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Abstract

develop a prediction model for bronchitic symptoms.

and parent stress.

support targeted prevention efforts.

Background: Chronic respiratory symptoms involving bronchitis, cough and phlegm in children are underappreciated
but pose a significant public health burden. Efforts for prevention and management could be supported by an
understanding of the relative importance of determinants, including environmental exposures. Thus, we aim to

Methods: Schoolchildren from the population-based southern California Children’s Health Study were visited annually
from 2003 to 2012. Bronchitic symptoms over the prior 12 months were assessed by questionnaire. A gradient
boosting model was fit using groups of risk factors (including traffic/air pollution exposures) for all children and by
asthma status. Training data consisted of one observation per participant in a random study year (for 50% of
participants). Validation data consisted of: (1) a random (later) year in the same participants (within-participant);

(2) a random year in participants excluded from the training data (across-participant).

Results: At baseline, 13.2% of children had asthma and 18.1% reported bronchitic symptoms. Models performed
similarly within- and across-participant. Previous year symptoms/medication use provided much of the predictive
ability (across-participant area under the receiver operating characteristic curve (AUC): 0.76 vs 0.78 for all risk factors, in
all participants). Traffic/air pollution exposures added modestly to prediction as did body mass index percentile, age

Conclusions: Regardless of asthma status, previous symptoms were the most important predictors of current
symptoms. Traffic/air pollution variables contribute modest predictive information, but impact large populations.
Methods proposed here could be generalized to personalized exacerbation predictions in future longitudinal studies to

Keywords: Bronchitic symptoms, Air pollution, Machine learning, Gradient boosting model, Prediction model

Background

Pediatric bronchitic symptoms, especially among
children diagnosed with asthma, have been underappre-
ciated and understudied [1-3] and pose a significant
clinical and public health burden, with substantial
clinical costs, loss of quality of life, and school absences
[4—6]. Reliable prediction of chronic respiratory symp-
toms and an understanding of the relative importance of
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determinants would support prevention efforts, particu-
larly amongst children with asthma who are at the
greatest risk [6].

Previous studies have identified environmental and
clinical risk factors for respiratory symptoms and exacer-
bations [1, 2, 6-9]. For example, ambient air pollution
and traffic-related air pollution near busy roads (concen-
trations of traffic pollutants: particulate matter, black
carbon, total nitrogen oxides (NOx), and nitrogen
dioxide (NO,)) have been shown to be associated with
asthma exacerbations and respiratory symptoms such as
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bronchitis and wheeze. Other risk factors include
previous medical history, obesity, presence of allergens
(e.g. cockroaches), and exposure to second hand
smoking [6, 7]. The relative importance amongst the risk
factors in predicting bronchitic symptoms has yet to be
established.

There have been relatively few studies that have taken
personalized approaches to predicting exacerbations or
symptoms that incorporate demographic, environmental,
and clinical risk factors. One such study focused on
predicting asthma, wheeze, and eczema using a large
heterogeneous set of attributes in a cross-sectional
population setting [10]. Longitudinal information on
predictors and exacerbations provide stronger causal
evidence. In this study, we aimed to use longitudinal
data from the Southern California Children’s Health
Study (CHS) to predict annual assessments of chronic
bronchitis symptoms using indoor exposures, ambient
air pollution exposures and other susceptibility factors,
and to evaluate the role of traffic/ambient air pollution
in predicting the bronchitic symptoms.

Methods

Study participants

Participants were selected from the most recent CHS
cohort followed from 2003 to 2012 in 13 Southern
California communities. This cohort consists of school-
children recruited from kindergarten and first grade
classrooms in 2003 (baseline year), at ages ~ 5 through
7 years. Baseline and annual follow-up questionnaires
administered to parents (through 2008) and students
(after 2008) collected information on potential risk fac-
tors and our outcome of interest: bronchitic symptoms
over the past 12 months (hereafter referred to as BCP),
which was defined as bronchitis, a daily cough for 3
months in a row, or congestion/phlegm other than when
accompanied by a cold.

Potential risk factors
We developed the following risk factor groupings:

Sociodemographic factors

The baseline questionnaires collected demographic
information, including: age, gender, language of the
study questionnaire (Spanish or English), race/ethnicity
(Hispanic white, non-Hispanic white and other), child’s
health insurance coverage, body mass index (BMI)
percentile, and parent’s education level. Annual BMI
percentile was calculated by applying to Center for
Disease Control age- and sex-specific growth charts [11].

