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Abstract

Background: The Multiphase Optimization Strategy (MOST) is designed to maximize the impact of clinical
healthcare interventions, which are typically multicomponent and increasingly complex. MOST often relies on
factorial experiments to identify which components of an intervention are most effective, efficient, and scalable.
When assigning participants to conditions in factorial experiments, researchers must be careful to select the
assignment procedure that will result in balanced sample sizes and equivalence of covariates across conditions
while maintaining unpredictability.

Methods: In the context of a MOST optimization trial with a 2x2x2x2 factorial design, we used computer simulation
to empirically test five subject allocation procedures: simple randomization, stratified randomization with permuted
blocks, maximum tolerated imbalance (MTI), minimal sufficient balance (MSB), and minimization. We compared
these methods across the 16 study cells with respect to sample size balance, equivalence on key covariates, and
unpredictability. Leveraging an existing dataset to compare these procedures, we conducted 250 computerized
simulations using bootstrap samples of 304 participants.

Results: Simple randomization, the most unpredictable procedure, generated poor sample balance and
equivalence of covariates across the 16 study cells. Stratified randomization with permuted blocks performed well
on stratified variables but resulted in poor equivalence on other covariates and poor balance. MTI, MSB, and
minimization had higher complexity and cost. MTI resulted in balance close to pre-specified thresholds and a
higher degree of unpredictability, but poor equivalence of covariates. MSB had 19.7% deterministic allocations, poor
sample balance and improved equivalence on only a few covariates. Minimization was most successful in achieving
balanced sample sizes and equivalence across a large number of covariates, but resulted in 34% deterministic
allocations. Small differences in proportion of correct guesses were found across the procedures.

Conclusions: Based on the computer simulation results and priorities within the study context, minimization with a
random element was selected for the planned research study. Minimization with a random element, as well as
computer simulation to make an informed randomization procedure choice, are utilized infrequently in randomized
experiments but represent important technical advances that researchers implementing multi-arm and factorial
studies should consider.
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design, Multi-phase optimization strategy

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: jocelyn.kuhn@bmc.org
1Boston Medical Center, 72 E. Concord St, Boston, MA, USA
Full list of author information is available at the end of the article

Kuhn et al. BMC Medical Research Methodology          (2019) 19:239 
https://doi.org/10.1186/s12874-019-0883-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-019-0883-9&domain=pdf
http://orcid.org/0000-0001-7349-664X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jocelyn.kuhn@bmc.org


Background
An emerging methodology known as the Multiphase
Optimization Strategy (MOST), which was inspired by en-
gineering frameworks and guides research questions related
to identifying the optimal version of an intervention, is re-
ceiving increasing attention in the healthcare field. The
MOST framework includes three phases: preparation of a
conceptual model with identified intervention components
that impact the intervention effectiveness, optimization of
the intervention with a trial that evaluates the performance
of the individual intervention components, and evaluation
of the optimized intervention with a randomized controlled
trial (RCT). Unlike the traditional RCT framework which
compares a treatment group that receives an intervention
package to a control group, the MOST framework tests the
anticipated “active ingredients” (i.e., intervention compo-
nents), thus providing results on the most effective, effi-
cient, and scalable form of an intervention [1, 2].
MOST optimization trials utilize factorial experimental

design [3–5] because they can test multiple factors (i.e.,
intervention components or delivery strategies) simul-
taneously, using the same participants while maintaining
satisfactory statistical power [6]. For example, a factorial
design with two intervention components with two
levels each yields four cells (i.e., 2 × 2 = 4), each repre-
senting a group of participants assigned to a study
condition that receives a unique combination of inter-
vention component levels. As the number of interven-
tion components in the factorial design increases, the
number of cells grows exponentially (i.e., four compo-
nents with two levels each requires 2 × 2 × 2 × 2 = 16
cells). Because participants in factorial experiments are
independently assigned to a level on each factor and fac-
tors are analyzed separately for main effects, statistical
power will generally be equivalent to a single-factor RCT
that has the same number of study arms as the factorial
design’s number of levels within each factor.
Despite the benefits that factorial designs offer with re-

