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the performance of both methods in high VE settings.
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Background: The use of correlates of protection (CoPs) in vaccination trials offers significant advantages as useful
clinical endpoint substitutes. Vaccines with very high vaccine efficacy (VE) are documented in the literature (VE >95%).
The rare events (number of infections) observed in the vaccinated groups of these trials posed challenges when
applying conventionally-used statistical methods for CoP assessment. In this paper, we describe the nature of these
challenges, and propose easy-to-implement and uniquely-tailored statistical solutions for the assessment of CoPs in

Methods: The Prentice criteria and meta-analytic frameworks are standard statistical methods for assessing vaccine
CoPs, but can be problematic in high VE cases due to the rare events data available. As a result, lack of fit and the
problem of infinite estimates may arise, in the former and latter methods respectively. The use of flexible models
within the Prentice framework, and penalized-likelihood methods to solve the issue of infinite estimates can improve

Results: We have 1) devised flexible non-linear models to counteract the Prentice framework lack of fit, providing
sufficient statistical power to the method, and 2) proposed the use of penalised likelihood approaches to make the
meta-analytic framework applicable on randomized subgroups, such as regions. The performance of the proposed
methods for high VE cases was evaluated by running simulations.

Conclusions: As vaccines with high efficacy are documented in the literature, there is a need to identify effective
statistical solutions to assess CoPs. Our proposed adaptations are straight-forward and improve the performance of
conventional statistical methods for high VE data, leading to more reliable CoP assessments in the context of high VE

Keywords: Vaccine clinical trial, High vaccine efficacy, Surrogate endpoint, Correlate of protection

Background

Assessing a vaccine’s ability to induce immune responses
that can effectively protect from infection and disease is
key. The use of clinical endpoints to assess vaccine efficacy
(VE) can be burdensome on the development, licensure,
duration and effectiveness monitoring of immunisation
trials. Replacing the clinical endpoint of a vaccine by an
immunological endpoint can positively impact many of
these aspects and considerably reduce costs as a result, as
well as facilitate ethical procedures. Indeed if measured
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appropriately, immunological endpoints are biomarkers
that can accurately predict VE on a shorter time scale
while using significantly fewer participants compared to
clinical endpoint assessments, making them an attractive
time- and cost-effective option [1].

The terms ‘correlate’ and ‘surrogate’ of protection are
common in the literature when referring to immunologi-
cal endpoints, but are often used inconsistently, including
by regulators and other prominent authorities. The first
formal definition of surrogacy was introduced by Prentice
in 1989, and was complemented with a set of criteria
based on the concept of mediation [2]. Several statistical
methods for evaluating surrogate endpoints soon followed
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as part of the causal inference [3-5] and meta-analytic
frameworks [6—8], on which Alonso et al. provided a use-
ful description of their relationship [9]. A hierarchical
framework was proposed by Qin et al. to shed clarity on
the profuse topic of immune correlates, and to assess their
validity as substitute endpoints [10]. In their proposal,
three levels of association are distinguished: ‘Correlate of
Risk’ (CoR) (1), level 1 ‘specific’ surrogate of protection
(SoP) (2) and level 2 ‘general’ SoP (3), where levels 1 and
2 reflect whether the analysed data comes from single
or multiple trials, respectively. Specifically, a level 1 (spe-
cific) SoP is an immunological measurement predictive of
VE in the same setting as the trial in which the vaccine
was investigated, while a level 2 (general) SoP refers to a
surrogate that can predict VE across a range of different
populations and settings [10]. Meta-analytic approaches
have been proposed to evaluate level 2 SoPs using data
collected from multiple trials [6-8].

Within level 1, Qin et al. further subdivide this SoP into
a statistical or principal category, according to the method
used for their validation. A statistical SoP is an endpoint
that satisfies the Prentice criteria [2], while a principal SoP is
defined using a causal inference framework [3-5, 10, 11].
The latter aims to address post-randomisation selection
bias by estimating what the vaccine responses would have
been if the non-vaccinated group of a trial had been
immunised. Such endpoints can be used to predict VE
once they are validated and approved by a regulatory body.