Indoor/home exposures
At baseline, information was collected on the ownership
of any pets (including dogs and cats), housing conditions
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(presence of pests, carpet, mildew, water damage, and gas
stove), and perceived parental stress. Second-hand tobacco
smoke exposure in the home was based on the question
“Does anyone living in this child’s home currently smoke
cigarette, cigars or pipes on a daily basis inside the home?”
that was included in the annual questionnaire.

Traffic/air pollution exposures
Outdoor concentrations of particulate matter of less
than 2.5um in aerodynamic diameter (PM,gs ug/m?)
and 10 um (PM;, pg/mg), nitrogen dioxide (NO,, ppb),
and ozone (Os, ppb) were measured at central sites in
each of the 13 communities. Community-specific annual
averages of the 24-h PM;,, PM,, nitrogen dioxide, and
of the 10 AM to 6 PM averages of ozone were calculated
based on these air pollution monitoring stations.
Traffic-related pollution exposures were estimated
using CALINE4 line-source dispersion model based
estimates at the residence. CALINE4 freeway NOx and
non-freeway NOX, estimated on an annual average, was
selected as a surrogate for the complex mixture
traffic-related pollution.

Symptoms/medication use

Annual questionnaires assessed the presence of: wheeze,
rhinitis (“in the past 12 months, has your child had a
problem with sneezing or a runny or blocked nose when
he/she did not have a cold or the flu?”), itchy eyes (“...has
this nose problem been accompanied by itchy/watery
eyes”), and any asthma medication use over the prior 12
months. Medication use was assessed based on questions
about any rescue, controller and other medication use for
asthma or wheezing in the last 12 months. Photographic
charts of medications and inhalers were used to collect
information on use of specific medications.

Asthma/eczema

Baseline questionnaires recorded the ever presence of
eczema, asthma status, age of first doctor diagnosis with
asthma (if appropriate), and parents’ asthma status. At
each study visit, asthma status was based on a yes/no
response to the question “Has a doctor ever diagnosed
this child as having asthma?”

Time-varying, annually assessed risk factors were lagged
a study year to allow the previous risk factor value to
predict bronchitic symptoms in the current year. When
the risk factor was missing in the previous year, the pre-
vious value (ie, two study years earlier) was used.
Time-varying risk factors were: height, BMI percentile,
exposure to secondhand tobacco smoke at home, ambi-
ent air pollutants and traffic related pollutants, all symp-
toms and medication use factors, and asthma status. All
records for a child were excluded if that child had a
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missing baseline questionnaire; records from a particular
year were excluded if the child had missing BCP status
or missing questionnaires in the previous two consecu-
tive years.

Statistical analysis

To predict BCP as a function of the potential risk fac-
tors, we used gradient boosting models (hereafter re-
ferred to as GBM), as implemented in the gbm package
in R with a Bernoulli distribution for the binary outcome
[12]. GBM is a machine learning method that combines
a series of simple tree-based models [13]. Since it is
based on trees, GBM has the advantageous features of:
(a) allowing for various levels of interactions by control-
ling the number of splits in each tree (e.g., interaction
depth =1 indicates a tree with 1 split (and no interac-
tions), interaction depth =2 indicates trees with two
splits each) and (b) accounting for observations with
missing data by using a surrogate split method [14]. Un-
less otherwise specified, models had a shrinkage rate of
0.01, at least 10 observations per node of each tree, a
bagging fraction of 0.5, and a training fraction of 0.5.
The initial model consists of 2000 trees. The interaction
depth (between 1 to 4) and optimal number of trees for
the final model was determined using 5-fold cross
validation (CV).

We developed the following approach to train and
validate our prediction models using the available longi-
tudinal data, as illustrated in Fig. 1. For a randomly
selected 50% of study participants, two observations (at
different study years) were randomly selected. Models
were trained on the first of these observations (training
set), using 5-fold cross validation to tune model parame-
ters. Models were then validated using two complemen-
tary holdout test datasets. First, we considered the
second (later) observation from the participants used to
train the model (within-participant test set). Second, we
considered a random observation from the 50% of
participants not included in the training set (across-par-
ticipant test set).

Prediction models were constructed for all participants
and for the subgroups consisting of children ever report-
ing asthma during the study period and those never
reporting asthma. We performed subgroup analysis
because: (1) children with asthma may have different key
risk factors for BCP, (2) the impacts of a given risk factor
may be different (e.g., increased) for children with
asthma as compared to children without, (3) it may be
easier (or harder) to predict BCP in children with
asthma as compared to children without, and (4) poten-
tial differences in underreporting of symptoms between
children with and without asthma may impact a predic-
tion model trained simultaneously to both groups of
children. Models were estimated using all potential risk
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factors and then, separately, using each of the five risk
factor groups. Models for all participants included the
variables: ever diagnosed with asthma and time varying
asthma status (diagnosis of asthma over the prior 12
months) as additional potential risk factors. Models for
children with asthma included age at first diagnosis as
another potential risk factor. In sensitivity analyses, the
subgroup of children without asthma was further
subdivided into children ever reporting rhinitis and
never reporting rhinitis.