gard to sample size and statistical power, they also
present complexity and challenges for subject allocation,
especially when the number of cells is large. [7] Consen-
sus guidelines for reporting randomized trials (i.e., Con-
solidated Standards of Reporting Trials (CONSORT)
[8]) describe a range of acceptable methods for alloca-
tion of participants to study cells and suggest that three
criteria are important for determining which method to
use. First, participant allocation should result in balanced
sample sizes across study conditions to maximize statis-
tical power [8–10]. Second, participant allocation should
result in study conditions that are equivalent with respect
to covariates that are expected to impact intervention out-
comes (i.e., equivalent groups) [11]. Third, participant allo-
cation should be completely unpredictable to both study
staff and to participants so as to ensure that measured and

unmeasured participant characteristics, and selection
biases in general, do not influence participants’ assignment
to conditions. Given the large number of cells in factorial
experiments and division of participants across those cells,
balanced sample sizes and equivalent groups are especially
important, yet may be difficult to achieve. Finally, we sug-
gest additional criteria that are common to many practical
decisions: cost and complexity including resource
utilization. Some allocation procedures can be readily im-
plemented using a range of accessible methods and soft-
ware, whereas other methods may require coding or
specialized software that must then be incorporated into
workflow. The four outcomes of interest in the present
study are these four criteria for subject assignment
methods: balance of sample size, equivalence of groups,
unpredictability, and low complexity.
The CONSORT statement [8] classifies the range of

acceptable assignment methods into three categories:
Simple randomization, which includes the use of ran-
dom number tables, computerized random number gen-
erators, or even a coin toss. Restricted randomization
involves combining random assignment with additional
strategies to improve balance and equivalence across
cells. For example, assigning participants in blocks that
are the same size as (or a multiple of) the number of
cells promotes balanced sample size across conditions
[8, 10]. Stratification defines subsets of participants
within which random assignment with blocking occurs
[8], thus promoting equivalence in the baseline charac-
teristics used to define the strata [12].
Lastly, adaptive randomization procedures show advan-

tages over more traditional restrictive and simple
randomization procedures [13]. Maximum tolerated im-
balance (MTI) represents a class of more novel adaptive
randomization procedures which defend against selection
bias by implementing simple randomization until a pre-
defined imbalance in sample sizes occurs, at which point a
“big stick” is used to deterministically regain balanced
sample sizes across conditions [14]. For cases in which
equivalence of covariates is of utmost concern rather than
balanced sample sizes, covariate adaptive randomization
strategies such as minimal sufficient balance (MSB) can be
used. MSB uses simple randomization until inequivalence
on a covariate is reached, which is determined quantita-
tively by pre-specified p-value limits from t-tests; when the
p-value limit is reached on a covariate across conditions, a
more predictable assignment, such as biased coin assign-
ment, is implemented to achieve equivalence once again
[15, 16]. In contrast, minimization involves assigning each
participant to the condition that minimizes differences in
sample size and pre-specified covariates across the all of
the study cells [8]. In other words, participants are allo-
cated to the cell that would result in the minimum sum of
ranges of both sample size and covariates if the participant
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were to be assigned to each possible cell. Although this ap-
pears fundamentally deterministic, a random element can
be introduced to settle ties among study cells [17]. In the
case of a factorial design with 16 cells, sample size and co-
variate ties become more common occurrences; randomized
allocation between tied cells becomes a logical and necessary
technique to incorporate into the minimization procedure.
As expected, each of these subject allocation methods

theoretically has strengths and weaknesses with regard
to balance, equivalence, unpredictability, and complexity
(see Table 1). With regard to predictability, simple
randomization is the most unpredictable on a theoretical
level and is therefore best for reducing selection bias [10,
13]. In comparison, restricted randomization includes a var-
iety of procedures, each with varying levels of selection bias
threat. Blocking heightens selection bias because block size
is generally known to study investigators, and assignment
becomes increasingly predictable as cumulative enrollment
reaches numbers equivalent to multiples of the number of
study conditions [8, 18]. While introducing random vari-
ation in block size (i.e., permuted blocks) can mitigate this
problem [8], the benefit of doing so with respect to balance
declines as the number of study cells increases—as is often
the case for factorial experiments. In contrast, adaptive MTI
and MSB procedures minimize selection bias with the use
of simple randomization up until implementation of a more
deterministic method becomes necessary based on pre-
determined limits [14, 16]. Thus, the degree of predictability
of restricted randomization and adaptive randomization de-
pends on the exact procedure used and the number of arms
or factors in the study design to which it is applied.
Conversely, minimization without a random element