In this manuscript, SoP endpoints are referred to as cor-
relates of protection (CoPs). Specifically, we address CoP
levels 1 and 2, based on Qin et al’s following definitions
of a CoR as an "immunological measurement that cor-
relates with the rate or level of a study end point used
to measure VE in a defined population”, and a CoP as a
"CoR that reliably predicts a vaccine’s level of protective
efficacy on the basis of contrasts in the vaccinated and
unvaccinated groups’ immunological measurements" [10].
Moreover, we address the concept of CoPs in the context
of a continuous, rather than a threshold approach [1].

Although not common, vaccines with very high efficacy
(95% or above) are documented in the literature [12—-17].
These include the salmonella typhi vi coniugate [12], or
the combined measles-mumps-rubella-varicella immuni-
sation [17]. These trials raised the problematic of assessing
CoPs in the context of high VE using classical statistical
methods. Indeed, a very small number of cases/infections
(corresponding to the vaccinated groups) can trigger con-
siderable issues for such statistical models. There is therefore
a need to adapt statistical methods for CoP assessment to
the context of high efficacy vaccines. To the best of our
knowledge, such tailored approaches are lacking in the lit-
erature. The aim of this manuscript is to present statistical
solutions and to generate adapted methods to assess CoPs
based on Prentice criteria and meta-analytic frameworks
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(by randomized subgroups such as centers and regions) in
single trial setting (STS) with high VE.

Methods

Statistical methods for assessing CoPs

The Prentice criteria and meta-analytic approach are two
classical statistical methods used for assessing vaccine
CoPs. The following sections describe both methods, and
our specific adaptations as statistical solutions for high VE
settings. The results section shows the performance of our
proposed adapted models using simulations.

The prentice criteria

The following set of notations will be used throughout the
manuscript: T; and S; are random variables denoting the
true binary and the surrogate endpoints for subjectj = 1,
.., nand Z; is a binary treatment indicator.

Key concepts, including the hypothesis-testing approach
to the validation of substitute endpoints using randomised
clinical trial data, were introduced by Prentice [2]. His four
criteria for the validation of a surrogate endpoint can be
adapted for vaccine trials as follows:

Protection against the targeted disease is signifi-
cantly related to having received the vaccine, where the
corresponding logistic model (Prentice criterion 1) is
given by:

logit(P(Tj = 1)) = ur + BZ;.

The substitute endpoint is significantly related to the
vaccination status (Prentice criterion 2):

Sj=pus+azZj+ €s;

where € is the zero-mean normally distributed error term.

The substitute endpoint is significantly related to pro-
tection against the clinical endpoint (Prentice criterion
3):

logit(P(Tj = 1)) = u + yS;.

The full effect of the vaccine on the frequency of the clin-
ical endpoint is explained by the substitute endpoint, as it
lies on the sole causal pathway (Prentice criterion 4).

logit(P(Tj = 1)) = fir + BsZ; + yz5;. (1)

Therefore, criterion 4 is met if the null hypothesis Ho; :
yz = 0 is rejected and the null hypothesis Hp, : 8s = 0 is
not rejected.

Although Prentice’s definition and criteria have been the
subject of much debate [1, 4, 18], we decided to apply this
approach for its simplicity and frequent usage, as well as
its close relation to many of the methods proposed later
on. These include the proportion of treatment explained
[19], the proportion of information gain [20], and the
individual-level surrogacy measured by the information
theoretic approach [21].
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The meta-analytic framework
In this paper, we consider the meta-analytic framework
in the single trial setting (STS), in which the units are
randomized subgroups such as centers or regions. The
meta-analytic approach can be represented by a bivariate
mixed-effects model as follows:

Sij = s+ msi +aZj+ aiZij+ €,

, 2
logit(Ty = 1) = pur + mp + BZij + biZy, @

where us and 7 are fixed intercepts, o and f the fixed
effects of treatment on the endpoints, mgs; and m7; the
random intercepts, and a; and b; the random effects of
treatment on the endpoints in subgroup i [6]. For sim-
plicity, we assume no random intercepts here (reduced
model).

