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Abstract

Background: The incorporation of repeated measurements into multivariable prediction research may greatly
enhance predictive performance. However, the methodological possibilities vary widely and a structured overview
of the possible and utilized approaches lacks. Therefore, we [1] propose a structured framework for these
approaches, [2] determine what methods are currently used to incorporate repeated measurements in prediction
research in the critical care setting and, where possible, [3] assess the added discriminative value of incorporating
repeated measurements.

Methods: The proposed framework consists of three domains: the observation window (static or dynamic), the
processing of the raw data (raw data modelling, feature extraction and reduction) and the type of modelling. A
systematic review was performed to identify studies which incorporate repeated measurements to predict (e.g.
mortality) in the critical care setting. The within-study difference in c-statistics between models with versus without
repeated measurements were obtained and pooled in a meta-analysis.

Results: From the 2618 studies found, 29 studies incorporated multiple repeated measurements. The annual
number of studies with repeated measurements increased from 2.8/year (2000–2005) to 16.0/year (2016–2018). The
majority of studies that incorporated repeated measurements for prediction research used a dynamic observation
window, and extracted features directly from the data. Differences in c statistics ranged from − 0.048 to 0.217 in
favour of models that utilize repeated measurements.

Conclusions: Repeated measurements are increasingly common to predict events in the critical care domain, but
their incorporation is lagging. A framework of possible approaches could aid researchers to optimize future
prediction models.

Background
To achieve the maximum predictive performance, the
choice of the underlying statistical model is essential [1].
Conventional methods, e.g. linear or logistic regression
analysis, have been successfully utilized in prediction
models. However, the increasing computational power

and the growing availability of big data facilitates the use
of more powerful and advanced methods [2, 3]. This
may be particularly of importance when repeated mea-
surements of the predictor variables, i.e. sequential or
temporal data, yield additional prognostic value.
Advanced methods to handle these repeated measure-

ments in prediction research have arisen from two dif-
ferent research fields, namely statistics and informatics.
Statistically, methods come from a mathematical basis
and usually explicitly model the associations between
predictor(s) and outcome, whereas the research field of
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informatics and machine learning often utilizes trial-and-
error training processes to implicitly model (all) possible
associations [4]. The rapid emergence of machine learning
models has resulted in a seemingly endless wealth of
models, approaches and accompanying names. In the on-
going search to optimize predictions and incorporate
them in a useful clinical tool, a structured overview could
be of great help to direct further research.
Therefore, this study provides an overview of the cur-

rently utilized approaches to incorporate repeated mea-
surements for multivariable prediction within the setting
of critical care. This setting is chosen because the con-
stant monitoring of critically ill patients leads to wealthy
amounts of sequential data, which could well be utilized to
timely predict and thereby identify clinical deterioration.
This allows for timely, potentially life-saving interventions.
More specifically, we (1) propose a framework for the

possible approaches to incorporate repeated measure-
ments in prediction research in the critical care setting,
(2) determine what methods are currently used and (3) as-
sess the added prognostic performance of these methods

as compared to methods which do not incorporate re-
peated measurements.

Methods
First, the different approaches and steps to incorporate
repeated measurements of the independent variables are
graphically visualized in the proposed framework (Fig. 1).
This framework was based on the authors’ and several
expert opinions. The proposed framework consists of
three domains: (A) the observation window used, (B) the
data processing phase and (C) the modelling phase in
which predictions are made.

