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Abstract

Background: Systematic reviews and meta-analyses of binary outcomes are widespread in all areas of application.
The odds ratio, in particular, is by far the most popular effect measure. However, the standard meta-analysis of odds
ratios using a random-effects model has a number of potential problems. An attractive alternative approach for the
meta-analysis of binary outcomes uses a class of generalized linear mixed models (GLMMs). GLMMs are believed to
overcome the problems of the standard random-effects model because they use a correct binomial-normal
likelihood. However, this belief is based on theoretical considerations, and no sufficient simulations have assessed the
performance of GLMMs in meta-analysis. This gap may be due to the computational complexity of these models and
the resulting considerable time requirements.

Methods: The present study is the first to provide extensive simulations on the performance of four GLMMmethods
(models with fixed and random study effects and two conditional methods) for meta-analysis of odds ratios in
comparison to the standard random effects model.

Results: In our simulations, the hypergeometric-normal model provided less biased estimation of the heterogeneity
variance than the standard random-effects meta-analysis using the restricted maximum likelihood (REML) estimation
when the data were sparse, but the REML method performed similarly for the point estimation of the odds ratio, and
better for the interval estimation.

Conclusions: It is difficult to recommend the use of GLMMs in the practice of meta-analysis. The problem of finding
uniformly good methods of the meta-analysis for binary outcomes is still open.

Keywords: Generalized linear mixed-effects models, Random effects, Hypergeometric-normal likelihood,
Transformation bias, Meta-analysis

Background
Meta-analysis is a statistical technique for synthesiz-
ing outcomes from several studies. Since the individ-
ual studies might differ in populations and structure
[1, 2], their effects are often assumed to be heteroge-
neous, and the use of methods based on random-effects
models is recommended. When the outcome of interest
is a transformation of a binomial outcome such as the
logit transformation, the standard random-effects model
assumes that within-study variability can be described
by an approximate normal likelihood, i.e. the estimates
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of effects θ̂i ∼ N
(
θi, σ 2

i
)
in each study i, i = 1 . . . ,K .

Combining this assumption with a normal distribution of
true effects between studies, θi ∼ N

(
θ , τ 2

)
, the result-

ingmarginal random-effects model is θ̂i ∼ N
(
θ , σ 2

i + τ 2
)
.

However, the standard REM has several potential prob-
lems. It makes the strong assumption that the estimated
within-study variances σ̂ 2

i can be used in place of the
unknown true variances σ 2

i (without accounting for their
variability), and it does not account for the correlation
between the estimated within-study variances σ̂ 2

i and the
effect measures θ̂i [3–5]. Additionally, the standard REM
suffers from transformation bias ([6]) and bias in the
estimation of the random-effect variance τ 2.
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An attractive alternative approach for the meta-analysis
of binary outcomes uses a class of generalized linear
mixed models (GLMMs). These models can be fitted in
SAS [3] and in R using themetafor package by Viechtbauer
[7]. Generalized linear mixed models are believed to over-
come the problems of the standard random-effects model
[3] because they use a binomial-normal likelihood. How-
ever, this belief is based on theoretical considerations, and
no sufficient simulations have assessed the performance
of methods based on GLMMs in meta-analysis. This gap
may be due to the computational complexity of these
models and the resulting considerable time requirements
for simulations.
We concentrate on the meta-analysis of odds ratios

(OR), by far the most popular effect measure, with
normally-distributed true effects θi between studies.
Othermixing distributions for random effects are possible
[8]. A natural alternative is a beta-binomial model, which
assumes a beta mixing distribution for the event proba-
bilities. This model was recommended for use with sparse
data by Kuss [9] and studied in much detail in [10].
The relative risk (RR) is often a more appropriate

measure of effect than the odds ratio, and it has a direct
interpretation. Reasons for choosing RR instead of OR
and the ease with which OR can be misinterpreted are
discussed in [11–15]. However, perhaps due to the math-
ematical convenience and to the widely available software
implementations, the odds ratio is by far the most popular
effect measure.
Our simulations have used all four GLMM methods
available in metafor: GLMM with fixed or random study
effects [16]; the noncentral-hypergeometric-normal
model (NCHGN) discussed by Van Houwelingen et al.
[17], Liu and Pierce [18], Sidik and Jonkman [19] and
Stijnen et al. [3]; and an approximation of noncentral-
hypergeometric-normal model by a binomial-normal
model, method CM.AL in metafor. For comparison, we
also included two standard inverse-variance weights
based methods, DerSimonian-Laird (DL) [20] and
restricted maximum likelihood (REML), routinely used in
random-effects meta-analysis.
Among the GLMMs available for the meta-analysis of

binary outcomes, we are particularly interested in the
NCHGN. The exact distribution for the number of events
conditional on marginal totals is the noncentral hyperge-
ometric distribution. The NCHGN model also includes
a normally distributed random effect (log odds ratio)
for studies. However, the performance of this model is
not well known. The simulation study on GLMMs in
meta-analysis by Kuss [9] compared several methods for
analysing sparse 2 × 2 data but excluded the NCHGN
model and its approximation by the binomial-normal dis-
tribution as they exclude double-zero studies, i.e. studies
with zero events in both arms. The recent simulation

study by Jackson et al. [21] examined the use of seven
GLMMs for summary odds ratio, including the NCHGN
model and the other models considered in our study.
However, Jackson et al. [21] considered only 15 config-
urations of the parameters, limited almost exclusively to
K = 10 studies, the baseline probability of 0.2 and the
small value of τ 2 = 0.024. We provide extensive simula-
tions for 880 configurations of the parameters, including
K = 3, 5, 10 and 30 studies, the baseline probabilities
from 0.1 to 0.4, and the heterogeneity variance τ 2 from 0
to 1. The span of our simulations is instrumental in detect-
ing important trends in performance of GLMMs for the
meta-analysis of odds ratios.
Our simulation results demonstrate that the GLMM

models including the NCHGN do not outperform the
standard DL and REML methods in point and interval
estimation of overall effect measure. Possible reasons to
the unexpected inferior performance of GLMM methods
are pointed out in the discussion. The structure of the rest
of this paper is as follows.
“Methods” section reviews the GLMMs for binary out-

comes and discusses likelihood-based models for log odds
ratio. It also describes the simulation study. “Results”
section presents the results of simulations and provides
an illustrative example. “Discussion” section summa-
rizes our results. “Conclusions” section provides further
recommendations.

