit of using model (3) is that the normality as-
sumption is more likely to be valid if it is based on the
differences. In particular, it is possible that the differ-
ences follow a normal distribution even if the raw mea-
surements do not, but the converse is not true.

Coverage probability

The limits of agreement approach seeks to determine
whether the differences between devices are small
enough, on average, to be considered clinically accept-
able. This is determined by evaluating whether their
limits of variation are contained within the interval of
clinically acceptable differences. The coverage probabil-
ity (CP) proposed by Lin et al. [6] answers this same
question more directly by calculating the probability that
the between-device differences themselves lie within the
boundary of some tolerance interval — what Bland and
Altman refer to as the range of clinically acceptable dif-
ferences. Clearly, larger probabilities indicate closer
agreement. In practice the researcher must decide
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whether the CP value is large enough to use the two de-
vices interchangeably.

To calculate the CP in practice for our COPD example
we first use the linear mixed effects model in (2) to cal-
culate the mean squared deviation which is the expected
squared difference between readings by two different de-
vices on the same individual performing the same activ-
ity at the same time:

MSD(Y1,Y2) = E{(Yau-Yuu)*}
= (B,-B,)* + 2(0@ +03, + aﬁ)

Second, the CP is computed as

CP(6) = 1-2{1-®(6//MSD(Y 1, Y>)}

where 0 is the range of clinically acceptable differences
and @(.) is the standard normal cumulative distribution
function.

Total deviation index

The total deviation index (TDI) [6, 7] is closely related
to the coverage probability. For the CP, one must pre-
specify the range of clinically acceptable differences and
then the probability of containment is calculated. The
TDI, on the other hand, reverses this process; for a given
containment probability p the TDI calculation provides
the boundary within which the differences will be con-
tained p x 100% of the time. This approach is useful in
situations when specifying a CAD is difficult or impos-
sible. The practitioner must then decide whether the cal-
culated boundary is narrow enough for the devices to be
used interchangeably. For our COPD example, under the
assumptions of model (2), the TDI can be written as

TDI(p) = @' ((1 +p)/2)V/MSD(Y1,Y>)

where p is the pre-specified proportion of between-
device differences that we hope to be contained within
the interval +d.

Coefficient of individual agreement

The Coefficient of Individual Agreement (CIA) was de-
veloped by Haber and Barnhart [8] and Barnhart et al.
[9]. It is a scaled coefficient which directly compares the
disagreement between-devices to the disagreement
within-devices within subjects [27, 28]. Essentially, the
CIA attempts to quantify by what magnitude the vari-
ability between different devices increases when com-
pared to the replication variability within devices. The
value of the CIA ranges from 0 to 1, with 1 indicating
that using different devices makes no difference to the
variability of repeated measurements taken under the
same conditions within the same subject. The residual
error variance o> represents the variability of repeated



Parker et al. BMC Medical Research Methodology (2020) 20:154

measurements taken under the same conditions within
the same subject and therefore it is important that this
is a reliable benchmark for comparison. As recom-
mended by others [27, 28], we check that this value is
reasonable by calculating the repeatability coefficient of
Bland and Altman, which is 1.96@ . There are differ-
ent variants of the CIA, but we follow others in using the
mean squared deviation as the disagreement metric [27,
28]. In particular, we follow the approach for matched re-
peated measures outlined in Haber et al. [28], which sug-
gests that calculation of the CIA should be based on

MSD(Y,, Y])

CA=—— "2
MSD(Y1,Y5)

The term MSD(Y , Y;) denotes the mean squared de-
viation between two (hypothetical) replicated readings,
Y; and Y;., that could be made by device j on the same
subject under the same activity at the same time. In our
COPD context, and assuming model (2) for the respira-
tory rate measurements, we have

CIA = X 20
(BB +2(0% + 03, +02)

Alternative methods

Stevens et al. [14, 29] developed the probability of agree-
ment (PoA) method as an alternative to the limits of
agreement approach, which has the advantage of taking
into account two different types of bias and unequal pre-
cisions across devices. Proportional bias, where the mag-
nitude of disagreement depends on the true value in
each subject, is considered in addition to additive bias,
and this information can be used to elucidate the differ-
ent sources of disagreement if the devices do not agree.
The PoA method provides a flexible and informative
summary of agreement, but at present the methodology
does not adjust for confounders (e.g. activity in our
COPD study) and so it is not yet as widely applicable as
other alternatives. Further details about this method are
provided in the Supplementary File.