Proposed framework – observation window
The observation window is defined as the time window
of measurements which are used to make predictions.
Depending on the aim of the study, a static or dynamic
observation window can be used. Static refers to a fixed
time window to make a single prediction, whereas the
dynamic observation window refers to the use of mul-
tiple observation windows for multiple time-varying

Fig. 1 Proposed framework for the sequential steps in the incorporation of repeated measurements in multivariable prediction. This Figure shows the
proposed framework in which approaches and steps to incorporate repeated measurements in prediction research are shown. The framework consists
of three domains: the observation window used to make predictions (static or dynamic), the processing of the raw data (raw data modelling, user-
defined or data-driven, feature extraction and feature reduction) and explicit or implicit modeling using fixed or time-varying covariates
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predictions, i.e. repeated predictions at multiple time
points. An example of the use of a static observation
window can be found in the prediction of (in-hospital)
mortality using the first 24 h of collected physiological
data at the Intensive Care Unit (ICU) [5, 6].
Dynamic observation windows are often used for dif-

ferent prediction aims, such as the timely recognition of
an adverse hypotensive event during ICU admission [7].
This requires multiple predictions at different time points.
The actual observation window used for these dynamic pre-
dictions differs per study, probably according to the clinic-
ally hypothesized value of the repeated measurements for
the prediction purpose at hand. If it is expected that only
data from the last 6 h before the time of prediction is rele-
vant to predict the outcome, a sliding time-window may be
used, in which only the measurements 6-h prior to the pre-
diction time are used [8]. However, if one would reason
that all cumulative data is important to predict ICU-
mortality, all available aggregate data at each time point
could be used. The situation in which multiple models are
fit at various ‘landmark times’ using all available informa-
tion up to the time of prediction, is also commonly referred
to as landmark models [9]. Another possibility is to use a
continuous modelling strategy that uses every timepoint
and outputs a prediction at every timepoint as well.

Proposed framework – processing phase
For the processing phase, three steps can be distinguished.
First, the raw data can be modelled before features are ex-
tracted for prediction. Possibilities include the fitting of
linear functions, such as linear regression or linear mixed
models, and non-linear functions, such as splines.
The second step is the extraction of (summary) fea-

tures from the raw data, such as the mean, standard de-
viation and the skewness. These features try to capture
certain time characteristics in a summary measure of the
data. Alternatively, features can be extracted from the
raw data modelling step, if this has been performed. For
example, from a mixed model the estimated value and
the slope at a certain time point can be extracted for use
in a Cox proportional hazards model, as is simul-
taneously done in joint models [10]. Also, new features
could be obtained from either previously extracted
features or the raw data, e.g. correlation measures [11].
A third step is the reduction of the numbers of fea-

tures to be used in the model, in order to prevent over-
fitting or reduce the computational burden of the model.
This can be done in multiple ways, using methods such
as penalized regression or principal component analysis.

Proposed framework – modelling phase
The eventual modelling can be achieved through the use
of either two-step or end-to-end modelling, wherein
two-step refers to the use of user-defined raw data

representations and predictors and/or time-based corre-
lations as explicit input for the prediction model. The
two-step models have been further divided into models
which use fixed covariates, such as logistic regression,
and models which allow the covariates to change over
time (time-dependent Cox regression or joint models)
[10, 12]. The models with fixed covariates can also be fit
multiple times (e.g. in time-slicing/landmarking), but then
at each prediction time the fixed covariates are modelled
again in a different risk set, as opposed to allowing the co-
variates to change within the model [8]. End-to-end mod-
elling is distinguished from two-step modelling in that the
model uses only the raw timepoint as an input and jointly
optimises both pattern discovery and prediction internally
[13]. An example of this is the recurrent neural network, a
deep learning network which uses loops to pass informa-
tion from one step to another in the network [14].

Systematic review - identifying currently used methods
To identify currently used methods to incorporate
repeated measurements in multivariable prediction
research in the critical care setting, we subsequently
performed a systematic review. The protocol for this
systematic review can be found at PROSPERO (protocol
number: CRD42018093978).