Methods
General formulation of generalized linear mixedmodels
for meta-analysis of binary outcomes
The generalized linear mixed effects model (GLMM)
extends the generalized linear model by including random
effects in addition to fixed effects (hence mixed-effects
model). The inference in GLMMs is based on the likeli-
hood.
For the general case, let the univariate observation in

the ith study be yi, and the vectors of covariates xi and
zi of dimensions p and q stand for fixed and random
effects, respectively, for i = 1, . . . ,K . The responses yi
are assumed to be independent with conditional means
E(yi|bi) = μi(bi) and variances Var(yi|bi) = �aiυ(μi(bi)),
where � is the dispersion parameter, ai is a known con-
stant, bi is a random effect and υ(·) is a variance function
[22]. The conditional mean and variance have a mean-
variance relation, and both of them depend on a ran-
dom effect bi. Given the q-dimensional vector of random
effects b, the generalized linear mixed model has the form

ηbi (b) = xtiβ + ztib, (1)

where β is the vector of regression parameters and t is
the matrix transpose. Similarly to the generalized linear
model, the conditional mean is associated with a lin-
ear predictor through a link function g(μi(bi)) = ηi(bi).
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Inverting the link function, H = g−1, and denoting the
design matrices with rows xti and zti by X and Z, the
conditional mean satisfies

E(y|b) = H(Xβ + Zb),

where y = (y1, . . . , yK ). The random effect b follows a
(usually multivariate normal) distribution with zero mean
and with variance-covariance matrix D = D(ζ ), for an
unknown vector of variance components ζ . Breslow and
Clayton [22] consider models with binomial, Poisson, and
hypergeometric specifications for the conditional distri-
bution of yi and the dispersion parameter � = 1 in the
conditional variance. The value of � > 1 is often used to
model overdispersion, and � is estimated jointly with the
parameters ζ in D = D(ζ ).
In generalized linear mixed models, the parame-

ters are estimated by maximum likelihood. However,
because of nonlinearity of the model and the pres-
ence of random effects, the marginal distribution for
the maximum-likelihood approach includes a cumber-
some integration with respect to unobservable ran-
dom effects. Usually, the integration does not have
a closed form, and therefore no analytic solution is
possible. Numerical methods such as adaptive Her-
mite quadrature (GHQ) and Laplace’s method have to
be applied to evaluate the integral, approximation of
the log-likelihood function, score equations, and infor-
mation matrix [22]. Alternative estimation techniques
include penalized quasi-likelihood method (PQL) [22],
equivalent pseudo-likelihood method, and higher order
Laplace approximations, see [23] for review. Alter-
natively, a Bayesian approach uses stochastic inte-
gration by Markov chain Monte Carlo (MCMC) or
Gibbs sampling to fit GLMMs. Hybrid methods are
also available [24]. The moment-based generalized esti-
mation equation (GEE) method can also be used
for population-average parameter estimation in the
marginal models.

GLMMs for the meta-analysis of odds ratios
For binary outcomes yi and the logit link function g(·),
the model (1) is a logistic regression model with random
effects. In a meta-analysis, the study effects correspond
to the intercept, and the treatment effect to the slope of
treatment/control indicator in the logistic regression; the
log odds ratio (LOR) is the difference between the log
odds of the treatment and control groups. Platt et al. [25]
and Gao [26] considered a generalized linear mixedmodel
with a fixed treatment effect and a random intercept term
for each study and provided some simulations on the use
of a PQL, GHQ and a linear model fitted by weighted
least squares. The use of this model for sparse data was
further studied in the extensive simulation study by Kuss
[9], who compared a large number of available fitting

methods including a PQL, GHQ, MCMC, beta-binomial
model, GEE, and conditional logistic regression. However,
GLMMs with random treatment effect are more tradi-
tional in meta-analysis. These models may include fixed
intercepts (study effects) and random treatment effect, or
both intercept and treatment effect are assumed to be
random [16].
In the meta-analysis of binary outcomes, the distri-

butions of the fixed effects are based on a binomial or
noncentral hypergeometric distribution, and the random
effects are assumed to follow normal distribution, result-
ing in a binomial-normal or hypergeometric-normal like-
lihood, respectively. The standard REM is based on the
normal approximation to the distribution of log-odds,
this is the normal-normal model. For incidence rates, an
example of a GLMM is the Poisson-normal model.
Turner et al. [16] introduced a mixed effects logistic

regression model with random treatment effect as a mul-
tilevel model for meta-analysis of binary outcomes in a
frequentist setting. Stijnen et al. [3] proposed to use a con-
ditional logistic model with an exact noncentral hyperge-
ometric distribution and its approximation by a binomial
distribution. The difference between the standard random
effects model and a mixed effects logistic regression is
that the standard random effects model directly models
an effect measure that reflects the contrast between the
two groups (e.g., log odds ratio). The conditional logis-
tic (hypergeometric) model deals with the OR directly as
the study effects are conditioned out. The parameters in
these models can be estimated by maximum likelihood
or restricted maximum likelihood methods using iterative
generalized least squares.

Standard inverse-variance random effects model for the
meta-analysis of binary outcomes (REM)
Consider K comparative studies reporting summary
binary outcomes. The data from each study i = 1, · · · ,K
constitutes a pair of independent binomial variables yi1
and yi2, numbers of events out of ni1 and ni2 subjects for
the treatment and control arms. The risks in the treat-
ment and the control arms are denoted by πij for j = 1, 2,
respectively. The log odds ratio for individual study i is
θi = log(πi1(1 − πi2)/(πi2(1 − πi1))).
The standard REM is a two-level model. At the first

level, conditionally on the study effects θi, empirical LORs
θ̂i are assumed to be normally distributed with unknown
means θi and within-study variances σ 2

i , θ̂i ∼ N
(
θi, σ 2

i
)
.