If the assumptions described above are not valid, then
non-parametric methods should be considered. For ex-
ample, Perez-Jaume and Carrasco suggest a non-
parametric alternative to calculate the TDI which is
more stable and reliable than the parametric method
when working with skewed data [30]. It is also relatively
simple to calculate and less influenced by outliers or ex-
treme values than the parametric approach. The method
involves simply calculating quantiles of an ordered list of
paired differences to calculate the TDI. A bootstrap
method can then be used to calculate the upper bound
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by resampling at the patient level and then recalculating
the TDI for each bootstrap resample. This appears to be
the same as a percentile method first described by Bland
and Altman [5], except that in the repeated measures
case we use bootstrap resampling to obtain the upper
bound. Although it does not assume a normal distribu-
tion, we still need to assume that the paired differences
are independent and identically distributed. Other non-
parametric methods are available [31, 32]. Stevens [33]
has also developed a generalization of the probability of
agreement based on the method of moments that does
not require any distributional assumption for the true
values. Fully Bayesian versions of the limits of agreement
method have also been proposed, for example Schluter’s
Bayesian agreement method [34]. Additionally, Barnhart
[12] and Barnhart et al. [11] describe an interesting
method involving the use of generalised estimating equa-
tions to provide a non-parametric estimate of the CP.
Recently Jang et al. [35] have proposed a new set of
agreement indices suitable for contexts in which there
are multiple raters and heterogeneous variances.

Besides the methods mentioned above, other methods
have been used to assess agreement, although some of
these are inappropriate. A systematic review [36] of
agreement studies that were reported between 2007 and
2009 found that around 10% of studies were using in-
appropriate methods to assess agreement including
standard correlation coefficients, the coefficient of deter-
mination from a regression analysis (R-squared), and
comparison of means methods (e.g. t-tests to detect
mean differences).

In the repeated measures case, aggregation methods
have been used whereby summary statistics are com-
puted at the subject level in order to reduce the depend-
ence in the data. Although aggregating data to the
patient level works in some studies with repeated mea-
sures, it is usually not appropriate in the agreement con-
text because the variability within subjects is often of
primary interest and we would be losing important in-
formation by aggregating.

Another method seen in the literature involved first
performing a statistical test to determine if the clustering
was important and then if not, carrying out an analysis
without adjusting for clustering [37]. This method is not
recommended because even if the test for clustering is
statistically non-significant, the clustering in the data
may still be sufficient to bias the agreement index.

Results

Twenty-one patients with COPD each provided a mean
of 18 paired readings on the chest-band and gold-
standard devices (median 19, range 15-19), with 16 pa-
tients recording the maximum of 19 readings across the
different experimental activities. As already reported
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elsewhere [16], the participants had a mean age of 69
(SD 8), with mean BMI of 26 (SD 6), and 13 (62%) were
men. The median respiratory rate was 20 breaths per
minute (interquartile range (IQR), 16 to 24) using the
gold standard device and 18 breaths per minute (IQR 14
to 23) for the chest-band. To supplement these descrip-
tive statistics, we provide a few exploratory plots that
summarize the data in the Supplementary Material. In
this supplement, Figure 1 shows the frequency of each
of the 11 activities over the 21 participants, whereas Fig-
ure 2 displays a boxplot of the respiratory rate measure-
ments for each activity, when measured by the gold
standard and chest-band devices, respectively.

For the comparison of respiratory rates between the
chest-band and gold standard devices, naive estimates of
agreement (which do not take clustering into account)
were computed to provide simple and quick summaries
of agreement: Pearson’s correlation coefficient was 0.74
(95% confidence interval (CI) 0.69 to 0.78), the concord-
ance correlation coefficient was 0.72 (95% CI 0.67 to
0.76), and simple limits of agreement were from - 6.40
to 3.19 with a mean bias of - 1.61.

When taking into account repeated measures per sub-
ject, we began by fitting model (2) to the COPD data
with the aid of the Imer function from the R package
Ime4 [38, 39]. Diagnostic plots are presented in Figures
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3 and 4 of the Supplementary Material. The variance
component estimates are as follows: ¢, = 11.4,07 = 16.
6,055 = 04,05 =6.0,05 =37, and o] =10.5. Activ-
ity and subject do explain a considerable proportion of
the overall variance, and therefore are the main sources
of disagreement. The subject-device interaction is negli-
gible, indicating no evidence of a difference in the device
effect across subjects.