Systematic review - information sources
Two independent researchers (JP and RL) performed a
comprehensive literature search in multiple electronic
databases (Medline and Embase). All publications up to
23.05.2018 were searched. The following keywords were
used: (“repeated measurements” AND “Prediction” AND
“critical care unit”) AND “Predictive performance”, and
synonyms and Mesh Terms of those [see Additional file
1 for all search terms]. Disagreements were resolved via
consensus or consultation of a third independent re-
viewer (RE). All full texts were screened by one author
(JP), while a random subset (10%) was assessed by
another author (RL): Cohen’s kappa’s coefficient was
obtained to measure the inter-rater agreement.

Systematic review - study selection
As inclusion criteria for full text review the following
terms were used: (1) published in English or Dutch and
(2) reporting upon multiple measurements per patient at
the ICU (or Intermediate Care Unit (IMCU) or cardio-
logic care unit). Excluded were articles which used re-
peated measurements to predict prediction errors of a
diagnostic device (e.g. in glucose monitoring), or to pre-
dict the response (rise in blood pressure) of a fluid bolus
challenge in (hypovolemic) patients or focused on post-
surgery patients only. The rationale for these exclusions
is that these studies are more on the diagnosis domain
(diagnostic advice, fluid response yes/no) or resemble a
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specific condition entity (post-surgery) as opposed to
general critical care admissions.
Studies which did report to have used repeated mea-

surements, but did not incorporate these repeated mea-
surements into their prediction model were denoted as
‘single-timepoint models’, e.g. models that used only the
last available measurement, and excluded during full text
review. Studies that incorporated only one repeatedly
measured predictor were also excluded. The rationale
for the exclusion of the latter studies was that univa-
riable prediction reflects a different prediction problem,
in which usually the possible predictive value of one pre-
dictor (e.g. a biomarker) is assessed. This stands in con-
trast with the multivariable prediction problem, where
as much information is used as possible to optimize the
predictions. Also, conference abstracts were excluded if an
accompanying conference paper could not be found at the
electronical databases or via Google and Google Scholar.
Studies were included in the meta-analysis (1) if they

compared an analysis which incorporated repeated
measurements with a single-timepoint regression ana-
lysis, i.e. an analysis in which they did not incorporate
repeated measurements, (2) if a c-statistic could be
obtained and (3) if the results were internally validated
(i.e. with bootstrapping, k-fold cross validation or a split-
sample approach).

Systematic review - data collection
The data from all articles was extracted using a stan-
dardized data extraction form. Data collected were: year
of publication, inclusion criteria, sample size used, deter-
minants measured at baseline, determinants repeatedly
measured, primary outcome definition, number of events
(if dichotomous outcome), statistical analyses performed,
internal validation methods, reported performance
measures, and the performed comparative statistical
analyses, if applicable.
If the primary analysis resulted in multiple similar per-

formance measures (e.g. c-statistic at different prediction
times), the optimal measurement was extracted as we
hypothesized that articles which did report only a single
performance measure were also likely to report their op-
timal performance [15]. As reported performance mea-
sures, we chose to extract the c-statistic (discrimination)
and observed to expected ratio (O:E ratio, calibration)
[16]. If these measures were not reported, we tried to
obtain these performance measures, using related
measures as described by Debray et al. [16].

Systematic review - risk of bias
The risk of bias of prognostic modelling studies could be
assessed using the Prediction model Risk Of Bias Assess-
ment Tool (PROBAST), which is a tool to assess the risk
of bias and applicability concerns of prediction model

studies [17]. However, this was not done here because
the comparison of interest (i.e. models with versus with-
out repeated measurements) is methodological, and fo-
cuses on the analytical comparison within studies.
Furthermore, the PROBAST statement is designed for
clinical studies and thus focuses on assessing the risk of
bias for the intended use and target population of a
model, both issues which are not very relevant for this
study. However, to reduce the bias in included studies,
we chose to exclude studies which did not internally
validate their prediction models.