is an inherently deterministic procedure that can be

predicted given perfect knowledge of prior assignments
and covariate data for the next participant being
assigned, as well as the algorithm by which these values
result in assignment. The more covariates included in
the minimization algorithm, the more difficult it would
theoretically be for an investigator to keep track of such
information mentally; nevertheless, selection bias re-
mains a pitfall of this purely deterministic method, and
even simple guessing rules may have the potential to exceed
chance levels [19]. Adding elements of random assignment
into minimization algorithms is preferable because such
methods reduce reliance on deterministic allocations, and
reduce the likelihood of an investigator’s guess of an assign-
ment being correct [8]. Thus, for minimization, predictabil-
ity again depends on the exact procedure used and the
study design to which it is applied.
When seeking balanced sample sizes and groups that

are equivalent with respect to baseline variables across
study conditions, simple randomization is expected to
perform the most poorly [10]. The credibility of factorial
experiments can be significantly compromised by simple
randomization because of the compounded problem of
yielding cells that are imbalanced with respect to sample
size and non-equivalent with respect to key covariates
[8]. Many researchers continue to follow the precedent
of using stratification with permuted blocks to address
these issues; however, making such determinations based
on precedent can be misguided and ignores the substan-
tial threat of selection bias that blocking creates [20, 21].
An additional limitation to stratification with permuted
blocks is that when block size is equivalent to the num-
ber of study conditions, stratification is only feasible for
two or three variables at most [12]. In the context of

Table 1 Theoretical comparison of allocation methods

Unpredictability Balanced sample sizes
across conditions

Equivalent baseline
characteristics across
conditions

Cost & complexity

Simple
randomization

Best; random assignment prevents
predictability

Poor; likely to result in
differences across cells

Poor; likely to result in
differences across cells

Best; simple to implement

Stratification
with
permuted
blocks

OK; Random order of assignments within
blocks within strata reduces predictability but
known block sizes increase predictability

Very good; blocking
improves balance, but this
is mitigated by
stratification

Good; stratification
improves equivalence on
specific variables

Very good; more complex,
but solutions are widely
available

Maximum
tolerated
imbalance

Very good; random assignment protects
against selection bias until big stick is
needed.

Very good; results at or
below maximum tolerated
imbalance of samples

Poor; No better than simple
randomization

OK; can be implemented in
a range of available
software, but requires
coding

Minimal
sufficient
balance

Very good; random assignment protects
against selection bias until biased coin is
needed

Poor; No better than
simple randomization

Very good; results at or
below maximum tolerated
inequivalence of covariates

OK; can be implemented in
a range of available
software, but requires
coding

Minimization Poor when purely deterministic; improved
with incorporation of random element

Very good; should
promote balance,
depending on algorithm

Best; promotes equivalence
on a large number of
variables

OK; can be implemented in
a range of available
software, but requires
coding
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factorial designs, stratification with permuted blocks is
therefore additionally limited in the number of variables
on which it can promote equivalence. MTI and MSB
methods protect from selection bias with a default to
simple randomization, but only up until the limit on tol-
erated imbalance or inequivalence is reached. MTI satis-
fies the need for a pre-determined level of balance on
sample size, whereas MSB supports equivalence on se-
lected covariates. In factorial design studies requiring
both balance and equivalence, implementing one of
these techniques alone will not be sufficient.
Minimization procedures can ensure that conditions