The concordance correlation coefficient was estimated
to be 0.68 (95% CI 0.60 to 0.72). All confidence intervals
were obtained through a bootstrap procedure (at the in-
dividual level). The CCC is positive and the confidence
interval does not include zero or negative values, indicat-
ing that the chest band device is in slight agreement with
the gold-standard device. A value of the CCC of 0.68
may constitute acceptable agreement, but investigators
would have to agree beforehand what CCC value is re-
quired to conclude that the devices can be used inter-
changeably. Note that although this CCC does not differ
much from the one that ignores the repeated measured
nature of the data, the 95% confidence intervals, as ex-
pected, do differ by a considerable extent. Although the
CCC is not a graphical method, certain graphs can com-
plement the numerical results. For example, a scatterplot
of the observations from each device plotted against
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each other, with a line superimposed on the plot show-
ing the line of perfect agreement (i.e. with intercept 0O
and slope 1) (see Fig. 1). Or a Bland-Altman plot could
be used which involves plotting the between-method dif-
ferences against the average (Fig. 2).

When applying the mixed effects limits of agreement
method to the COPD data via model (3), we calculated a
mean bias of - 1.60 (95% LoA - 11.57 to 8.38). The re-
sults when using model (2) are - 1.28 (95% LoA - 11.86
to 9.30). The results when using only fixed effects were:
mean bias of — 1.61 (95% LoA -9.99 to 6.78) [15]. Note
that these limits of agreement are all much wider than
the naive estimates which ignored clustering. This may
be because within-subject variability is treated as
between-subject variability in estimating naive LOAs,
which leads to biased intervals, and illustrates the im-
portance of taking clustering into account. Note also
that the raw mean bias is very similar to the random ef-
fects mean bias in our case, and simply calculating the
raw mean bias with 95% LoA calculated from mixed ef-
fects model is an acceptable alternative [15]. The CAD
was set to be + 5 based on investigators’ clinical judge-
ment; any differences less than 5 breaths per minute
were regarded as clinically unimportant. Since the limits
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of agreement lie outside the CAD we conclude that the
two devices do not show the desired level of agreement.
Figure 2 shows the corresponding Bland-Altman plot
with LoA overlain. Based on the LoA model, the
between-subject variance of the differences was only
0.96 compared to 7.57 for the between-activity variance
of the difference. The residual variance of the LoA
model (within-subject and activity variance) was 17.37.

Regarding the coverage probability, if we take é= 5 to
be the pre-specified boundary (CAD =z 5), the coverage
probability is only 0.63 (95% CI 0.56 to 0.70), indicating
relatively poor agreement between methods. This is well
below the 0.95 threshold we were using to denote satis-
factory agreement.

Based on a pre-specified proportion of p=0.95 for
containing the between-device differences, the 95% TDI
was calculated to be 10.9 (95% CI 9.4 to 12.7), based on
a mean-squared deviation of 30.8 (95% CI 23.0 to 41.7).
This suggests that differences between the chest band
and the gold-standard readings are expected to lie within
+ 10.9 95% of the time. In general, whether this interval
is narrow enough to signify agreement must be deter-
mined by the researcher. For these data (where the CAD
is + 5) it is clear that the TDI is too large to conclude
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that the two devices should be used interchangeably.
Note that the TDI limits are similar to those implied by
the LoA.

Before applying the Coefficient of Individual Agree-
ment method to the COPD data, we check that the re-
sidual error variance is reasonable by calculating the
repeatability coefficient of Bland and Altman, which is
1.96@ =8.98 when applied to the COPD data. This
tells us that there is approximately 95% probability that
the repeated respiratory rate values are within 9 breaths
per minute of each other. In the study context, below 5
is ideal, so the repeatability coefficient is unacceptably
high in this context. This means we should be cautious
about over interpretation of the CIA results because they
are compared against a high benchmark. The CIA was
calculated to be 0.68 (95% CI 0.56 to 0.70). It has been
suggested that agreement is only considered “acceptable”
if the CIA exceeds 0.8 [8, 27, 28]; or in other words, if
the disagreement between devices is within 25% of the
level of disagreement of the repeated measurements
within devices and within patients. Therefore, the CIA