The variances σ 2
i =[ ni1πi1(1 − πi1)]−1 +[ ni2πi2(1 −

πi2)]−1 are estimated from the data, but their estimates
σ̂ 2
i are assumed to be known. At the second level, the

true within-study effects θi are assumed to have a nor-
mal distribution withmean θ and unknown between study
variance τ 2, i.e. θi ∼ N

(
θ , τ 2

)
, where θ is the overall

log odds ratio. Marginally, θ̂i ∼ N
(
θ , σ 2

i + τ 2,
)
so that
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θ̂i = θ + νi + εi with νi ∼ N
(
0, τ 2

)
, εi ∼ N

(
0, σ 2

i
)

and Cov(νi, εi) = 0. The between-study variance τ 2 is
usually estimated by DL [20] or REML, and the overall
LOR θ is estimated using the inverse variance weights
wi = (

σ̂ 2
i + τ̂ 2

)−1 as θ̂ = ∑
wiθ̂i/

∑
wi.

GLMMswith fixed intercept (FIM)
GLMM with fixed intercept is a special case of mixed
effects logistic regression model [16]. The model also
accounts for heterogeneity between studies on the log
odds scale. The model is written as:

yij|πij ∼ Binomial(nij,πij) j = 1, 2; i = 1, . . . ,K ,

log
(

πij

1 − πij

)
= φi + (θ + vi)xij, (2)

where πij are the probabilities of an event in each arm, θ is
the overall effect (log odds ratio), and the random effects
vi ∼ N

(
0, τ 2

)
are the deviations of the ith study treatment

effect (log odds ratio) from the overall effect θ , with τ 2

being the between-study variance. The fixed intercepts φi
are the log-odds in the control arms. The xij is the group
dummy variable. When xij = 0/1, then model (2) can be
written as:

log
(

πi1
1 − πi1

)
= φi + θ + vi and log

(
πi2

1 − πi2

)
= φi,

for the treatment and control groups, respectively, so that
⎛

⎝
log

(
πi2

1−πi2

)

log
(

πi1
1−πi1

)

⎞

⎠ ∼ N
((

φi
φi + θ

)
,
(
0 0
0 τ 2

))
. (3)

We will refer to this model as FIM1.
This model assumes higher variability in the treatment

groups. In order to avoid this asymmetry, a coding of+1/2
and −1/2 was suggested for the group dummy xij in [16].
When xij = ±1/2 and after reparametrization φ∗

i = φi −
θ/2, the model (2) can be written as:

log
(

πi1
1 − πi1

)
= φ∗

i + θ + 0.5vi and

log
(

πi2
1 − πi2

)
= φ∗

i − 0.5vi,

for the treatment and control groups, so that
⎛

⎝
log

(
πi2

1−πi2

)

log
(

πi1
1−πi1

)

⎞

⎠ ∼ N
((

φ∗
i

φ∗
i + θ

)
,
(

τ 2/4 −τ 2/4
−τ 2/4 τ 2/4

))
.

(4)

We will refer to this model as FIM2. In [21], the models
FIM1 and FIM2 are referred to as models 2 and 4,
respectively. They are logistic regression models with
φi = log(πi2/(1 − πi2)) as the study-specific fixed inter-
cepts that have to be estimated. The unknown parame-
ters φi, θ and τ 2 are estimated iteratively using marginal

quasi-likelihood, penalized quasi-likelihood, or first- and
second-order Taylor-expansion approximation. In order
to remove the bias of the between-study variance esti-
mates from penalized quasi-likelihood methods, a two-
step bootstrap procedure can be used [16]. Jackson et al.
[21] demonstrated in simulations and provided a theoret-
ical explanation for the inferiority of FIM1 in comparison
to FIM2 in respect to considerable underestimation of the
heterogeneity variance τ 2. We further study FIM2 but not
FIM1 in our simulations.

GLMMswith random intercept (RIM)
AGLMMwith a random intercept is a mixed effects logis-
tic regression model with a random intercept and random
treatment effect [16]. The model can be written as:

yij ∼ Binomial(nij,πij); j = 1, 2, i = 1, . . . ,K ,

log
(

πij

1 − πij

)
= φ + ui + (θ + vi)xij, (5)

where φ is the baseline log-odds, θ is the overall effect
(log-odds-ratio), the random effects are random variables
from a bivariate normal distribution vi ∼ N

(
0, τ 2

)
, ui ∼

N
(
0, σ 2) and Cov(ui, vi) = ωστ . This general bivariate

normal random effects model was introduced in [17] and
further discussed in [3]. When xij = 0/1, and assuming
Cov(ui, vi) = 0, the model (5) can be written as:

log
(

πi1
1 − πi1

)
=φ+ui+θ+vi and log

(
πi2

1 − πi2

)
=φ+ui,

so that
⎛

⎝
log

(
πi2

1−πi2

)

log
(

πi1
1−πi1

)

⎞

⎠ ∼ N
((

φ

φ + θ

)
,
(

σ 2 σ 2

σ 2 σ 2 + τ 2

))
.

(6)

We will refer to this model as RIM1.
Similarly to FIM2, when xij = ±1/2 and assuming

Cov(ui, vi) = 0, model (5) can be reparametrized as:

log
(

πi1
1 − πi1

)
= φ∗ + ui + θ + 0.5vi and

log
(

πi2
1 − πi2

)
= φ∗ + ui − 0.5vi,

for the treatment and control groups, so that
⎛

⎝
log

(
πi2

1−πi2

)

log
(

πi1
1−πi1

)

⎞

⎠∼ N
((

φ∗
φ∗ + θ

)
,
(

σ 2 + τ 2/4 σ 2 − τ 2/4
σ 2 − τ 2/4 σ 2 + τ 2/4

))
.

(7)

We will refer to this model as RIM2.
The RIM models include two or three (when ω =

Cov(ui, vi) �= 0) heterogeneity parameters
(
σ 2, τ 2, ω

)
in

contrast to the standard random effects model with a sin-
gle between-study variance τ 2. The unknown parameters
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φ, θ , σ 2, τ 2 and ω can be estimated similarly to estima-
tion in a GLMM with fixed study effects [16]. In [21], the
models RIM1 and RIM2 are referred to as models 3 and
5, respectively, and appear to have very similar proper-
ties, whereas our general model (5) is their Model 6. The
properties of a logistic regression model with a random
intercept for the meta-analysis of proportions were also
studied byHamza et al. [27], and for the case of scarce data
by Kuss [9]. We further study RIM2 in our simulations.