have balanced sample sizes and equivalent baseline char-
acteristics for a large number of variables, even for stud-
ies with small sample sizes and/or many treatment
conditions, across all stages of an experiment. Some
therefore argue that minimization procedures are not
only acceptable, but a superior alternative to simple or
restricted randomization techniques such as stratifica-
tion with permuted blocks [22]. In minimization assign-
ment, the first patient is assigned at random, and each
following participant is assigned to the condition that
minimizes differences across study conditions with re-
spect to sample size and selected covariates. Assignment
becomes less easily guessed correctly by researchers as
more variables are added and the minimization algo-
rithm becomes more complex [23]. Moreover, re-
searchers may incorporate randomization into their
minimization scheme. For study designs with more than
two treatment conditions, randomization may also be
necessary if the minimization algorithm results in ties
among two or more conditions. Researchers may even
choose to set up the minimization algorithm to incorp-
orate randomization for near-ties or to use a weighted
probability that favors, but does not determine, assign-
ment to the condition that minimizes imbalances [8].
Such methods appear to be effective mechanisms to re-
duce the risk of minimization assignment from being
fully “deterministic” [17].
Finally, assignment strategies differ with respect to cost

and complexity. In this regard, simple randomization is ar-
guably best as a wide range of software and even a coin or
die can be sufficient. Stratification with permuted blocks
is a close second because it is embedded in a range of soft-
ware packages used by researchers, including RedCap.
While simple conceptually, MTI, MSB, and minimization
procedures are currently the most difficult to implement,
requiring specialized coding in software packages like
Excel, Stata, or R. These randomization algorithms must
be individualized based on covariates of interest, thresh-
olds of acceptable imbalance or inequivalence, and num-
ber of arms in particular studies. Once the minimization
and MSB programs are written, study staff must obtain
sufficient covariate data (e.g., age, ethnic identity, co-

morbid conditions) before randomizing participants to
run the program. MTI, MSB, and minimization programs
will likely be stand-alone as none of these procedures are
currently integrated into other commonly used research
study management systems such as RedCap or StudyTrax.
Overall, MTI, MSB, and minimization are the most com-
plex because they require additional skills, staff time, and
resources.

Aims of the current study
Given the relative strengths and weakness of simple
randomization, stratification with permuted blocks,
MTI, MSB, and minimization procedures for participant
assignment with respect to a given study design (e.g.,
number of cells, sample size) and hypotheses (e.g., num-
ber of conditions of interest, importance of testing inter-
actions), it is critical that researchers make deliberate,
informed choices about their participant assignment
procedures for their unique studies, particularly in the
context of factorial designs within MOST frameworks.
The primary aim of this paper is to present a case study
of how assignment procedures can be directly compared
by conducting simulations drawing from a prior locally-
collected dataset.

Method
In this paper we describe a process for selecting among
participant assignment procedures. We conducted a
series of simulations to inform our participant assign-
ment procedure selection for a MOST optimization
study designed to determine how to best deliver an
evidence-based care coordination strategy called Family
Navigation [24] within the context of child mental health.
Specifically, this optimization study uses a 2x2x2x2 factorial
design to test the impact of each of four delivery strategies:
a) technology-assisted vs. traditional care management; (b)
community vs. clinic-based delivery; (c) enhanced vs. rou-
tine symptom tracking; and (d) fixed vs. flexible schedule of
visits. Based on a priori power analysis, we intend to enroll
a sample of 304 families.
We adopted a three-stage method to determine the

optimal assignment strategy: [1] review literature and
define assignment procedures [2]; conduct simulations
on a dataset from a previous study, reporting outcomes
for each strategy with respect to balance, equivalence,
and unpredictability (i.e., proportion of deterministic as-
signments, average number of potential conditions
across allocations, and correct guesses) [3]; review re-
sults with the research team; determine which method is
optimal in the study context across all outcomes.
Step 1: Based on our review of the literature, we oper-