We evaluated the predictive ability of a model using
the area under the receiver operator characteristic curve
(AUC) in the training data (using 5-fold CV) and in the
two holdout test datasets. We also calculated the accur-
acy, sensitivity, and specificity for the within- and across-
participant training sets at the optimal threshold on the
predicted probability of bronchitic symptoms that jointly
maximizes the distance to the identity (diagonal) lines in
the cross-validated training data [15]. The accuracy, sen-
sitivity, and specificity were calculated used the following
formulas:

Nrp

Sensitivity = ————, 1
Y Ntp + Npx S
. Ntn
Specificity = ———— 2
p Y = N+ New (2)
Nrtp + Nrn

Accuracy = , 3
Y Ntp + Nex + Ntn + Nep ®)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative [16]. To ensure results
robust to sampling variation, we retrained the GBMs
and calculated the average AUCs and accuracies using
50 different random training sets and their
corresponding holdout test datasets.

To better understand the predictive ability of specific
risk factors in the “black box” GBM, we used relative in-
fluence, a statistic based on the number times a variable
is involved in a split, weighted by the squared improve-
ment of the model as a result of the split [17]. Higher
relative influence values indicate that a variable has
greater predictive ability [18]. For the models with all
potential risk factors, we retrained the models to include
only the top ten risk factors, based on relative influence.
We then visualized the marginal associations of each of
these 10 risk factors with the outcome using partial de-
pendence plots. These plots display the effect of the
given predictor on the outcome after marginalizing out
all other predictors [17]. The correct way to marginalize
out the other predictors is to numerically integrate them
out over a grid of value of the given predictor, which can
be computationally intensive. Thus, the common
approach is to fix the other marginalized predictors to
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Fig. 1 Conceptual division of the longitudinal, participant-level data into a training set and two tests sets (within- and across-participant). This
figure illustrates the Conceptual division of the longitudinal, participant-level data into a training set and two tests sets (within- and across-
participant). Suppose in hypothetical setting, data from 8 participants over 5 years were collected. Out of the 8 participants, a randomly selected
50% of study participants, two observations (at different study years) were randomly selected, which are person 31, 12, 7, and 2. Models were
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trained on the first of these observations (training set), denoted by:

. Models were then validated using two complementary holdout

test set), denoted by V/A

test datasets. First, we considered the second (later) observation from the participants used to train the model (within-participant test set),
denoted by E Then, we considered a random observation from the 50% of participants not included in the training set (across-participant

their sample mean and then calculated the effect of the
given predictor [19]. We retrained the GBMs using 50
different random training sets and we presented the
relative influence of the top ten risk factors (based on
the median relative influence across the 50 training sets)
and displayed partial dependence plots for GBM models
from the first 5 of these random training sets.

Finally, we compared the performance of our GBM
models with a classical logistic regression approach. For
all participants and by asthma status, we developed
logistic regression models that included the main effects
of the top ten risk factors from the GBMs. Binary
risk factors were included using the typical indicator
variable approach and continuous risk factors were
modeled using approaches motivated by the partial
dependence plots (e.g., categorized). We retrained the
logistic regression models using the 50 different
random training sets and calculated the average AUCs
in the corresponding holdout test datasets, and
reported the model estimate using one of the random
training sets.

All analyses were conducted in R version 3.3.2 (http://
www.R-project.org).

Results

The 4548 participants had information available from 2
to 7 visits each (average of 4.9). At baseline, participants
were on average 6.5 years old, approximately half male
(51.1%), and primarily Hispanic White (55.7%). 13.2% of
the participants reported a diagnosis of asthma (Table 1).
The baseline prevalence of bronchitic symptoms was
18.1% overall (36.7% in asthmatics and 11.5% in
non-asthmatics). Of those children reporting BCP at
baseline, 54% also reported BCP at the first follow-up
year. Of those children not reporting BCP at baseline,
12.8% reporting BCP at the first follow-up year.