AGLMMwith exact noncentral hypergeometric-normal
likelihood (NCHGN)
The hypergeometric-normal model was initially proposed
for meta-analysis by Van Houwelingen et al. [17] and Liu
and Pierce [18]. Later, Stijnen et al. [3] and Sidik and
Jonkman [19] implemented the model. Some simulation
results are given in [21], their model 7.
The data may be generated from either FIM or RIM.

Conditioning on the total number of events for study i,
only the number of events in the treatment group yi1 is
random. NCHGN is a two-level model. Given the study-
specific log odds ratio θi, the distribution of yi1 is the
noncentral hypergeometric distribution. Next, the LORs
θi are normally distributed θi ∼ N

(
θ , τ 2

)
. The exact like-

lihood function of the hypergeometric-normal model for
study i can be written as:

h
(
yi1; θ , τ 2

) =
∫ ∞

−∞
f (yi1|θi)φ

(
θi|θ , τ 2

)
dθi = (8)

∫ ∞

−∞

(
ni1
yi1

)(
ni2
yi2

)
exp(yi1θi)
P(θi)

1√
2πτ 2

exp
(
− (θi−θ)2

2τ 2

)
dθi,

f (yi1|θi) is the noncentral hypergeometric probability
function for the number of events in the treatment arm
Yi1 given Yi1 + Yi2 = Yi, and the normalizing constant is
defined as:

P(θi) =
min(ni1,ni2)∑

i=max(0,ni−ni2)

(
ni1
i

)(
ni2

Yi − i

)
exp(Yiθi).

The density of the distribution of log odds ratios between
the studies, denoted by φ

(
θi|θ , τ 2

)
, is normal with mean θ

and variance τ 2. The density h
(
yi1|θ , τ 2

)
is the density of

the marginal distribution after integrating out unobserved
study-specific effects. When f (·) is a noncentral hyperge-
ometric and φ(·) is a normal density, the model is referred
to as a hypergeometric-normal model [3]. According to
Stijnen et al. [3], this approach should solve issues related
to the adjustments to zero cells and the existence of cor-
relation between σ̂ 2

i and θ̂i in the standard random effects
model. This model is a mixed effects logistic model. Liang
[28] have shown that inferences based on the noncentral
hypergeometric likelihood are sensitive to misspecifica-
tion of the dependence structure, see also [18] for approx-
imations to h

(
yi1; θ , τ 2

)
and [22] for the full likelihood

analysis for generalized linear mixed models such as the
penalized quasi-likelihood and marginal quasi-likelihood
methods.
The unknown parameters θ and τ 2 can be esti-

mated by using the EM algorithm [17] or the numerical
Newton-Raphson iterative algorithm [19], or by maximiz-
ing log-likelihood of NCHGN [3, 29]. Liu and Pierce [18]
approximated the integrand by a mixture of noncentral
hypergeometric and normal densities based on Laplace’s
method. However, the most recent approximations for
the marginal likelihood of noncentral hypergeometric-
normal distribution are based on adaptive Gauss-Hermite
quadrature. The noncentral hypergeometric distribu-
tion is based on the binomial distributions in the
treatment and control arms. When that assumption is
invalid, yi1 no longer follows a noncentral hypergeometric
distribution [30].

AGLMMwith an approximate binomial-normal likelihood
(ABNM)
For small total numbers of events relative to the total
group sizes, the noncentral hypergeometric distribution
can be approximated by a binomial distribution [3]:

yi1|(yi1 + yi2) ∼ Binomial
(
yi1 + yi2,Pyi1|(yi1+yi2)

)

with

log
( Pyi1|(yi1+yi2)
1 − Pyi1|(yi1+yi2)

)
= log

(
ni1
ni2

)
+ θi and

θi ∼ N
(
θ , τ 2

)
,

(9)

where Pyi1|(yi1+yi2) is the probability of events yi1 condi-
tioned on assumption of binomial distribution with the
total sample sizes yi1 + yi2. This approximation holds
because the sample odds ratio can be rewritten via

exp(θ̂i) = yi1(ni2 − yi2)
yi2(ni1 − yi1)

= P̂yi1|(yi1+yi2)

1 − P̂yi1|(yi1+yi2)

(ni2 − yi2)
(ni1 − yi1)

.

If yi1 and yi2 are small relative to ni1 and ni2, then

(ni2 − yi2)
(ni1 − yi1)

≈ ni2
ni1

.

Thus,

exp(θ̂i)= P̂yi1|(yi1+yi2)

1 − P̂yi1|(yi1+yi2)

(ni2 − yi2)
(ni1 − yi1)

≈ P̂yi1|(yi1+yi2)

1 − P̂yi1|(yi1+yi2)

ni2
ni1

and

θ̂i = log
(

P̂yi1|(yi1+yi2)

1 − P̂yi1|(yi1+yi2)

)

+ log
(
ni2
ni1

)

= log
(

P̂yi1|(yi1+yi2)

1 − P̂yi1|(yi1+yi2)

)

− log
(
ni1
ni2

)
.
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The parameters of this model can be estimated by
maximizing a logistic regression model with a random
intercept and offset log(ni1/ni2).