When the full bivariate mixed-effects approach is used
to assess surrogacy, computational issues often occur. One
simple solution is to use a fixed effect meta-analysis on
aggregated data (two-stage approach) [6]. This means per-
forming separate regression of S on Z and then T on Z for
each of the subgroups and then doing a weighted linear
regression of the T slope (f}i) on the S slope (&)

Bi = o + Ad; + €,

with weights given by w; = 1/ Var(B:). In this case, the
trial level surrogacy is given by the R? of the weighted
linear regression. More sophisticated regression models
can be used, such as the bivariate random effects model
[22, 23].

Statistical solutions for high vaccine efficacy

Statistical methods for the analysis of rare events are
extensively described in the literature [24]. VE can be
expressed as follows:

P(T=1Z=1)
VE=1—- ——————,
P(T=1|Z=0)

where P(T = 1|Z = 1) and P(T = 1|Z = 0) are

the probabilities of disease among vaccinated and unvac-
cinated individuals, respectively. In the context of high
VE where a small number of events are observed in the
vaccinated group, methods tailored for rare events can
be applied in this specific setting. The following sections
detail our proposal for statistical solutions that allow
reliable CoP assessments of high efficacy vaccines. Both
adapted methods are compatible with standard statistical
software including R and SAS.

Flexible models for prentice criteria framework

The model assessing Prentice criterion 4 includes the sur-
rogate and the treatment as covariates. When the number
of events is small, this model can encounter issues due
to lack of fit, leading to erroneous conclusions. To solve
the problem of lack of fit, flexible link functions [25-27],
could be used within Prentice framework. In this paper,
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we consider the classical logistic models with flexible
(non-linear) effect of the surrogate

logit(P(T; = 1)) = pur + BsZj + £ (S, 0) ®3)

where f(S;,6) is a non-linear function, such as polynomi-
als or smoothing splines. This flexible model is popular
for several reasons including: known properties, inter-
pretability of parameters, easy to fit and implemented in
many standard softwares.

The meta-analytic approach using penalised likelihood
The meta-analytic approach can be applied when multiple
randomized subgroups are available for analysis. However,
when applying this method in a high VE setting, max-
imum likelihood (ML) subgroup-specific VE estimates
may be infinite, causing classical meta-analytic methods
that combine subgroup-specific VE to potentially fail.
To overcome this issue, we estimated subgroup-specific
VE using the penalised likelihood method. Penalisation,
which is equivalent to using proper priors on coefficients,
solves the problem of infinite coefficient estimates. To
achieve this we applied two approaches: the Firth method
[28], and the weakly informative prior (WIP) proposed by
Gelman et al. [29]. Firth showed that his method is equiva-
lent to the use of Jeffreys’ invariant prior. Gelman et al. on
the other hand proposed a WIP distribution (Cauchy prior
with scale 2.5), which relies on the assumption that a typ-
ical change in an input variable is unlikely to correspond
to a change as high as 5 on the logistic scale. As part of
a two-step approach, we first independently executed the
Firth method and Gelman approach using the logist£f
and bayesglm R packages respectively [30, 31]. In a sec-
ond step, we evaluated the performance of both methods
as part of a meta-analysis in the context of high VE, by
running simulations.

Results
Flexible models for the prentice criteria framework
To evaluate the impact of the lack of fit corresponding to
Prentice criterion 4, we simulated data using the Dunning
regression model [26] in an ideal CoP setting, where the
treatment effect is fully explained by the surrogate (full
mediation) as follows:
et trS;
P(]} = 1|7T,S]) = T[m.

Here, 7 is interpreted as the probability of being exposed
to the disease. Irrespective of the interpretation of =, this
is a valuable, monotone, skewed, flexible and non-linear
model to generate the type of data described above.