ationalized each assignment method. Simple
randomization was determined using the random
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number generator in Stata version 15. We implemented
two maximum tolerated imbalance (MTI) procedures:
one with a pre-specified MTI of 2 (MTI2), and one with
a pre-specified MTI of 3 (MTI3). For these procedures,
participants were assigned at random unless the differ-
ence between the minimum and maximum cell size
across the sixteen cells exceeded the pre-specified values
of 2 or 3, at which point a big stick was used to assign
the participant to the cell with the smallest sample size
(with ties resolved by random assignment). Modified to
accommodate allocations to sixteen possible cells, our
implementation of MSB also assigned participants at
random, but a different algorithm triggered more di-
rected assignments. Before each allocation, chi-square
tests were conducted for each of eight binary covariates
(Medicaid status, work outside home, sex, Hispanic (yes/
no), Black (yes/no), child age (old/young), autism diag-
nosis (yes/no), high school education (yes/no), and mar-
ried or living with partner (yes/no)) to test for
imbalance. Votes were assigned if imbalance was statisti-
cally significant at an alpha < 0.30 level. If the next par-
ticipant was positive with respect to the given covariate
(i.e., Hispanic = 1), then a “vote” was assigned to the cell
with the lowest proportion with respect to that covariate.
If the next participant was negative on the given covari-
ate (i.e., Hispanic = 0), then a “vote” was taken away
from the cell with the highest proportion with respect to
that covariate. After testing all covariates, the participant
was assigned to the cell with the highest votes, and ties
were resolved by random assignment.
Stratification with Permuted Blocks was conducted

within permuted blocks of 16 and 32 participants
within three strata defined by race/ethnicity (coded as:
1. Hispanic, 2. non-Hispanic Black, or 3. other).
Minimization was conducted based on eight binary co-
variates (Medicaid status (Medicaid/other), work out-
side home (yes/no), sex (male/female), Hispanic (yes/
no), Black (yes/no), child age (old/young), autism diag-
nosis (yes/no), high school education (yes/no), and
married or living with partner (yes/no), which were se-
lected based on their availability as binary socio-
demographic variables that our investigator team be-
lieved were necessary to evenly represent across cells.
The minimization algorithm calculated the sum of
ranges based on cell sizes and covariates that would re-
sult if the next subject were allocated to each possible
cell, and then made the next assignment that mini-
mized the sum of ranges. In cases when more than one
cell shared the same minimum sum of ranges, ties were
determined with simple random assignment (i.e., 1:2
chance of assignment with a tie of 2, 1:3 chance of as-
signment with a tie between 3 cells).
Step 2: We selected an existing dataset from a recent

previous study by our group that took place in the same

pediatric clinic population and urban area. The existing
dataset contained 332 participants. We conducted 250
simulations that directly compared the three assignment
procedures. For each simulation, we drew a bootstrap
sample of 304 participants, which was the planned sam-
ple size for the proposed study. This sample of partici-
pants was then assigned to study cells using each of the
methods described in Step 1. We measured the perform-
ance of each technique based on balance, equivalence,
and predictability.
To assess balance, we calculated the following statistics

for each of the 250 simulations: mean minimum cell
size, mean maximum cell size, and mean range (i.e., dif-
ference between minimum and maximum cell sizes) of
the 250 mean cell sizes. In the context of a 16-cell fac-
torial design study with 304 participants, which would
ideally have 19 participants in each cell, we determined a
mean sample size range of less than or equal to two as
acceptable, and that anything higher would be problem-
atic with regard to statistical power. To assess equiva-
lence, we conducted statistical tests for differences with
respect to each covariate and reported the average pro-
portion of covariates that displayed statistically signifi-
cant differences at the end of each simulation.
Following previous literature and with consideration of

the unique nature of factorial experiments, we used sev-
eral metrics to assess unpredictability. First, we tracked
the number of eligible cells for each allocation, ranging
from 1 to 16. Each time a participant is allocated to a
combination of the four treatment conditions (i.e., a
study cell), anywhere between 1 and 16 cells are eligible
for assignment. If only one cell is eligible, the allocation
is deterministic. If all 16 cells are eligible and all have
equal weights, then the allocation is completely random.
Numbers between 2 and 15 represent allocations that
are neither completely random nor fully deterministic.
In addition, past research suggests that even simple