Fitting the GLMMs for log odds in metafor
Procedure rma.glmm in the R package metafor can be
used to fit four of the models discussed in this section:
FIM2, RIM2, NCHGN and ABNM (R code is given in
Additional file 1). To avoid the problem of having lower
variance in the control group than in the treatment group,
metafor uses the coding +1/2 and −1/2 for the group
indicator. Viechtbauer [7] and Turner et al. [16] provide
more details. GLMMs with fixed and random intercepts
are fitted by specifying the options model=“UM.FS” and
model=“UM.RS”, respectively.
The noncentral hypergeometric-normal model pro-

posed by Stijnen et al. [3] is fitted by specifying the option
model=“CM.EL”. R provides two methods for obtaining
the probability mass function of the noncentral hyperge-
ometric distribution: “dFNCHypergeo” in the BiasedUrn
package [31] and “dnoncenhypergeom” in the MCM-
Cpack package [32]. Both methods can be used with
the rma.glmm function of metafor. The “dFNCHyper-
geo” is the default distribution in rma.glmm for fitting
the NCHGN model, but “dnoncenhypergeom” can also
be specified. The two methods should perform similarly,
however, switching to “dnoncenhypergeom” may help to
resolve the convergence problems which might occur
when trying to fit a saturated model.
rma.glmm also allows a choice of an optimization

method for fitting a fixed effects or a saturated model
when the option model=“CM.EL” is specified. The
general-purpose optimization algorithms include the
default quasi-Newton method (option “BFGS”) imple-
mented in the “optim” function, or the choice of “nlminb”
function using the PORT library, [33], both in stats pack-
age. Alternatively, derivative-free optimization algorithms
using quadratic approximation routines due to Powell
[34] are available in the functions “bobyqa”, “newuoa”, or
“uobyqa” from minqua2 package. We studied both spec-
ifications of noncentral hypergeometric probability mass
function and all five optimizers in our simulations.
We also studied the performance of the ABNM

which uses the binomial-normal approximation to
the hypergeometric distribution and therefore is less
computer-intensive. This model is specified as the option
model=“CM.AL” in rma.glmm. More details are given
in [7, 16].

Simulation study
We carried out a simulation study to assess the perfor-
mance of the point and interval estimators of the overall
log odds ratio θ and the between-study variance τ 2 for
binary outcomes generated from a REM. The estimators

of θ and τ 2 are obtained from the four generalized lin-
ear mixed models FIM2, RIM2, NCHGN and ABNM. We
also included the estimates from the REM using the DL
[20] and the restricted maximum likelihood methods for
comparison.
We generated the data as follows:

yi1 ∼ Binom(ni1, f (pi2, θi)) and yi2 ∼ Binom(ni2, pi2),

where θi ∼ N(θ , τ 2) and f (pi2, θi) = pi2 exp(θi)/(1− pi2 +
exp(θi)pi2)). This scenario is similar to the approach in
[35]. No continuity corrections are added to the numbers
of events. The studies with yi1 = 0 and yi2 = 0 or yi1 = ni1
and yi2 = ni2 were omitted from the modelling.
The sample sizes are assumed to be the same within the

two arms and across all K studies. Procedure rma.glmm
from metafor version 1.9-2 with the default control
parameters was used to fit the GLMM models, unless
stated otherwise.
For the simulations where the convergence was

achieved, we assessed the bias of the maximum likelihood
estimators of τ 2 and θ and the coverage of the 95% con-
fidence intervals for θ . The default normal critical values
were used for the confidence intervals.
We used the University of East Anglia 334 node High

Performance Computing (HPC) Cluster, providing a total
of 4784 cores, including parallel processing and large
memory resources. For each configuration, our simula-
tions were subdivided into 100 parallel parts with 100
replications in each part, resulting in 10,000 replications
in total. The total time per combination of a value of
the baseline risk pi2 and a value of θ , was approximately
120 hours.

Configurations
The simulations used the following configurations of the
parameters. The number of studies was K = (3, 5, 10, 30);
the sample sizes in each arm across K studies were n =
(50, 100, 250, 1000); the between-study variance was τ 2 =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). The values of
the LOR θ were either 0 or 1. The probability in the con-
trol group was pi2 = (0.1, 0.2 , 0.4) (only pi2 = 0.1 value
was studied for K = 3.). The resulting probabilities in the
treatment group are given in Table 1. A total of 10,000 rep-
etitions were produced for each configuration. However,

Table 1 Probabilities in the Control (pi2) and the Treatment arm
(pi1) used in simulations

C\T θ = 0 θ = 1

pi2 pi1 pi1

0.1 0.1 0.232

0.2 0.2 0.405

0.4 0.4 0.644
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not all the simulations converged due to problems of
fitting the saturated model, and the actual number of
repetitions may be much smaller, “Computational issues”
section. The denominators were then adjusted accord-
ingly. The probability in control group pi2 = 0.1 was of
primary interest, since we weremostly interested in sparse
data. The results for pi2 = 0.2 and 0.4 are given in the
Additional file 2.

Results
We generated 10,000 repetitions at each configuration
of the parameters using the default optimizer “optim” to
fit the GLMMs. The results of the bias and coverage of
the parameters when using this optimizer are reported in
“Simulation results for default settings” section for K ≥ 5.
Additional results for K = 3 are reported and discussed in
Additional file 3. The convergence of this and alternative
optimizers, “nlminb”, “bobyqa”, “newuoa”, and “uobyqa” are
reported in “Computational issues” section. The results
for the bias and coverage of the parameters when using
these alternative optimizers are considered in “Simulation
results for alternative optimizers” section. An example is
given in “Example: effects of diuretics on pre-eclampsia”
section.

Simulation results for default settings
The results of our simulations for various values of K ≥ 5
and n are given in Figs. 1, 2 and 3 for the true LOR θ = 0,
pi2 = 0.1, and 0 ≤ τ 2 ≤ 1. This scenario produces sparse
data in the treatment and control arms. The results for
θ = 1, pi2 = 0.1 and for higher probabilities pi2 = 0.2
and pi2 = 0.4 are shown in Figure A4 - Figure A18 in the
Additional file 2. The results were very similar for the
GLMM with exact noncentral hypergeometric-normal
likelihood (NCHGN method) regardless of the used
programme for hypergeometric distribution, see Figure
A1 - Figure A3 in the Additional file 4. Only the results
with the default dFNCHypergeo option are shown in
Figs. 1, 2 and 3 for the NCHGNmethod. The default opti-
mizer “optim” was used throughout this Section unless
stated otherwise.
For all methods, the bias in the estimation of τ 2