Simulations were run using the following parameter
assumptions: Total sample size n = 5000, 1:1 random-
ization, 7=0.1, p9 = P(T = 1|1Z = 0) = 0.05, u1 =
ES|Z = 1) = 4.5,4,3.75,3.33, uo = E(S|Z = 0) = 3,
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VAR(S|Z = 1) = VAR(S|Z =0) = 0.2, y = log(1 — 0.95),
= 8.3. A range of VE values were considered (VE = 0.4,
0.75, 0.85 and 0.95), and 5000 datasets were simulated for
each scenario. We fitted Prentice model 4 on the simu-
lated data using classical logit regression shown in Eq. (1),
the proposed non-linear model depicted in Eq. (3) with a
quadratic term

logit(P(Ty = 1)) = fir + BsZj + v25; + 72252

and the scaled logistic model [26]. Table 1 shows the
outcome of these simulations.

Table 1 shows that using a flexible model considerably
increases the power to meet Prentice criterion 4 when
the VE increases. In fact, the simple linear logistic model
does not control the type-I error of the treatment effect
(p(Z) < a) when VE is high. This is due to the lack of fit of
the linear effect which is absorbed by the treatment effect,
thereby considerably reducing the power to meet Prentice
criterion 4. We can see that the scaled logistic model is
slightly conservative. Standard errors of this model should
be computed by bootstrap [27].

The meta-analytic approach using penalised likelihood

We considered the meta-analytic approach in a single
trial setting. The single trial was split into several rel-
atively small randomized subgroups (such as geographi-
cal regions or centers), and these small subgroups were
used as units for the meta-analysis. For illustration pur-
poses, we analysed a publicly available simulated dataset
containing both continuous outcome and surrogate end-
points [21]. This dataset consists of 50 subgroups charac-
terised by a 1:1 randomization and sample size of 20 per
subgroup.

Table 1 Prentice framework simulation results

logit model 4 VE pS <a p)<a pOS) <al&pl)>a
Linear 041 1.00 0.05 095
Non-linear 041 1.00 0.05 0.95
Scaled logit 041 1.00 0.03 0.96
Linear 0.75 1.00 0.10 0.90
Non-linear 0.75 1.00 0.04 0.96
Scaled logit 075 100 0.04 0.96
Linear 086  1.00 0.22 0.78
Non-linear 0.86 1.00 0.05 0.95
Scaled logit 086  1.00 0.04 0.96
Linear 096  1.00 0.34 0.66
Non-linear 096  1.00 0.04 0.96
Scaled logit 096 099 0.03 0.96

Power (@ = 0.05) to assess Prentice criterion 4 using classical (linear) and flexible
(non-linear) model 4 in case of full mediation (data generated using scaled logit
model 3). VE: estimated VE; p(S) < a: power to detect the Surrogate effect;

p(2) < a:type-l error of the treatment effect; p(S) < a & p(Z) > a: power to meet

Prentice criterion 4
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Figure la shows the results of the two-stage meta-
analytic approach with a continuous outcome. Here, a
strong correlation between the treatment effect on the
true outcome (/§,-) and the treatment effect on the surro-
gate outcome (&;) is observed, with an estimated R?> of
0.77. When artificially dichotomising the true outcome as
Y =1ifT < —-287and Y = 0if T > 2.87, the result-
ing VE on this binary outcome is 95%. Figure 1b shows
the results on this true binary outcome, where several
values fall around -10. These values are extremely high
for a logistic regression and they are due to the lack of
events in the treatment group, thus generating a small R?
value (0.17). Figure 1c shows the two-stage meta-analytic
approach, where the treatment effect on the binary out-
come is estimated using the penalised likelihood approach
proposed by Firth [28]. Here, we observe that the prob-
lem of infinite estimates is solved, and so the R? value
is much higher compared to the classical approach. Sim-
ilar results were obtained using the penalised likelihood
approach proposed by Gelman, as shown in Fig. 1d [31].
To better understand the results it is useful to look at
summary statistics from the different logistic models by
number of events in control and in vaccinated groups.
Table 2 shows that when there are no events in the two
groups (ny = nc = 0) then the estimated effect is zero
(,3 = 0) and the estimated variance is “infinite” for the
logistic model while it is relatively small for the penalized
methods. When there are no events only in the vacci-
nated group (ny = 0 and nc > 0) then the effect and
the variance estimated by the standard logistic model are
“infinite’, while the penalization of the likelihood prevents
infinite estimates and variances. This is the reason why
the penalized methods outperform the standard logistic
approach in the case of high VE.