We constructed GBMs with an interaction depth of 1
because there was little evidence that more complex
trees increased predictive ability (CV AUC was similar
for GBMs with interaction depths from 1 to 4 and
highest for interaction depth of 1, as shown in
Additional file 1: Table S1). As shown in Table 2 and
Additional file 1: Table S2, the set of symptoms/medica-
tion use risk factors yielded GBMs with predictive ability
in terms of AUCs, accuracies, sensitivities and specific-
ities nearly as high as that of the GBM using the set of
all risk factors. The predictive ability of traffic/air
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Table 1 Selected Characteristics of CHS participants with and without a lifetime history of physician diagnosed asthma at study entry®

Variable All participants Asthma No asthma
(N=4548), (N=1199), (N =3349),
Mean (SD) or N (%) Mean (SD) or N (%) Mean or (SD)

(SD) or N (%)

Sociodemographic

Age (Years) 6.5 (0.7) 6.5 (0.7) 6.5 (0.7)
Gender

Male 2324 (51.1%) 695 (58.0%) 1629 (48.6%)

Female 2224 (48.9%) 504 (42.0%) 1720 (51.4%)
Spanish language questionnaire 1148 (25.2%) 207 (17.3%) 941 (28.1%)
Race/ethnicity

Hispanic white 2531 (55.7%) 610 (50.9%) 1921 (57.4%)

Non-Hispanic white 1453 (32.0%) 402 (33.5%) 1051 (31.4%)

Other 564 (12.4%) 187 (15.6%) 377 (11.3%)
Insurance status 3813 (88.2%) 1057 (92.1%) 2756 (86.8%)
BMI percentile 61.1 (29.8) 63.6 (29.4) 60.2 (29.9)

Education level

Less than 12th grade (did not finish high school) 942 (21.9%) 179 (15.6%) 763 (24.2%)
Completed grade 12 (high school) 824 (19.2%) 216 (18.8%) 608 (19.3%)
Some college or technical school 1628 (37.8%) 512 (44.6%) 1116 (35.4%)
Completed 4 years of college 501 (11.6%) 131 (11.4%) 370 (11.7%)
Some graduate training after college 408 (9.5%) 111 (9.7%) 297 (9.4%)
Indoor/home exposures
Any pets at home 2387 (54.6%) 680 (58.9%) 1707 (53.1%)
Any pests at home 2811 (68.0%) 777 (70.4%) 2034 (67.0%)
Carpet at home 4030 (92.6%) 1079 (93.0%) 2951 (92.5%)
Mildew at home 1018 (24.8%) 323 (30.0%) 695 (22.9%)
Water damage at home 602 (14.0%) 185 (16.3%) 417 (13.2%)
Gas stove at home 3701 (85.5%) 989 (86.3%) 2712 (85.3%)
Parental stress” 4129 4129 40 29)
Secondhand smoke exposure 328 (7.5%) 94 (8.1%) 234 (7.3%)
Traffic/air pollution
24-h average: PMyq (ug/m?) 374(123) 376 (117) 373 (12.5)
24-h average: PM, s (ug/m?) 6 (6.5) 18.1 (6.3) 17.5 (6.5)
24-h average: NO, (ppb) 22582 233 (8.1) 222 (82)
8-h (10 am-6 pm) average Os (ppb) 436 (8.7) 442 (83) 434 (8.8)
CALINE4 freeway NOy (ppb) 8 (22.4) 153 (18.7) 15.9 (23.6)
CALINE4 non-freeway NO, (ppb) 56 (47) 55 (44) 56 (4.8)
Symptoms/medication use
Wheeze symptom 641 (14.6%) 500 (43.2%) 141 (4.4%)
Rhinitis (i.e. sneeze/runny nose symptoms) 1458 (33.2%) 622 (53.9%) 836 (25.9%)
[tchy eyes symptoms 843 (19.3%) 370 (32.3%) 473 (14.7%)
Any asthma/wheeze medication use 693 (16.2%) 565 (48.8%) 8 (4.1%)
Bronchitis symptoms 781 (18.1%) 416 (36.7%) 365 (11.5%)
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Table 1 Selected Characteristics of CHS participants with and without a lifetime history of physician diagnosed asthma at study entry?

(Continued)
Variable All participants Asthma No asthma
(N=4548), (N=1199), (N=3349),
Mean (SD) or N (%) Mean (SD) or N (%) Mean or (SD)
(SD) or N (%)
Asthma/eczema
Parent history of asthma 1067 (24.7%) 478 (42.2%) 589 (18.5%)
Lifetime history of eczema 618 (14.6%) 246 (21.9%) 372 (12.0%)
Asthma status® 599 (13.2%) 599 (50.0%) N/A
Age of asthma onset (years) 58 (43) 58 (43) N/A

“The characteristics were taken at the study entry in 2003

PLevels of parental stress were assessed on baseline questionnaire via the four-item version of the Perceived Stress Scale (PSS), a composite stress score ranging

from 0 to 16. Higher stress score indicates higher stress level
“Reported doctor-diagnosed asthma at baseline year

pollution exposures was relatively poor. Specifically, the
average CV AUC:s for all participant models fitted using:
all risk factors, symptoms/medication use, or traffic/air
pollution exposures were: 0.77, 0.75, and 0.52,
respectively. Average AUCs in the models stratified by
asthma status (Table 2) were similar to the average
AUCs obtained from fitting models using data on all
participants and then validating the model by asthma
status (Additional file 1: Table S3).