(Fig. 1 and Figure A4, Figure A7, Figure A8, Figure
A13, Figure A14 in the Additional file 2), is almost lin-
ear over the range of τ 2, K and n. The bias is positive
for smaller values of τ 2, where the GLMM with exact
noncentral hypergeometric-normal likelihood (NCHGN
method) provides the highest values when n ≤ 100, but
otherwise is negative. The results for smaller sample sizes
(n ≤ 100) differ from those for larger values of n ≥ 250,
where the REML performs the best across the board, and
always better than the DL [20] method. The bias of the
DL method is especially pronounced when K ≥ 10. For
smaller sample sizes, the two main contenders for the

best estimation of τ 2 are the exact NCHGN method and
the REML. The REML is always the best choice when
K = 5 but for the case of pi2 = 0.1, θ = 0, n = 50,
where the NCHGN is better for large τ 2. Similarly, when
K = 10, the NCHGN method is better than the REML
for larger τ 2 and smaller n values when both probabil-
ities are small. The NCHGN method is always a good
choice when K = 30, and is the best for sparse data.
However, the REML is better for larger probabilities, see
Additional file 2: Figure A13 and Figure A14, and the
NCHGN behaves erratically for large sample sizes, as
can be seen in Fig. 4 and is discussed in more detail in
“Computational issues” section. Bias of all the other
methods generally decreases with larger n and with
larger K, but for the GLMM with approximate binomial-
normal likelihood (ABNM), which performs the worst and
appears to be asymptotically biased.
In respect to the estimation of the overall LOR θ̂ , all

methods perform well for larger probabilities (from 0.4)
in at least one arm, Additional file 2: Figure A10 - Figure
A16, although the NCHGN behaves erratically for n =
1000, Additional file 2: Figure A16. The distinctions are
clear only for relatively small probabilities in both arms,
Fig. 2, Additional file 2: Figure A5 and Figure A9. The
estimates of the overall LOR θ̂ are mostly considerably
positively biased. The only exceptions are the DL and
the REML based inverse variance methods for small τ 2,
and the conditional GLMM with approximate binomial-
normal likelihood (ABNM) which often has large negative
bias. Overall, the ABNM has the lowest values of θ̂ , which
is an unexpected advantage for sample sizes up to 250
when pi2 ≤ 0.2, where the conditional GLMM with
exact likelihood, NCHGN, provides the second lowest
but still positively biased, values of θ̂ . The GLMM model
with random intercept, RIM, has the largest positive bias.
Bias increases with larger τ 2, and may be considerable
for large values of τ 2 and moderate n when pi2 ≤ 0.2.
For relatively sparse data and large values of τ 2, the
NCHGN performs somewhat better than the standard
methods DL and REML, which are very similar to each
other. Overall, the biases of the LOR θ̂ are smaller when
piC > 0.1 in comparison to the case of sparse data in
both arms.
The coverage of θ , Fig. 3 and Figure A6, Figure A11,

Figure A12, Figure A17, Figure A18 in the Additional
file 2, is closely related to the bias of its estimation. The
coverage is typically lower than nominal, always for the
NCHGN, and for all but the smallest values of τ 2, below
0.1 or even lower when n is large, for all the other meth-
ods. The RIM has exceptionally low coverage for sparse
data. The coverage is strikingly better when θ = 1, where
it is above 90% for all methods except the NCHGN, but
it is unacceptably low when θ = 0 where it deteriorates
for all methods but the NCHGN with increasing τ 2. The



Bakbergenuly and Kulinskaya BMCMedical ResearchMethodology  (2018) 18:70 Page 8 of 18

Fig. 1 Bias of τ 2 in the REM when pi2 = 0.1, θ = 0, 0 ≤ τ 2 ≤ 1 and n = 50, 100, 250, 1000. Estimation methods are: pluses - unconditional
generalized linear mixed-effects model with fixed study effects (FIM), crosses - unconditional generalized linear mixed-effects model with random
study effects (RIM), circles - a conditional generalized linear mixed-effects model with exact likelihood (NCHGN), triangles - a conditional generalized
linear mixed-effects model with approximate likelihood (ABNM), rhombs - DerSimonian and Laird method (DL) and reverse triangles - restricted
maximum likelihood method (REML). Light grey line at 0
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Fig. 2 Bias of θ in the REM when pi2 = 0.1, θ = 0, 0 ≤ τ 2 ≤ 1 and n = 50, 100, 250, 1000. Estimation methods are: pluses - unconditional
generalized linear mixed-effects model with fixed study effects (FIM), crosses - unconditional generalized linear mixed-effects model with random
study effects (RIM), circles - a conditional generalized linear mixed-effects model with exact likelihood (NCHGN), triangles - a conditional generalized
linear mixed-effects model with approximate likelihood (ABNM), rhombs - DerSimonian and Laird method (DL) and reverse triangles - restricted
maximum likelihood method (REML). Light grey line at 0
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Fig. 3 Estimated coverage of θ in the REM when pi2 = 0.1, θ = 0, 0 ≤ τ 2 ≤ 1 and n = 50, 100, 250, 1000. The coverages are given at the nominal
95% level. Estimation methods are: pluses - unconditional generalized linear mixed-effects model with fixed study effects (FIM), crosses -
unconditional generalized linear mixed-effects model with random study effects (RIM), circles - a conditional generalized linear mixed-effects model
with exact likelihood (NCHGN), triangles - a conditional generalized linear mixed-effects model with approximate likelihood (ABNM), rhombs -
DerSimonian and Laird method (DL) and reverse triangles - restricted maximum likelihood method (REML). Light grey line at 0.95
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Fig. 4 Bias of τ 2 in the REM when pi2 = 0.4, θ = 1, 0 ≤ τ 2 ≤ 1 and n = 50, 100, 250, 1000. Estimation methods are: pluses - unconditional
generalized linear mixed-effects model with fixed study effects (FIM), crosses - unconditional generalized linear mixed-effects model with random
study effects (RIM), circles - a conditional generalized linear mixed-effects model with exact likelihood (NCHGN), triangles - a conditional generalized
linear mixed-effects model with approximate likelihood (ABNM), rhombs - DerSimonian and Laird method (DL) and reverse triangles - restricted
maximum likelihood method (REML). Light grey line at 0.95