Systematic review - summary measures
The main measures of interest were the discriminative
performance and the calibration of the model, although
measures concerning the calibration (e.g. O:E ratio or
calibration slope) were too rarely reported to be used in
this study. Therefore, we only obtained summary mea-
sures of the discriminative performance (c-statistic). The
c-statistic is similar to the area under the receiver oper-
ating curve, which is a graphical illustration of the false
positive rate versus the true positive rate at each possible
threshold. It can be interpreted as the probability that a
random diseased subject is correctly rated with greater
suspicion than a random non-diseased subject [18].
If uncertainty around the c-statistic was not reported,

this was approximated with the following formula:

Var logit cð Þð Þ ≈
1þ s�

1−c
2−c

þ t�
c

1þ c

� �

stc 1−cð Þ ;

where s is the number of observed events, t is the total
of non-events, and s� ¼ t� ¼ 1

2ðsþtÞ−1 [16, 19].
To assess the change in c statistic due to the incorpor-

ation of repeated measurements in the analysis, the
within-study difference in c-statistics was required. The
mean change was simply obtained by subtracting the
mean of the single-timepoint model from the mean of
the repeated measurements model. However, the
variance of this change depends upon the variances of
the c-statistics of both the models and the covariance of
their related c-statistics.

Var diffð Þ ¼ Var c1ð Þ þ Var c2ð Þ−2�Cov c1; c2ð Þ
where diff is the mean difference, c1 is the c-statistic of
the 1st (repeated measurements) model and c2 the
c-statistic of the 2nd (single-timepoint) model [20].
As this covariance (or the very similar correlation) be-

tween these c-statistics is not reported in current articles
and, to our knowledge, has not been studied before, this
covariance was estimated using a simulation on a previ-
ously published dataset in the critical care setting [21]. In
this simulation, the resulting covariance between the
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bootstrapped (n = 200) c-statistic from a single-timepoint
model (5 variables at time of prediction) and the c-statistic
from a repeated measurements model (same variables plus
their means over the entire observation window) was
0.0097 (correlation 0.72). More detail with respect to this
simulation can be found in Additional file 2.

Meta-analysis - synthesis of results
Although summary measures of within-study differences
could theoretically be pooled to assess the added prog-
nostic performance of incorporating repeated measure-
ments in multivariable predictions, we chose not to do
to this for two reasons. First, the predicted outcome dif-
fers, which means that the possible achievable c-statistic
differs per study. Therefore, for some studied outcomes it
will be difficult if not impossible to increase the c-statistic
with the incorporation of repeated measurements. Second,
the statistical heterogeneity between the studies, measured
with the I [2, 22], was too high to warrant pooling of the
results. The I [2] describes the percentage of variation
across studies that is due to heterogeneity rather than
chance, and can be calculated as follows:

I2 ¼ 100%x Q−dfð Þ=Q

where Q is Cochran’s heterogeneity statistic and df the
degrees of freedom [22]. Cochran’s heterogeneity
statistic can be calculated as follows:

T ¼ k k−1ð Þ
Pk

j¼1 X ∘ j− N
k

� �2
Pb

i¼1Xi∘ðk−Xi∘Þ

where k is number of treatments, X∘j is the column total
for the jth treatment, b is the number of blocks, Xi∘ is the
row total for the ith block, N is the grand total [23].
All statistical analyses were performed using R software

for statistical computing version 3.3.2 [24]. with the
additional packages “metamisc” [25] and “forestplot” [26].
Where applicable, the reporting of this article follows
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (Additional
file 3) [27].

Results
Study selection
From 2618 titles and abstracts, 343 articles were selected
for full-text review (Fig. 2). Upon full text screening, there
were 47 studies which did not match domain or determin-
ant: although these studies should have been excluded in
the title/abstract screening, we were not always able to ob-
tain the required information (e.g. repeated measurements
or not) from the title/abstract screening.
Of all eligible full text articles which reported on having

repeated measurements (n = 177), 97 (54.8%) studies did

not incorporate these repeated measurements in their pre-
diction models. From the 80 other studies, 51 (63.4%)
studies only reported having one repeatedly measured pre-
dictor, while 29 studies incorporated multiple repeated
measurements. Cohen’s kappa coefficient for the full text
sample screening was 0.76, while no extra studies were
included after joint discussion of the disagreements.