Relative influence analysis showed that having BCP in
the previous year was the single most important
predictor of current year BCP, overall, and within each
asthma group (Fig. 2). Note that GBMs fit using only lag
BCP had AUCs that were slightly lower than the GBMs
with all predictors, implying that other predictors had
modest predictive ability (Table 2). The average AUCs
from models fit with the top 10 predictors were very
similar to the average AUCs from models fit with all
predictors (Table 2 and Additional file 1: Table S2).
Partial dependence plots (Figs. 3, 4 and 5) indicated that,
regardless of their asthma status, children with BCP in
the previous year were more likely to have BCP in the
current year. The top ten risk factors in both asthmatics
and non-asthmatics also included: BMI percentile, itchy
eyes, wheeze symptoms, age, and traffic/air pollution
predictors (e.g., CALINE4 non-freeway NOx). The par-
tial dependence plots suggested that children previously
reporting wheeze were at increased risk of current BCP.
Children (< 8years old) and older children (> 14 years
old) were also at increased risk. Non-freeway NOx had a
positive association with BCP in all and non-asthmatic
children. The directions of association were less clear
with freeway NOx, BMI percentile, parent stress, and
PM, 5. The results from the same analyses applied to the
non-asthmatic subgroups showed no difference results
from the non-asthmatic group (Additional file 1: Table S4
and Figure S1).

Based on the partial dependence plots for all partici-
pants, and by asthma status, all continuous predictors

were categorized except freeway NOx and education
level for the logistic regression analysis. Specifically,
age was categorized as 0-8, 8-14, and 14+ years old;
BMI percentiles were categorized as 0-95 and 95+;
non-freeway NOx was categorized as 0-7, 7-15, and
15+ ppb; age of asthma onset was categorized at 0-9
and 9+; PM, 5 was categorized as 0—10, 10-20 and 20+
ug/m? parental stress was categorized at 0-7 and 7+;
NO2 was categorized as 0-10, 10-25, and 25+ ppb. Free-
way NOx and education level was included as a continu-
ous variable.

Logistic regression models had similar average test set
AUC to GBM models with the same top 10 predictors
(Additional file 1: Table S5, Figure S2, and Figure S3). Of
the 10 predictors in the logistic regression model for all
participants, asthmatics, and non-asthmatics (all of
which were continuous), the maximum pairwise
Pearson’s correlations were any asthma medication use
and wheeze (R =0.67), age of asthma onset and wheeze
(R=-0.39), and itchy eyes and rhinitis (R =0.68),
respectively. Regression coefficients from the logistic
regression models using one of the random training sets
(Additional file 1: Table S6) should be interpreted with
caution, since they are from prediction models that did
not focus on adjustment for potential confounders and
the covariates included in the models built for all
children, and for children with and without asthma were
different. That said, BCP in the previous year was signifi-
cantly associated with the current year BCP (OR: 3.48
and 95% CI: 2.64—4.58 for all participants; OR: 3.01 and
95% CI: 2.03-4.49 for asthmatics; OR: 3.95 and 95% CI:
2.69-5.79 for non-asthmatics, with different adjustments
for each model). Wheeze symptoms in the previous year
were positively associated with current year BCP (OR:
1.60 and 95% CI: 1.13-2.26 for all participants; OR: 1.78
and 95% CI: 1.18-2.69 for asthmatics; OR: 1.93 and 95%
CI: 1.12-3.28 for non-asthmatics, with different adjust-
ments for each model). Itchy eye symptoms in the previ-
ous year had positive associations with current year BCP
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Table 2 Average area under the receiver operating characteristic curve (AUC) of models fit separately with groups of risk factors for
all participants, asthmatics, and non-asthmatics, for 50 different random training sets and their corresponding holdout test datasets