NCHGN demonstrated the worst coverage at low values
of τ 2, and a relatively stable, but still too low, coverage
under large heterogeneity. The coverage is very low, even
for large sample sizes, when the number of trials K = 5

and improves for larger values of K, where increase in
sample sizes also improves coverage. The standard REML
and DL perform equally or somewhat better than all the
GLMMmethods in all possible scenarios.
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Fig. 5 Proportion of convergence in the conditional generalized linear mixed-effects model with exact likelihood. These proportions of
convergence are for pi2 = 0.1, pi2 = 0.2, pi2 = 0.4, θ = 0, and 0 ≤ τ 2 ≤ 1 for sample sizes n = 50, 100, 250, 1000 in each arm

Computational issues
The convergence rates of the conditional GLMM
with exact noncentral hypergeometric-normal likelihood
(NCHGN) and the random intercept GLMM (RIM)
methods implemented in the procedure rma.glmm in
metafor were rather low, see Figs. 5 and 6 for the NCHGN,
and Figure A19 and Figure A20 in the Additional file 5

for the RIM method. For the NCHGN method, the
convergence is the lowest at τ 2 = 0, where it can be as
low as 40%, whereas for the RIM it is the lowest at τ 2 = 1.
For both methods, the convergence is the worst for small
probabilities, and improves for large sample sizes.
Another important computational issue is the non-

stable performance of the NCHGN for large sample
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Fig. 6 Proportion of convergence in the conditional generalized linear mixed-effects model with exact likelihood. These proportions of
convergence are for pi2 = 0.1, pi2 = 0.2, pi2 = 0.4, θ = 1, and 0 ≤ τ 2 ≤ 1 for sample sizes n = 50, 100, 250, 1000 in each arm

sizes when the default “optim” optimizer is used. Some
datasets result in anomalously large estimated values
of τ 2 and, consequently, θ . This behavior is illustrated
by Fig. 4 (this is a blow-out of Figure A14 in the
Additional file 2).
We provide an example of a simulated dataset causing

this problematic behaviour in Table 2. The results of the

NCHGN with all the available optimizers in rma.glmm
and also of the standard REM methods are provided in
Table 3 and R code is given in Additional file 6. All the
GLMMs except the ABNM and NCHGN with “optim”
result in very similar estimates of τ̂ 2 = 0.31, and the
LOR θ̂ ≈ 1.55. The standard REM methods provide
similar values. However, the NCHGN used with “optim”
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Table 2 Simulated data from REM with piC = 0.4, θ = 1,
τ 2 = 0.6, K = 5 and n1i = n2i = 1000

y1i n1i − y1i n1i p1i y2i n2i − y2i n2i p2i θ OR

1 726 274 1000 0.726 401 599 1000 0.401 1.376 3.958

2 741 259 1000 0.741 406 594 1000 0.406 1.432 4.186

3 892 108 1000 0.892 378 622 1000 0.378 2.609 13.591

4 630 370 1000 0.63 415 585 1000 0.415 0.876 2.400

5 745 255 1000 0.745 404 596 1000 0.404 1.461 4.310

results in τ̂ 2 = 1169.06 and θ̂ = 35.68. Such high val-
ues of biases even for one observation would considerably
increase the mean biases as can be seen in Fig. 4. The rea-
son for this has to do with a bug in “optim” as the other
optimizers provide consistent results. We also tried to
reduce sample sizes in this simulated data by considering
datasets with all the values of yji and nji reduced by a
factor of a (and taking an integer part if needed), for
a = 1.1, 1.2, 2, 3, 4, 5, 6, 9, 10. For all these smaller datasets,
the NCHGN method with the “optim” optimizer either
has not converged (for a = 2, 6, 8 and 10), or resulted
in consistent estimates. We also tested other available
in rma.glmm optimizers on these smaller datasets.
They all converge every time, although the optimizer
“uobyqa” provides very different estimates of τ 2 and θ

when a = 6.
To check whether the results of our simulations are

affected by the use of the default optimizer “optim”, we
performed additional simulations (1000 repetitions per
configuration) for the problematic combination of pi2 =
0.4, θ = 1, and also for pi2 = 0.1, θ = 1 for K = 5 and
10 and τ 2 ∈[ 0, 1] using all the other available optimizers.
However, we discovered that the optimizer “uobyqa” just
hangs when the other optimizers report non-convergence,

and we did not obtain further results from it. See the
Additional file 7 for an example.
For the first combination of parameters, pi2 = 0.4, θ = 1,

the results on the convergence are summarised in Addi-
tional file 5: Figure A21, and for pi2 = 0.1, θ = 1 in
Additional file 5: Figure A25. Results on the convergence
are similar for both configurations. The convergence is
always the worst at τ 2 = 0 and slowly improves for higher
τ 2 and for larger sample sizes. The convergence rates of
the “nlminb” are similar to that of the “optim”, about 40%
at zero, but the “bobyqa” and “newbyqa” converge con-
siderably more often, with 60 to 70% rates at zero. We
report the results on the bias of τ 2, and the bias and cover-
age of θ for these two configurations when the alternative
optimizers are used in the next Section.

Simulation results for alternative optimizers
This Section summarises the results for the alternative
optimizers when K = 5 and K = 10. For pi2 = 0.4, θ = 1
the results on the bias of τ 2 and θ , and on the cover-
age of θ are summarised in Figure A22 - Figure A24 in
the Additional file 5. When the sample sizes are 50 or
100, the “optim” behaves similarly to all the other opti-
mizers in respect to the bias of the estimation of τ 2, but
only this optimizer is unstable for larger sample sizes. For
all the other optimizers, the bias of the estimation of τ 2

is very similar, and does not much depend on the sam-
ple size n. The same is mostly true for the estimation
of θ , although the “nlminb” is not stable at τ 2 = 0 for
n = 1000.
However, the results of the coverage of θ , Additional

file 5: Figure A24, are strikingly different from those
obtained when using the “optim” (Additional file 2:
Figure A18). The coverage is approximately 85% with
the “optim”, but is considerably lower, especially for τ 2