Study characteristics
An overview of the study characteristics can be found in
Additional file 4. Figure 3 shows the annual number of
all studies with repeated measurements in the critical
care setting. This includes all studies which mentioned
the use of repeated measurements (i.e. studies with
single-timepoint models (n = 97), univariable repeated
measurements studies (n = 51) and the multivariable
repeated measurements studies (n = 29)).
The annual number of all studies which mentioned

the use of repeated measurements increased from 2.8/
year (2001–2005) to 16.0/year (> 2015). The annual
number of studies which did not incorporate these mea-
surements in their analysis (single-timepoint studies) in-
creased from 1.8/year (2001–2005) to 9.6/year (> 2015).
The annual number of studies that did incorporate these
measurements in their multivariable analysis increased
from 0.2/year (2001–2005) to 3.2/year (> 2015). The an-
nual number of studies that incorporated a single repeat-
edly measured predictor in their analysis increased from
0.8/year (2001–2005) 3.2/year (< 2015).
The outcome of interest in the majority (n = 10) of stud-

ies was hospital- or ICU mortality [28–37]. Other outcomes
were the occurrence of sepsis [38, 39] or septic shock [40],
the need for dialysis [41], the need for specific clinical inter-
ventions (e.g. vasopressor use) [42], transfer out of the ICU
[11], transfer from the IMCU to the ICU [43], spontaneous
breathing after breathing trial [44], recovery status (clinic-
ally assessed) [45], acute hypotensive event [7, 46, 47], car-
diac arrest [48], long-term neurological outcome [49–51],
length of ICU stay [8], delayed cerebral ischemia [52], de-
pressed left-ventricular ejection fraction [53].
This Figure shows the annual number of studies with

reported measurements in the critical care setting. A de-
picts annual averages of all studies and B depicts annual
averages of the studies per type of analysis performed, in
which single-timepoint studies do not incorporate the re-
peated measurements, univariable studies incorporate just
one repeatedly measured variable and the included studies
incorporate repeated measurements of multiple variables.

Overview of approaches to include repeated
measurements
From this, it follows that 9 studies used a static observa-
tion window and 20 studies used dynamic observation
windows. The raw data was modelled in 5 studies, with
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either autoregressive modelling [42, 44, 45] or linear
regression [7, 47].
The most frequently mentioned extracted features

were the mean (n = 11) [7, 11, 28, 32, 34, 37, 38, 47, 48,
52, 53], median (n = 5) [7, 37, 43, 47, 49], standard devi-
ation or variance (n = 4) [7, 30, 37, 47], maximum (n = 4)
[30, 31, 34, 43],, linear regression slope (n = 3) [7, 47,
48], delta change (n = 3) [11, 35, 38], skewness and
kurtosis (n = 3) [7, 37, 47], minimum (n = 2) [34, 43],
interquartile range (n = 2) [7, 47] and variability [49, 52].
Several other features were also mentioned by the in-
cluded studies, such as intervals [49], frequency-domain
analysis [49], correlations [49], relative energy [7, 47]
and in a study using EEG data alpha-to-delta, signal
power, Shannon entropy, delta coherence, regularity,
number of bursts/min and burst correlation [51].
To extract features which describe the relation between

already extracted features, various methods were described:

multidimensional correlation analysis [11, 38], association-
rule mining [29], sequence patterns of categorized variables
[32, 36, 40], convolutional dictionary learning [52], the
ratio between means in sequential periods [48], the number
and duration of categorical variables under/above a pre-
defined threshold [8, 33, 50] and cross-correlation patterns
between multiple repeated measurement trends [7, 47].
Feature reduction is most often realized through uni-

variable selection (also referred to as ‘univariate’ selection),
which statistically tests the relationship between one inde-
pendent variable and the outcome, e.g. by the student’s t
test (n = 10) [11, 28, 35, 38, 44]. Various other methods
have also been described (n = 6) [7, 29, 40, 47, 48, 52].
Lastly, a vast array of two-step modelling methods and

three end-to-end modelling methods have been de-
scribed: the long short-term recurrent neural network
[39], the echo-state network [41] and fuzzy rule-based
modelling [53]. Of the two-step models, the logistic