Risk factor groupings® AUC:  AUC: Across- AUC: Within- participants Across-subject test set accuracy
v participants test set test set at the optimal threshold®
All All predictors 0.77 0.78 0.75 0.74
participants Sociodemographic 0.56 0.56 0.58 0.55
Indoor/home exposures 0.54 0.55 0.56 0.60
Traffic/Air pollution exposures 0.52 0.53 0.52 0.55
Symptoms/medication use 0.75 0.76 0.73 0.75
Asthma/eczema 0.68 0.69 0.67 0.71
BCP (lag 1) only® 0.71 0.68 0.79
BCP (lag 1) and traffic/air pollution 0.71 0.70 0.68 0.79
exposures
Top 10 risk factors 0.77 0.78 0.75 0.75
Asthmatics All predictors 0.70 0.71 0.69 0.67
Sociodemographic 0.52 0.55 0.54 0.52
Indoor/home exposures 0.50 0.54 0.54 0.52
Traffic/Air pollution exposures 049 0.51 0.52 0.51
Symptoms/medication use 0.70 0.71 0.69 0.67
Asthma/eczema 0.54 0.56 0.56 0.50
BCP (lag 1) only® 068 067 068
BCP (lag 1) and traffic/air pollution 0.67 0.68 0.67 0.68
exposures
Top 10 risk factors 0.70 0.71 0.68 0.67
Non- All predictors 0.71 0.71 0.70 0.76
Asthmatics Sociodemographic 0.54 0.55 0.56 049
Indoor/home exposures 0.52 0.54 0.56 0.51
Traffic/Air pollution exposures 0.51 0.52 051 0.57
Symptoms/medication use 0.69 0.70 0.68 0.77
Asthma/eczema 0.55 0.57 0.57 0.71
BCP (lag 1) only® 067 0.64 081
BCP (lag 1) and traffic/air pollution exposures  0.67 0.66 0.64 0.84
Top 10 risk factors 0.71 0.72 0.69 0.75

2Variables in each risk factor grouping are listed in the text

BCross validation was not able to apply to the GBM models with 1 predictor variable. Thus, CV AUC and optimal number of tree based on cross validation were
not produced. The total number of 2000 trees was used in the GBM models with 1 predictor variable
“The optimal threshold was determined by using the predicted probabilities from the cross-validation set

in the non-asthmatic subset (OR: 1.64 and 95% CI:
1.02-2.65). Children living in areas with high levels of
non-freeway NOx [> 15 ppb] were at increased risk of
BCP as compared to those with low levels [<7 ppb]
for all participants (OR: 2.51 and 95% CI: 1.36-4.47),
and in the non-asthmatic subset (OR: 2.26 and 95%
CIL: 1.04-4.63).

Discussion

We used gradient boosting models to build a prediction
model and identify key risk factors for bronchitic symp-
toms in a large cohort of southern California schoolchil-
dren. The best models had moderate discriminative

performance (0.71 < AUC < 0.77), which might be con-
sidered good for our questionnaire-based outcome [20].
In general, previous symptoms—particularly previous
year bronchitic symptoms—were the most informative
predictors. Age, BMI percentile, itchy eye symptoms,
parent stress, and traffic/air pollution risk factors
(CALINE4 non-freeway NOx, and PM, 5) were amongst
the top predictors in models fit by asthma status, and
contributed modest additional predictive information.
No indoor/home exposures were found to be predictive.
The predictive performance of our models was similar in
the within-subject and across-subject test sets which
suggests, somewhat surprisingly, that these prediction
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models would perform similarly if applied to future ob-
servations in these study participants or to data from
new participants.

Our findings on the importance of previous symptoms
align with several previous studies of risk factors for
chronic cough and asthma exacerbations in children.
Forno and Celedon reviewed publications predicting
asthma exacerbations in children and reported that a
history of recent severe asthma exacerbation was a
strong risk factor for subsequent exacerbations, regard-
less of disease severity or use of controller medication
[6, 21-23]. In a 48-week Pediatric Asthma Controller
Trial study with children age 6 to 14years with
middle-to-moderate persistent asthma, a history of an
asthma exacerbation requiring a systemic corticosteroid in
the past year was associated with a subsequent
exacerbation (OR=2.1, p<0.001) [22]. Another study
using administrative claims data from PharMetrics/IMS
Health also confirmed the associations between suboptimal

asthma control and history of recent asthma exacerbations
with subsequent disease exacerbations [24].