Table 2 Summary of the different statistical approaches
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results suggest poor agreement between the devices, in
keeping with results from the other methods. From the
variance component estimates of model (2) we can eluci-
date the main sources of disagreement. There is substan-
tial wvariability due to subjects and activities (
0, = 114,07 = 16.6) which may be the reason why in

the CCC we have concluded that the chest-band device
is in slight agreement with the gold standard device. Im-
portantly however, the within-subject residual is high (o2
= 10.5) and the device-activity interaction is moderate (

0/%,}, = 3.7), which have contributed to our conclusion

that the agreement between the two devices is not satis-
factory for the CP, TDI, and CIA methods. The relatively
large variability of activity and subject does not play a
role in the calculation of the CP, TDI and CIA, and so
this may explain the difference in conclusion compared
to the CCC.

On the basis of the investigations described above,
each of the five statistical approaches is summarised in
Table 2. Further statistical details associated with these
methods, additional diagnostic plots, and the R code

Statistical Advantages/Strengths Disadvantages Key summary
Approach results (COPD
study example)
Concordance - A widespread and frequently used method. - Heavily influenced by the degree of between-  CCC 0.68 (95% Cl
correlation - Can still be used in cases where defining an appropriate subject and between-activity variability and the 0.60 to 0.72)
coefficient CAD is either very difficult or impossible. range of the data.
- Can be very difficult to determine if the CCC is
large enough to constitute acceptable
agreement.
- Can be very difficult to interpret clinically:
interpretation not in terms of original
measurement unit.
Limits of - Simplicity of application: relatively straightforward to - Standard approach is highly dependent on the = Mean bias —1.60
agreement compute limits. normality assumption for validity. 95% LoA —11.57
- Clinical interpretation is based on the original - High variability in residual errors may mask the  to 838
measurement scale. fact that a device could measure the true value
- Estimate of mean bias. more precisely than the gold-standard.
- Easy to understand and interpret. - Easy to apply method incorrectly without
explicitly specifying a clinically acceptable
difference.
TDI - Easy to compute. - Can be difficult to determine if the TDI is large  TDI 10.9 (95% Cl
- Easy to interpret. enough to constitute acceptable agreement. 94 to 12.7)
- Clinical interpretation is based on the original - Does not explicitly calculate the mean bias.
measurement scale.
cp - Easy to interpret. - Does not explicitly calculate the mean bias. CP of 0.63 (95% Cl
- Easy to compute. 0.56 to 0.70) for
- Method cannot be used without explicitly specifying a boundary of + 5
clinically acceptable difference, which is based on the
original measurement scale.
CIA - Directly compares the disagreement between devices - Depends heavily on the within-subject within-  CIA 0.68 (95% Cl

against the disagreement within devices and within
subjects.

- Much less dependent on the between-subject and
between-activity variability compared to the CCC.

- Can still be used in cases where defining an appropriate
CAD is either very difficult or impossible.

device variance. 0.57 t0 0.75)
- Relies on data which has acceptable replication

error.
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used to produce the results are all provided in the Sup-
plementary Material.

Discussion

There is a plethora of methods available to assess con-
tinuous agreement in the literature which vary in com-
plexity and in their underlying assumptions. In this
article we have surveyed five different methods to ana-
lyse the same agreement problem involving clustered
and unbalanced data; including some which are well
known and frequently applied in the literature, and
others which encompass recent advances in agreement
research.

As applied to an example in COPD, we showed how
all five of the agreement indices can be derived from the
same linear mixed effects model (although for the LoA
method we favoured a slightly different linear mixed ef-
fects model based on the paired differences). It was not
surprising therefore that all five methods provided simi-
lar results, although the lack of acceptable agreement
was clearer with some methods than others due to the
way the variance components entered into the expres-
sion of the different agreement indices. The 95% LoA
ranged from — 12 to 8 breaths per minute, and the TDI
was estimated to be 11 breaths per minute, which were
all well outside the clinically acceptable difference
(CAD) of 5 breaths per minute. The CP was also low at
0.63 based on a CAD of 5. By examining the variance
components of the LoA model (3), we observe that the
between-subject variability of the paired differences was
very low, but the within-subject variability and variability
due to activities were both relatively high and these were
the driving force behind the disagreement. Similarly,
based on the variance components of model (2), we ob-
serve that the residual error variability and activity-
device interaction were both reasonably high. We can
infer therefore that the chest-band device may be less
able to accurately capture changes in breathing rate as it
varies across different activities compared to the gold
standard.