To confirm these results, additional data was simulated
with a true binary outcome and a continuous surrogate,
using the reduced model in Eq. (2) without random inter-
cepts. This dataset consists of 25 subgroups and n=40
participants per subgroup with a 1:1 randomisation. We
simulated data using the following parameters: pus =
4609 ur = —2.2401; & = 5458 B = (—1,—2,—4);
Var(a;)=10; Var(b;)=4. The correlation between the treat-
ment random effects is p = Cor(a;, b;) = /0.9, with an
R? value of 0.9. The R? estimated by different methods as
a function of VE is presented in Table 3.

Table 3 shows that penalised approaches (Firth and
Gelman’s WIP) outperform the standard logistic model in
terms of Mean Square Error (MSE), especially in case of
high VE where there is a high chance of having subgroups
with zero events in the vaccination group. In fact, when
the VE is 0.75, 0.82 and 0.95, the average number of sub-
groups with zero events in vaccination groups are 9, 13
and 20, respectively. Both penalised approaches show very
similar results.
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Fig. 1 Meta-analytic approach results on Alonso et al.'s dataset (Alonso and Molenberghs 2007). Panels: a original data results (continuous
outcome); b logistic results on the dichotomised outcome; ¢ Firth logistic results on the dichotomised outcome; d Weakly Informative Prior (WIP)
logistic results on the dichotomised outcome

Table 2 Alonso et al. [21] dataset with dicothomized outcome.
Results of logistic, Firth and WIP model by number of events in

Control n¢ and number of events in Vaccinated group (ny)

ne ny Logistic Firth WIP
B Var) B varp) B Var(p)

0 0 0.00 2.33e+09 0.00 1.15 0.00 1.28
1 0 -9.18 7.85e+06 -0.60 0.79 -0.59 0.65
2 0 -9.59 785e+06  -091 0.72 -090  0.58
3 0 -9.36 28%+06 -1.14 069 -115 057
4 0 -9.58 28%+06 -134 068 -137 058
5 0 -9.78 2.8%e+06 -1.52 0.68 -1.59 0.61
6 0 -9.99 2.8%e+06 -1.71 0.68 -1.80 0.64
7 0 -10.21 2.8%e+06 -1.90 0.69 -2.04 0.69
8 0 -10.98 7.85e+06 -2.13 0.72 -2.33 0.77
9 0 -11.38 7.85e+06 -2.45 0.79 -2.73 0.92
0 0 -2557  233e+09  -3.04 115 -3.84 1.91
1 1 0.00 5.60e-01 0.00 042 0.00 0.35
3 1 -0.67 4.00e-01 -054 033 -049 026
9 2 -1.79 4.30e-01 -1.53 0.35 -1.51 0.30
2 3 0.27 2.80e-01 0.23 0.26 0.21 0.21

Discussion

Despite recent advances in immunology, we are only
beginning to understand how vaccines work best, and
how we can improve vaccine design for higher protec-
tive efficacy [32]. Although not common, vaccines with a
high efficacy, are documented in the literature [12-17, 33].

Table 3 Meta-analytic simulation results (1000 replications)

Model VE  mean(R?) median(R?) Std(R?) 95%Il 95%ul MSE(R?)
Logistic 0.75 0.59 061 016 024 084 0.2
Fith 075 0.72 0.73 009 054 086 004
WP 075 071 0.72 009 051 085 005
Logistic 082 0.52 054 022 003 085 0.19
Fith 082 073 0.75 009 052 087 004
WP 082 071 0.72 010 048 087 005
Logistic 09 046 049 026 001 08 026
Fith 09 072 0.74 010 048 088 004
WP 09 070 0.71 011 045 087 005

Estimated R? (mean, median, standard error, 95% confidence intervals and MSE) for

different models and values of VEs
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These include the salmonella typhi vi conjugate [12], or
the combined measles-mumps-rubella-varicella immuni-
sation [17]. Rare events data obtained in high VE trials
make it challenging for statisticians to apply classical
methods used for CoP assessment due to the lack of avail-
able information. These include ML estimators, where
bias, infinite estimates, multicollinearity and convergence
issues can arise and negatively impact Prentice criteria
and meta-analytic frameworks commonly used to assess
vaccine CoPs, as shown in this paper [24, 26, 27].