Our finding that the top ten predictors included
traffic-related  pollution (CALINE4 freeway and
non-freeway NOx) and regional, ambient PM, 5 is in line
with previous reports that exposure to poor air quality is
associated with bronchitic symptoms in children, but
put these results in context since air pollution effects are
smaller than effects of previous symptoms. Chen et al.
reviewed the findings from the CHS and reported that
children with physician-diagnosed asthma were at higher
risk of developing chronic lower respiratory tract symp-
toms such as bronchitis and phlegm (BCP) if they lived
in more polluted communities [1, 2]. Specifically, yearly
questionnaire based bronchitic symptoms assessment
from 1996 to 1999 were associated with the yearly vari-
ability of particulate matter with aerodynamic diameter
less than 2.5 ug (1.09 pg/m?, CI: 1.01-1.17), NO, (1.07
ppb’ CI: 1.02-1.13), and ozone (1.06 ppb, CI: 1.00-1.12)
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among the cohort of children with asthma in 12
Southern California communities. In a school-based,
cross-sectional study in the San Francisco Bay Area in
2001, traffic-related pollution was associated with
respiratory symptoms in children. Among those living at
their current residence for at least 1vyear, the adjusted
odds ratio for bronchitis in relationship to an interquar-
tile difference in NOx was 1.07 (95% CI, 1.00-1.14) [9].
Another CHS paper also indicates the relationship be-
tween new-onset asthma with traffic-related pollutions
near homes and schools [25]. For example, asthma risk
had a positive association with modeled traffic-related
pollution exposure from roadways near homes (HR 1.51,
95% CI 1.25-1.82) and near schools (HR 1.45, 95% CI
1.06-1.98).

A recent study used several Bayesian network
classifiers to predict the risk of asthma exacerbation in
65 pediatric asthma patients ages 1-14.5, with 2-4
measurements each [16, 26]. Using Backward Sequential

Elimination and Joining algorithm (BSE]), the authors
achieved 93.84% accuracy and 90.9% sensitivity [16, 26].
The predictive performance of this model was better than
we observed with the models in our dataset. Key differ-
ences include that our study was population-based whereas
Spyroglou et al. recruited children from an asthma clinic
who had recent cessation of asthma medication use. The
prevalence of asthma exacerbation in the Spyroglou et al.
study was 14.9%, similar to the prevalence in our study of
BCP for all participants and non-asthmatics (18.1 and
11.5%, respectively), and lower than the prevalence of BCP
amongst asthmatics (36.7%). Spyroglou et al. used only a
within-participant test set to validate their models (held
out the last observation for each participant) whereas we
created within- and between- test sets to validate our
models. Some features of the BSE] algorithm make it less
applicable to our study (e.g., only categorical predictors are
permitted and it is challenging to apply to larger datasets
or datasets with missing data).
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We used gradient boosting model (GBM) to build
prediction models for bronchitic symptoms. As GBM is
comprised of multiple trees, successively constructed to
overweight data that are hard to classify, it overcomes the
biggest drawback of single tree models: their relatively
poor predictive performance. Advantages of GBM include
that it handles different types of predictor variables, it has
a reasonable approach for highly correlated predictors
(assigns importance to one of them, rather than splitting
the importance across the highly correlated variables), is
invariant to monotone transformations of individual
predictor variables, is less sensitive to outliers, accounts
for missing data using surrogate splits, and allows for au-
tomated detection of (potentially high-order) interactions,
nonlinear relations [12-14, 27-29]. For example, for all
participants, the association between non-freeway NOx
and log odds of the current BCP was positive. According
to the partial dependence plots, the association was non-
linear with a drastic increase when non-freeway NOx was
greater than 15 ppb (Fig. 3). The logistic regression with
the categorized non-freeway NOx also confirmed the non-
linearity — children living in areas with high levels of
non-freeway NOx [> 15 ppb] were at higher risk of BCP as
compared to those with low levels [< 7 ppb] for all partici-
pants (OR: 2.51, 95% CI: 1.36—4.47) and the risks of BCP
were lower for children living in areas with medium levels
of non-freeway NOx [>7 ppb and < 15ppb] (OR: 145,
95% CI: 1.10-1.91) (Additional file 1: Table S6).

A disadvantage of GBM (and prediction-driven
machine learning modeling approaches in general) is
that they are constructed under the goal of prediction.
Effect estimates from these models (e.g., our logistic re-
gression based on GBM results) should be interpreted
with caution since the models were not constructed to
account for potential confounders. We used relative
influence and partial dependence plots to attempt to
understand associations of key predictors. There are
some drawbacks of these approaches. Specifically,
one-way partial dependence plots assume no interaction
effects [30]. In our case it was reasonable to consider
only one-way partial dependence plots since our GBM
models only had an interaction depth of 1. To ensure
results were robust to sampling variation, we retrained
the models using 50 multiple random training sets and
evaluated the models using the corresponding test sets.
Finally, we followed up on our GBM results by con-
structing logistic regression models that we found to
have similar predictive performance. The logistic regres-
sion models can be readily applied to new study popula-
tions and clearly quantify the associations of individual
predictors with the outcome.