One of the main ways of classifying the different
methods is to divide them into those that produce stan-
dardized agreement indices that are scaled to be within a
certain range (e.g. the CCC is scaled to be between -1
and 1 and the CIA between 0 and 1), and those that
allow direct comparison to the original scale of the data
and require the specification of a clinically acceptable
difference (e.g. the LoA, CP and TDI methods). These
groups of methods are commonly referred to as scaled
and unscaled agreement methods respectively [2], and
the latter set of methods are sometimes known as “pure
agreement indices” [40]. Indeed, the CCC can be more
accurately described as assessing distinguishability rather
than agreement, since it is designed to calculate the
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proportion of the variance of a system explained by the
subject/activity effect, and does not require a CAD to be
specified [41]. It is therefore not a “pure agreement
index” [41]. The CCC has the disadvantage of being
heavily dependent on the between-subject variability
(and in our case also on the between-activity variability)
and would therefore attain a high value for a population
with substantial heterogeneity between subjects or activ-
ities even though the agreement within subjects might
be low [2, 11, 12]. Similarly, if both the between subject
and between-activity variances are very low, then the
CCC is unlikely to attain a high value even if agreement
within devices is reasonable. Moreover, as for the intra-
class correlation coefficient (ICC), it is not related to the
actual scale of measurement or to the size of error which
might be clinically allowable, which makes interpretation
difficult [41]. As outlined in other papers [11, 12, 40], it
is very easy to obtain an artificially high value of CCC
and manipulation of the dataset can change the estimate
of the CCC drastically. Nevertheless, the variance com-
ponents are automatically generated in R which helps
one to interpret the overall summary indices.

Barnhart et al. [42] discuss how the CIA compares to
the CCC in assessing agreement. They recommend using
the CIA if the within-subject variability is acceptably
low, particularly if the between-subject variability is large
relative to the within-subject variability [42]. This is be-
cause the CIA has the distinct advantage of being less
dependent on the between-subject variability than the
CCC, and so is preferable to the CCC in many cases.
Moreover, the CIA is expressed conditional on any con-
founders (e.g. the effect of time or activity) as well as be-
ing conditional on the subject effect and therefore has
intuitive appeal. However, interpretation of the CIA may
be challenging because it is not based on the original
unit of measurement.

In contrast, the limits of agreement and TDI methods
have the advantage of being based on the original unit of
measurement and can be compared against a clinically
acceptable difference [43]. In reviews by Barnhart et al.
[11] and Barnhart [12], the authors highlight that for the
LoA, it is possible to have 95% of the differences within
the clinically acceptable difference but yet not conclude
agreement (if, for example, one of the limits is outside
the CAD). This can happen with skewed data or because
of some other failure of the normality assumption. We
agree that this may be an issue when seeking to interpret
the LoA and that checking of assumptions when per-
forming LoA is particularly important. However, we
think the ability of the methodology (and the Bland-
Altman plot in particular) to reveal relative mean biases,
patterns in the data and hence sources of disagreement
is valuable; and that simply calculating a TDI or CP
summary index may hide this detail. Therefore, if the
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TDI or CP is computed, we recommend that a Bland-
Altman style plot of the between-device paired differ-
ences against the average is also constructed showing
the raw mean bias and CAD, and we propose that this
provides a sound way to assess agreement. In particular,
any outliers or skewness in the data can be easily exam-
ined with respect to the CAD.

For both the limits of agreement and TDI methods it
is important to remember that the calculated limits are
only estimates (just as the CCC is a point estimate) and
so uncertainty in the true values of these limits does
exist [44]. Different samples from the overall population
may produce different limits and a different TDI. In par-
ticular, when sample sizes are small the observed limits
of agreement may be far away from the “true” limits of
agreement due to finite sampling bias. This is why for
statistical inference purposes, calculation of confidence
bounds around the limits is often recommended or in-
deed calculation of separate prediction intervals [44, 45].