guessing rules can yield predictions that substantially ex-
ceed chance [25]. Following previous literature [25, 26],
we assessed the success of a guess based on selecting the
cell with the minimum sample size (hereafter, “Correct
Guess 1”). We also assessed additional guessing rules to
address the special nature of factorial designs. For ex-
ample, a researcher could potentially wish to influence
assignment to a particular factor, for example by guess-
ing that the next participant will be assigned to the level
of a factor with the smallest overall sample size (here-
after, “Correct Guess 2”). Knowing that minimization
and MSB allocation algorithms are designed to maximize
equivalence, a research staff member may also incorpor-
ate knowledge of covariates. Therefore, we included a
third guessing rule that assigned a point to each level of
a factor if it: (a) had the smaller sample size, and (b) in-
cluded a smaller number of Black children. Guesses were
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assigned to the factor with the greater number of points
and ties were resolved by random selection (hereafter,
“Correct Guess 3”).
Step 3: The research team reviewed simulation results

while also considering feasibility and cost of implemen-
tation. A priori, we intended to prioritize outcomes in
the following order: unpredictability, balance, equiva-
lence on stratification variables, and equivalence on
other covariates. Based on the research team’s experi-
ences on prior studies that implemented stratification
with permuted blocks for randomization, this was our
default choice. We anticipated that an alternative pro-
cedure would need to demonstrate substantial improve-
ments in terms of balance and equivalence to justify
their increased complexity.

Results
Table 2 displays simulation results with respect to bal-
anced sample size across cells. As expected, simple
randomization and MSB performed poorly with average
difference between minimum and maximum cell sample
sizes of 15.3 and 9.2, respectively. Stratification with per-
muted blocks was similar to MSB, with an average dif-
ference in 9.1 participants between the largest and
smallest cell sizes. As expected, the MTI procedure led
to improved balance, with cell size ranges hovering
closely around the pre-determined maximum tolerated
imbalance values. Minimization resulted in the best bal-
ance, with an average cell size difference of only 1.9.
Note that with a planned sample size of 304, the optimal
sample size was 19 participants per cell (and a range of
cell sizes of 1 was not mathematically possible).
Table 3 displays simulation results regarding equiva-

lence on the two binary stratification covariates (SCs)
that were related to strata in the stratification with per-
muted blocks procedure, as well as the other six binary
minimization covariates (MCs). As expected,
minimization performed best, with no significantly dif-
ferent covariates across cells in all 250 simulations.
Stratification with permuted blocks performed well on

the two SCs, but had an average of 30.8% of the add-
itional minimization covariates with statistically signifi-
cant differences across cells. MSB also performed
relatively well on the two strata-related covariates, but
did not scale well to sixteen cells with eight covariates,
resulting in an average of 37.8% of the MCs with a sta-
tistically significant difference. Simple randomization
and the MTI procedures performed worst across both
SCs and MCs.
With regard to unpredictability, simple randomization

was best by definition, with 100% random assignment to
one of 16 cells. For stratification with blocking, blocks of
16 and 32 participants suggest that 15/16 = 94% and 31/
32 = 96.9% involved at least some degree of random as-
signment depending on block size. Results were consist-
ent with this, with 4% of deterministic guesses to one
cell. For MTI2 and MTI3, 5.9% of assignments were de-
terministic, requiring use of the big stick. MSB and
minimization procedures performed worst in terms of
proportion of deterministic assignments, with 20 and
34% deterministic assignments, respectively Table 4.
Regarding correct guess based on knowledge of smal-

lest cell size (Correct Guess 1), MTI with a pre-specified
value of 2 performed the most poorly, with a 19.2%
chance of guessing an assignment to an exact cell cor-
rectly. The MTI3, Minimization, and MSB procedure re-
sulted in only slightly better guessing results, ranging
between 18.2 and 15.5%. Stratification with permuted
blocks and simple randomization performed best with
the lowest proportion of correct guesses to a single cell.
Given knowledge of the factor level with the smallest
combined cell sizes (Correct Guess 2), results across
procedures ranged between 50 and 60%, with simple
randomization performing best (50.1%) and MTI2 per-
forming worst (58.6%). When knowledge of equivalence
of one covariate across cells was added to the best
guesser’s knowledge (Correct Guess 3), the differences
across the procedures further narrowed (Simple
randomization = 50.0%, MTI2 = 51.3%) Table 5.
Regarding cost and complexity, the study team’s pri-

mary question was whether the benefit of an alternative
procedure to stratification with permuted blocks, which
was the first procedure under consideration due to pre-
cedent [20] and past experiences of the research team,
was worth the added cost of implementation. In our
case, this cost required creation and ongoing use of a
web-based form to determine study participant assign-
ment. Such a form would require functionality not avail-
able in our primary database (RedCap), and thus a
customized solution. Given that a co-investigator on the
study had the coding skills and content knowledge to
create such a form, it was decided that if one procedure
stood out as superior, then it was worth using this co-
investigator’s time for these purposes.