To overcome this problem, we evaluated the impact
of high VE using two classical statistical approaches:
the Prentice framework and the Meta-analytic frame-
work applied on randomized subgroups (e.g. geographi-
cal regions). We chose these methods for their common
usage in CoP assessments, and their user-friendly char-
acteristics. We performed data simulations with high VE
to illustrate the problems and to evaluate the proposed
solutions.

By working on the Prentice framework, we show that it
is critical to both design and evaluate flexible and adapt-
able models that are tailored to high VE cases, as the
lack of fit of a model leads to substantial loss in power.
Accordingly, we propose to analyse data using a logis-
tic model with non-linear surrogate effect. This popular
model is flexible, with known properties, easy to fit and
implemented in many standard softwares. The number
of additional parameters should be small to avoid over-
fitting. Other models with flexible link functions have
also been proposed that can be used within the Prentice
framework [26, 27]. Model selection can be done using
the Akaike Information Criterion (AIC) approach. Fur-
thermore, adjustments for baseline covariates can play an
important role in improving model fit.

Regarding the meta-analytic framework, we demon-
strate that penalised likelihood approaches (such as Firth
or Gelman’s WIP) outperform the standard logistic model
when VE is high, as they solve the problem of infinite esti-
mates. This problem can occur when VE is high where
there is a high probability of observing zero cases in
certain subgroups of the vaccinated group, as we have
also shown. For simplicity, we used a two-stage approach
where treatment effects were estimated for each subgroup
using a penalised likelihood approach, followed by a (fixed
effect) meta-analysis to combine results from different
subgroups. Another possibility is to use a mixed model
with WIP or Jeffrey priors. For example, it is straight-
forward to implement the bivariate model, depicted in
Eq. (2), with WIP for the covariance matrix of the treat-
ment random-effects using a Bayesian framework (e.g.
WinBugs, JAGS or Stan). Additional simulation stud-
ies, comparing one and two-stage penalised approaches,
would therefore be worth pursuing to help overcome these
problematics in the context of high VE.
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It is noteworthy that the concept of a vaccine CoP
often refers to the establishment of a protective immuno-
genicity threshold as alluded to earlier, above which dis-
ease acquisition is unlikely to happen. However, relating
immunological biomarkers to disease risk and therefore
VE can also be made possible as part of a continu-
ous approach, without the assumption of a threshold
titre. This manuscript addressed this type of (continuous)
approach that employs fitted regression models on anti-
body titres in vaccinated and non-vaccinated individuals
to show the statistical association between antibody titres
and disease incidence [1, 26, 34, 35].

Although this study was limited by its use of simu-
lated data only, our results suggest that the solutions
we propose substantially increase the power of classical
statistical approaches for CoP assessment, when dealing
with high VE. Furthermore, they are straight-forward and
compatible with standard statistical software.

Conclusions

Following our observation that CoP assessments for high
VE vaccines comes with statistical issues using standard
methods, we devised flexible non-linear models to coun-
teract the lack of fit in the Prentice framework, and pro-
pose penalized likelihood approaches for meta-analysis.
These statistical solutions are easy-to-implement adap-
tations to both conventional methods for application in
high VE cases. Such statistical challenges associated with
high VE may have so far been overlooked due to their low
occurrence, yet high VE cases exist. For binary surrogates
it may be interesting to explore how the individual causal
association [9] and the surrogate predictive function [36]
perform in the setting of high VE. Finally, evaluating the
impact of high VE on the Principal stratification approach
should be beneficial to the field, towards improving CoP
assessments of vaccines [3-5, 10, 11].
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