This study applied machine learning to a longitudinal
dataset, with up to 7 assessments per participant.
Tree-based ensemble methods like random forest and
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GBM usually do not consider the dependency structure
seen in longitudinal data [28]. If the dependency struc-
ture is ignored, correlation in the bootstrap samples
used to produce each tree will lead to higher than ex-
pected correlation between trees and worse predictive
performance. Relatively few studies have addressed the
issue of how to model repeated measures data using
tree-based models. Adler et al. considered data from a
glaucoma registry with repeated measurements the left
and/or right eyes of subjects and investigated the impact
of varying the number of observations per subject in the
training data for each individual base classifier (i.e., each
tree) [28]. Specifically, Adler et al. compared the training
data selection strategies consisting of: (1) one random
observation per subject from a bootstrapped sample of
subjects, (2) all observations per subject from a boot-
strapped sample of subjects, (3) “naive” bootstrap sample
that ignored the correlation structure, (4) bootstrap
samples of the subject-specific mean across all repeated
measurements on a subject and (5) the newest observa-
tion of one selected eye per subject. Their results
showed that sampling one observation was better than
sampling all observations of each subject for both
random forest and bagging classifiers. Our study took a
similar approach and sampled one observation per
participant for the ensemble-level training data. We
further expanded on the Adler et al. method by creating
complimentary within and across-participant holdout
test datasets focusing on the generalizability of the
model to future measurements on the same participants
and completely new participants.

There are limitations to our study. In terms of the
statistical methodology, to address the issue of
correlation in longitudinal data, we used only up to two
observations per participant for training and testing the
prediction models and did not take full advantage of the
up to 7years of data per participant. Had the model
been trained with repeated measures on each partici-
pant, we speculate that the within-participant holdout
test AUC would have been higher. Future work might
consider model-based longitudinal machine learning
approaches such as RE-EM tree [31] for continuous
outcome or a tree-based method using GEE (generalized
estimating equations) for binary outcomes [32]. More
generally, another limitation is that our outcome was
assessed by annual self-reported questionnaire, so BCP
symptoms might be underreported. Underreporting of
symptoms would lead error in the outcome variable of
our prediction models that is potentially systematic (e.g.,
different rates of underreporting for children who are
asthmatic vs. non-asthmatic). Additional error in the
outcome variable has the potential to harm the predict-
ive ability of our models. However, if underreporting is
consistent across years (i.e., a participant’s symptoms are
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underreported each year) the impacts of this underre-
porting on our prediction model may be attenuated
since our models include reported symptoms in the
previous year. Also, we developed models stratified by
asthma status, which might attenuate any impacts of
differential underreporting by asthma status.

In addition, our study did not consider some key
individual level predictors such as individual genetic in-
formation, GXE exposures, diet, and indoor air. The lack
of those predictors may explain why within-participants
and between-participant predictions yielded similar
results. This study also has a number of strengths. This
study contains a large population-based sample of school
children across several southern Californian communi-
ties with a wide range of risk factors including medical
history, traffic and regional air pollutant exposures, and
home exposures. Risk factors were investigated simul-
taneously to examine their relative importance in pre-
dicting the bronchitic symptoms. In addition, our study
applied prediction modeling with all participants, and by
asthma status.

Conclusions

Our study applied gradient boosting models to predict
bronchitic symptoms among school-aged children in a
longitudinal framework, offering a novel approach to
better understand predictive factors of this outcome. We
found that children with previous bronchitic symptoms
were at the highest risk of developing subsequent symp-
toms, while several traffic and regional air pollution
exposures also contribute to the overall model predictive
ability. A similar approach can be used in future panel
studies with more highly time resolved data to create
personalized prediction models to potentially predict
and prevent acute asthma exacerbations or chronic
reparatory disease.
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Additional file 1: Table S1. Comparison of gradient boosting models fit
for all participants and all predictors, for 50 different random training sets.
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with groups of risk factors for all participants, asthmatics, and non-
asthmatics, for 50 different random holdout test datasets. Table S3.
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50 random training sets. Table S4. Average area under the receiver
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non-asthmatics (rhinitis), and non-asthmatics (no rhinitis), for 50 different
across- and within- participants holdout test datasets. Table S5. Comparison
of gradient boosting models vs. logistic regression for all participants,
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Logistic regression results for all participants, asthmatics, and non-asthmatics
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different random training sets, of the top 10 risk factors in models fit using
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characteristic curve (AUC) of the gradient boosting models and logistic
regression model models fit separately with all risk factors and top 10 most
important risk factors for 50 different random across-participant holdout test
datasets. Figure S3. Area under the receiver operating characteristic curve
(AUQ) of the gradient boosting models and logistic regression models fit
separately with all risk factors and top 10 most important risk factors for 50
different random within-participant holdout test datasets. (DOCX 3711 kb)
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