Table 2 Sample size balance: Differences in 16 cell sizes across
250 simulations

Min Max Range

Simple randomization 11.8 27.1 15.3

Stratification with permuted blocks 14.5 23.6 9.1

MTI2 18 20.9 2.9

MTI3 18 21.4 3.4

MSB 15.2 24.4 9.2

Minimization 18.0 19.9 1.9

Note. Min =Mean minimum cell size, Max =Mean maximum cell size
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Discussion
In step 3, the research team agreed that while simple
randomization was the clear winner on unpredictability,
the need for balance and equivalence across the sixteen
cells required a different procedure. Regarding cell size
balance, MTI2 and minimization performed best, with
an average difference of 2.9 and 1.9 participants between
the smallest and largest cells, respectively. Given the
study team’s preference for sample imbalance no greater
than 2, these findings resulted in a preference for one of
these two methods. In regard to equivalence, minimization
was the only procedure that resulted in no statistically sig-
nificant differences of covariates assigned across cells. Al-
though the minimization procedure resulted in 34%
deterministic allocations, it performed similarly to other
procedures on the proportion of correct guesses. Overall,
likelihood of guessing correctly based on varying levels of
knowledge did not vary greatly across the various proce-
dures (e.g., range of correct factor guesses with knowledge
of level sample size and covariate ranged from 50 to 51.3%).
Despite controversy regarding the use of minimization in

randomized trials [22, 27, 28], the research team decided that
the minimization procedure with a random element was a
methodologically sound option for their MOST optimization
trial that used a factorial experimental design. The team cited
several reasons to support this decision. First, the large num-
ber of cells that are possible in a factorial experiment in-
creases complexity and creates opportunities to easily

incorporate randomness into the minimization algorithm
(i.e., by breaking ties), thus at least partially countering the
primary critique that minimization is completely determinis-
tic. In our case, we also found that minimization was most
successful in achieving the combination of both balance and
equivalence across a large number of covariates, while main-
taining an acceptable probability of guessing correctly with
varying levels of knowledge considered in the guess. It is im-
portant to note that the research team was satisfied with a
rate of 34% deterministic allocations both because of the cor-
rect guess results and because of the degree of equipoise in-
herent in their study design, which offers little reason to
favor any one cell over another. Such a trade-off may not be
acceptable in the context of other research studies.
Factorial design researchers who are less concerned

with the possibility of significantly different levels of a
few covariates, and more concerned with the proportion
of deterministic allocations, may reasonably opt for an
MTI procedure or stratification with permuted blocks
based on our findings. Lastly, minimization, along with
MTI and MSB, proved more difficult than the other pro-
cedures to implement in practice.
Notably, the advantage of minimization over MTI with

respect to equivalence across covariates was observed in
a limited set of variables, all of which were included in
the minimization procedure. We did not consider equiva-
lence on covariates not included in the minimization
procedure, so the relative advantage of MTI versus

Table 3 Number of stratification and minimization covariates with a statistically significant difference across cells in 250 simulations

Number of SCs with statistically significant differences Ave.
% of
SCs

Number of MCs with statistically significant differences Ave.
% of
MCs

0 1 2 0 1 2 3 4 5 6

SR 92.4% 7.2% 0.4% 8.0% 67.6% 27.6% 4.8% 0.0% 0.0% 0.0% 0.0% 37.2%

SPB 99.6% 0.0% 0.4% 0.8% 72.4% 24.4% 3.2% 0.0% 0.0% 0.0% 0.0% 30.8%

MTI2 91.2% 7.2% 1.6% 10.4% 68.4% 24.4% 7.2% 0.0% 0.0% 0.0% 0.0% 38.8%

MTI3 92.0% 6.4% 1.6% 9.6% 66.4% 24.8% 8.0% 0.8% 0.0% 0.0% 0.0% 43.2%

MSB 95.6% 4.0% 0.4% 4.8% 69.2% 26.0% 3.6% 0.8% 0.4% 0.0% 0.0% 37.2%

Min. 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Note. SR = simple randomization; SPB = stratification with permuted blocks; MTI = maximum tolerated imbalance; MSB =minimal sufficient balance; Min. =
minimization; SC = stratification covariate; MC =minimization covariate