Fig. 2 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for study selection [27]
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regression (n = 8) [8, 28, 33, 35, 36, 43, 44, 50] was most
frequently used. No two-step models with time-varying
covariates, e.g. time-varying Cox regression and joint
models, were utilized in this clinical setting. It should be
noted that the choice of the eventual model is also
dependent upon the type of outcome (e.g. binary, time
to event or continuous).

Application of the model
As an example, Cancio et al. assessed the value of arterial
blood gas (ABG) in the prediction of mortality after burn
injury, using data (n = 162) collected during the first 2 days
of admission [28]. They used a static observation window
and extracted the mean of all measured ABG values. Fur-
ther, reduced their features via univariable selection and,
finally, applied logistic regression. This framework shows
the arbitrary decisions they made in each step. Some deci-
sions may be fixed to answer their research question
(static observation window) or fixed due to the data (small
sample should lead to two-step modelling). Decisions in
other steps though, such as the use of different summary
features (e.g. change in ABG values) and another (or no)
feature reduction method, could have improved the
predictive value of their model.
On the other hand, Kam et al. sought to timely predict

sepsis in intensive care unit patients, utilizing a long
short-term recurrent neural network [39]. Due to this
research question and sufficient data they were able to
choose for a dynamic (almost continuous modelling)
observation window and end-to-end modelling. This
framework shows that, aside from the choice of dynamic
window (e.g. 3-h, measurements per minute) and the

specifications of the LSTM RNN no other arbitrary
choices need to be made.

Performance of analyses with and without repeated
measurements
The within-study differences in c-statistics (and their con-
fidence interval) of studies which reported upon analyses
with and without incorporating repeated measurements
are shown in Fig. 4. In all studies, single-timepoint logistic
regression was used as a comparison analysis. Further-
more, internal validation was performed via cross-
validation [37, 38, 49, 50, 53], bootstrapping [35, 36] or
split-sample [11, 37, 39, 48]. One study was excluded from
this analysis, as it did not use any validation method [42].
The statistical heterogeneity, as measured by the I [2], was
87.73%. No summary measures were obtained due to
reasons outlined in the methods section.

Discussion
This study illustrates that repeated measurements are in-
creasingly common in the critical care setting, although
their incorporation in prediction modelling is lagging.
To provide insight into the use of repeated measurements,
a structured overview of possible and currently utilized ap-
proaches is provided. This framework could aid researchers
with repeated measurements data in their decision-making
to optimize future prediction models, as this likely
increases the discriminative performance of the models.
These results are in line with a recent systematic review

on electronical health care records, which also found that
the amount of studies with repeated measurements is in-
creasing [15]. This same study also supports the finding

Fig. 3 Annual number of studies with repeated measurements. This Figure shows the annual number of studies with reported measurements in
the critical care setting. Figure a depicts annual averages of all studies and Figure b depicts annual averages of the studies per type of analysis
performed, in which single-timepoint studies do not incorporate the repeated measurements, univariable studies incorporate just one repeatedly
measured variable and the included studies incorporate repeated measurements of multiple variables
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that the majority of studies do not incorporate the longi-
tudinal aspect of their data (61%) [15]. Possible reasons
for the failure to implement repeated measurements could
be (1) the increased complexity of methods which incorp-
orate repeated measurements, (2) uncertainty about their
potential benefits, (3) the decreased interpretability of
such methods or (4) the lack of added clinical value of
complex models, because these models cannot easily be
implemented into clinical practice.
Our study extends the current knowledge of repeated