As a probability, the CP provides an intuitive measure
of agreement that may be easily interpreted by users
with almost any level of statistical sophistication. It also
requires a clinically acceptable difference (CAD) to be
pre-specified before it can be used, and so the resulting
interpretation is directly related to the original measure-
ment scale.

When applying the LoA, TDI, or CP methods, specifi-
cation of the acceptable difference is required. It is im-
portant to note that this is a context-dependent decision
that should be made by an expert that knows what it
means for the devices to be practically equivalent.
Whether differences between the devices tend to fall
within the CAD or not depends on both the relative bias
between them and their precisions. If the bias and im-
precision is sufficiently small (as determined by the
CAD) then for practical purposes the devices can be
used interchangeably. This is an important decision, be-
cause an incorrectly specified CAD will lead to incorrect
conclusions about the level of agreement.

Although the five agreement methods considered can
be computed on the basis of similar linear modelling ap-
proaches, they deviate from one another according to: (i)
which outcome is being measured (the differences or the
raw observations), (ii) the main focus of the method (on
comparison with the CAD or variance components), and
(iii) how the variance components are used in the ex-
pressions of the indices. All methods may mask individ-
ual areas of disagreement in data and make implicit
assumptions about aspects of the variability or modelled
relationships. It is therefore important to look beyond
the agreement indices themselves and examine the
values and assumptions used to compute them. For ex-
ample, it is easy to compute limits of agreement without
adequately considering the variance components that
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were used to derive them or without considering the
possibility of the devices having inherently different pre-
cisions. We recommend that researchers pre-specify the
precise form of the statistical model they will use in a
statistical analysis plan, since different models will lead
to different agreement indices. For example we found
that the results for some indices (e.g. CIA) changed de-
pending on whether a device-activity interaction was as-
sumed in the COPD example. The advantage of
including this interaction is to be able to check if the
agreement between the two devices varies from activity
to activity or not. But this comes at the price of making
the assumption of an extra additive term in the model
that may or may not hold.

The need for confidence intervals alongside agreement
limits is strongly indicated in the literature, and rightly so.
However, we think it is equally — if not more — important
to report the individual variance components (e.g.
between-subject variance and within-subject variance) and
bias estimates alongside agreement indices, because these
will elucidate the source of disagreement. Additionally, it
is important to be aware that disagreement between de-
vices as observed in agreement indices may hide differ-
ences in the level of precisions and measurement error
between the devices, and also reflect underlying mean
biases that cannot be adequately modelled by absolute
mean differences. This is why looking beyond the dis-
agreement to the underlying causes is crucial in helping
one to critically appraise agreement results.

All five methods rely on parametric assumptions.
Non-parametric approaches to assessing agreement,
such as the method by Perez-Jaume and Carrasco [30],
are not often seen in the literature but should be consid-
ered; especially in cases where data is skewed or other-
wise non-normal.

In our assessment of the agreement methods we impli-
citly assume that the sample size available is sufficient to
achieve model convergence. In cases where the number
of patients or repeated measurements is small, the
methods may not perform well, and this is an avenue for
future research.

The time at which measurements were taken was not
considered to be clinically important in this study condi-
tional on the other covariates, and so we did not adjust
for time of measurement in the models. In other studies
and settings however, time of measurement may be in-
fluential and will need to be accounted for in the
models.

Conclusions

Barnhart et al. (2016) provided pros and cons of several
different agreement indices for both continuous and cat-
egorical data in a core lab setting and concluded that
coverage probability is the preferred choice of assessing
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agreement in a core lab setting [11]. We agree that the
coverage probability is an ideal choice to provide an eas-
ily interpretable summary index of agreement. However,
we would not recommend providing just the coverage
probability index, if there is any disagreement, because it
may hide important nuances in the data, particularly re-
lating to the source of the disagreement in applied clin-
ical studies. We therefore recommend that researchers
also construct a Bland-Altman plot (which also depicts
the raw mean bias and clinically acceptable difference)
to provide a helpful visual examination of the data [12]
(see Fig. 3). The CCC should not be used as a sole agree-
ment metric due to its potential to give biased results
when the between-subject variability is high. Regardless
of which agreement index one uses, we recommend
summarizing the data graphically to provide preliminary
insight into the agreement between the devices and to
evaluate model assumptions.
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