Table 4 Proportion of allocations that are deterministic, fully random, or in between

Cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ave. cells

SR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 16.0

SPB 4.2% 4.3% 4.5% 4.5% 4.6% 4.7% 4.9% 5.1% 5.4% 5.4% 5.6% 6.2% 6.9% 7.4% 9.9% 18.2% 10.4

MTI2 5.9% 5.9% 5.9% 5.8% 5.4% 5.0% 4.4% 3.6% 2.9% 2.1% 1.5% 1.0% 0.6% 0.3% 0.1% 49.7% 10.6

MTI3 5.9% 5.7% 5.3% 4.8% 4.2% 3.5% 2.8% 2.1% 1.5% 1.1% 0.7% 0.4% 0.2% 0.1% 0.0% 61.6% 11.6

MSB 19.7% 16.1% 13.2% 10.8% 9.0% 7.4% 5.9% 4.4% 3.0% 2.0% 1.3% 1.1% 0.8% 0.8% 0.6% 3.9% 4.7

Min 34.0% 18.8% 13.7% 10.0% 7.1% 4.6% 2.8% 1.7% 0.9% 0.5% 0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 2.7

Note. 1 cell = deterministic; 16 cells = completely random. SR = simple randomization; SPB = stratification with permuted blocks; MTI = maximum tolerated
imbalance; MSB =minimal sufficient balance; Min =minimization. Ave. cells = average number of cells eligible for randomization per allocation
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minimization in this regard lies beyond the scope of this
paper. Therefore, our results are restricted to cases where
there is only a limited set of known covariates.
For researchers who are planning MOST studies with

factorial designs, we strongly recommend use of com-
puter simulation to test for the optimal randomization
procedure in the study context, with consideration of
more novel methods including MTI, MSB, and
minimization with a randomization element for subject
assignment. In doing so, we suggest following the
process outlined here: reviewing and defining assign-
ment procedures, conducting simulations that estimate
the performance of each procedures in the context of
the study, and reviewing results with the study team to
decide upon the optimal method. In addition to provid-
ing head-to-head comparisons among methods, simula-
tions offer the opportunity to refine algorithms by
reweighting variables and/or introducing randomness to
assignments and then evaluating results.
We note several limitations to the method we propose.

Foremost, the predictive value of simulation results is
only as good as the data on which the simulations are
performed. If datasets used for simulations differ mark-
edly from those collected prospectively, then results may
differ as well. Moreover, although simulations can gener-
ate valuable evidence with regard to three different out-
comes (i.e., randomness, balance, and equivalence),
researchers are still presented with a multi-attribute de-
cision problem. If a researcher anticipates that one
method will be superior to the others on all outcomes
for a study, the most rational choice for this study will
be clear. However, in cases such as ours, in which
minimization is superior with respect to some attributes
(e.g., equivalence and balance) but inferior on others
(e.g., unpredictability and anticipated cost/complexity),
then the best decision will depend on the relative values
researchers place on one attribute versus another.

Conclusions
The MOST framework is gaining increased popularity
and utility to refine multi-component clinical

interventions [29]. MOST optimization trials will often
include testing of multiple intervention components, re-
quire the use of factorial design, and present researchers
with challenges when deciding the most appropriate
subject allocation method. Our findings suggest that
minimization with a random element to break ties is a
promising subject assignment strategy for MOST
optimization trials because it may result in optimally-
balanced sample sizes and covariates across conditions,
while also incorporating unpredictability with elements
of randomization. Furthermore, computer simulations
offer a valuable method for informing choices among
the alternatives of subject assignment procedures.
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