measurements approaches by providing a structured over-
view of the possible and the currently utilized methods in
the critical care setting. Although multiple comparisons of
methodological approaches have been performed, these
(primary) studies have all used arbitrarily chosen methods
as opposed to a structured literature review [54, 55]. How-
ever, this framework is based upon experts’ opinion as
opposed to an overall consensus, which means that its
structure may be debatable. Even so, the rapid increase in
use of methods to incorporate repeated measurements
asks for a harmonization of nomenclature.
From the currently used approaches it follows that the

focus in the critical care setting is mainly on prediction
with a dynamic time window, in which features are
extracted and used in fixed-covariate models. This may be

due to acquaintance with such (commonly used) models,
as this group of models is also widely used in situations
without repeated measurements. A very similar emphasis
on these (fixed covariate) models was observed in the Phy-
sionet challenge 2012 on ICU-mortality prediction [56].
The utility of the proposed framework lies in the

categorization in the different steps of the (desired) ap-
proaches towards incorporating repeated measurements.
This provides valuable insights into the vast array of
possible approaches and methodologies, facilitates in
choosing the approach and helps in the comparison
between different approaches and models. Therein it can
aid medical, epidemiological, artificial intelligence engi-
neers and statistical researchers who wish to perform
predictions with repeated measurements or aid those
who read and assess such studies. Which approach is
the best, is very dependent upon the data and research
question at hand, and should be analysed through
internal (or external) validation.
Further research should focus on the ongoing compari-

son of the different types of approaches to incorporate
repeated measurements, through comparative cohort- or
simulation studies using different models and reporting on
both the discrimination and calibration. The step thereafter
would be to see whether the implementation of such

Fig. 4 Comparison between analyses which do and do not include repeated measurements. This Figure shows the difference in within-study c-
statistics (confidence interval) of studies which reported analyses both with and without the incorporation of repeated measurements.
Abbreviations: rep = repeated measurements analysis; cs = single-timepoint analysis; no. var. = number of variables in the model
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models truly increases patient outcome. Also, a more com-
prehensive simulation study would enhance our knowledge
and understanding of the correlation between models with
repeated and without repeated measurements.
This study has multiple strengths. First of all, it is (to

our knowledge) the first to present a structured overview
of possible and utilized approaches to incorporate
repeated measurements. Also, its focus is on the critical
care domain, a clinical domain where a wealth of repeat-
edly measured data from electronical health care systems
and monitors is available, with the potential to truly sup-
port decision-making and increase patient safety [57].
Therefore it is likely that most modelling advancements
will initially be developed and implemented in this set-
ting, which makes the identification of the current focus
in this setting highly relevant.
The limitations of this study are that the proposed

structured framework is based upon experts’ opinion as
opposed to an overall consensus. Further, the critical
care domain is only one clinically domain where re-
peated measurements are used and therefore we might
have missed (novel) methods in other domains, particu-
larly those which use less-frequently sampled data, e.g.
annually collected data from multiple clinical visits [58].
However, we have no reason to assume that the frame-
work reported here would not apply to this kind of data.
Another important limitation is that the focus of the lit-
erature search was on studies which reported measures
of discrimination or calibration in their abstract, while
these measures are not necessarily mentioned in the ab-
stracts of studies which utilize repeated measurements
for prediction purposes in this setting. This may mean
that our findings are not comprehensive, but it seems
unlikely that the approaches in the studies which do not
report the calibration or discrimination fall outside this
proposed framework.

Conclusions
Repeated measurements are increasingly common to
predict events in the critical care domain, but their in-
corporation in current prediction models is lagging.
Therefore, a framework of possible and currently utilized
approaches is provided. This could aid researchers with
repeated measurements data to optimize future predic-
tion models and thereby improve patient outcome.
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