Table 3 Meta-analysis of simulated data

Model Method Optimizer Hetero LOR L U Length OR
geneity of CI

GLMM FIM 0.3106 1.5477 1.0513 2.0442 0.9929 4.700646

GLMM RIM 0.3021 1.5446 1.0548 2.0344 0.9796 4.686097

GLMM NCHGN “optim” 1169.0647 35.6833 26.9652 44.4014 17.4362 3.14 ∗ 1015

GLMM NCHGN “nlminb” 0.3113 1.5472 1.0502 2.0442 0.994 4.698297

GLMM NCHGN “bobyqa” 0.3113 1.5472 1.0502 2.0442 0.994 4.698297

GLMM NCHGN “newuoa” 0.3113 1.5472 1.0502 2.0442 0.994 4.698297

GLMM NCHGN “uobyqa” 0.3113 1.5472 1.0502 2.0442 0.994 4.698297

GLMM ABNM 0.0160 0.6177 0.4943 0.7411 0.2468 1.854657

FEM 1.4540 1.3671 1.5409 0.1738 4.280201

REM DL 0.3159 1.5469 1.0463 2.0474 1.0011 4.696887

REM REML 0.3921 1.5476 0.9916 2.1035 1.1119 4.700176

Estimates and confidence intervals (CIs) for the heterogeneity parameter τ 2, for the overall log-odds-ratio (LOR) and for the overall odds ratios (OR); GLMM is the generalized
linear mixed model, REM is the random-effects model and FEM is the fixed-effect model. L and U are the lower and upper limits of the respective 95% confidence intervals
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near zero, for all the other optimizers. Examining the
individual simulated datasets, we discovered that often,
even when the NCHGN converges, the output includes
reasonable estimates of τ 2 and θ , but anomalously pro-
vides low values of the standard error of θ , and therefore
extremely narrow confidence intervals. This finding is also
discussed by [21].
The results for pi2 = 0.1, θ = 1 are provided in

Additional file 5: Figure A26 - Figure A28. The bias in
the estimation of τ 2 is somewhat improved for large
sample sizes by the “newbyqa”, but both the “bobyqa” and
“nlminb” are worse at small n and small τ 2 values. The
estimation of θ using all the optimizers results in some-
what higher biases for small n. Once more, the confidence
intervals for θ have very low coverage for small values
of τ 2.
We, therefore, believe that the results of the NCHGN

in respect to the bias of the estimation of τ 2 and θ for
n ≤ 100 are not considerably affected by the choice of the
optimizer. The same is true for the results for larger sam-
ple sizes whenever the “optim” behaves consistently. The
“optim” also appears to be the best optimizer when τ 2 is
low. The coverage of θ is the best with the “optim”. Over-
all, we agree with the choice of the “optim” as the default
optimizer.

Example: effects of diuretics on pre-eclampsia
Data from nine trials that reported the effect of diuret-
ics on pre-eclampsia [36] were studied by Hardy and
Thompson [37], Biggerstaff and Tweedie [38], Turner et
al. [16], Viechtbauer [35], Kulinskaya and Olkin [39], and
Bakbergenuly and Kulinskaya [10].
The data are shown in Table 4 and were re-analysed

here in order to compare the results from the four GLMM
models and additionally, the standard fixed effect and ran-
dom effects models with inverse-variance weights. Except
for the studies 3, 4 and 9, the incidence of pre-eclampsia in
both arms is below 0.15. The results are shown in Table 5.

Table 4 Data for meta-analysis on effects of diuretics on
pre-eclampsia, [36]

study yi1 yi2 ni1 ni2 pi1 pi2

1 14 14 131 136 0.1068 0.1029

2 21 17 385 134 0.0545 0.1268

3 14 24 57 48 0.2456 0.5000

4 6 18 38 40 0.1579 0.4500

5 12 35 1011 760 0.0118 0.0460

6 138 175 1370 1336 0.1007 0.1310

7 15 20 506 524 0.0296 0.0382

8 6 2 108 103 0.0555 0.0194

9 65 40 153 102 0.4248 0.3921

The first two models are the GLMMs with fixed and ran-
dom study effects given by (2) and (5), respectively. The
second twomodels are the conditional GLMMswith exact
and approximate likelihood given by (8) and (9). Both the
DL [20] and REML estimation results are provided for the
REM.
The first three GLMMs give very similar estimates of

the between-study variance τ 2, varying from 0.254 to
0.264. The GLMM with approximate likelihood (ABNM)
resulted in a noticeably lower value, 0.165. The standard
REM results in 0.230 for the DerSimonian-Laird (DL), and
0.300 for the REML estimate of τ 2, respectively. The use of
the REML in the REM was recommended by Viechtbauer
[40] as the least biased and the most efficient estimate of
τ 2. However, Turner et al. [16] analysed the current exam-
ple and showed that τ̂ 2REML is biased downward. We agree
with their view and believe that all these estimates of τ 2

are too low, on the basis of the results of our simulations.
For the estimation of the LOR, the first three GLMMs

give very similar estimates, −0.513 and −0.516, and these
estimates are very close to those from the REM, −0.517
and −0.518. Once more, the estimate from the condi-
tional GLMM with approximate likelihood is very dif-
ferent, −0.434. However, this estimate may well be very
close to the true value. In our simulations, this model pro-
vided a consistently lower estimate of the LOR than the
three other GLMMs, and for the similar sample sizes (an
average arm size 386) and heterogeneity of approximately
0.25 in this example, the ABNM was almost unbiased
in the estimation of the LOR. The widths of the confi-
dence intervals for the LOR correspond to the estimated
τ 2 values; the REM with the REML has the widest confi-
dence interval, followed by the GLMMwith random study
effects (RIM) and the conditional GLMM with exact like-
lihood (NCHGN). The approximate ABNM model gives
the narrowest confidence interval, however, our simula-
tions suggest that it may well have the best coverage when
θ = 0 and the worst coverage when θ �= 0.

Discussion
We examined by simulation the performance of gener-
alized linear mixed models with exact and approximate
likelihood, when applied to the meta-analysis of log odds
ratios. The models were applied to data simulated from a
binomial-normal model; that is, from a pair of binomial
distributions within each study, with the logarithm of odds
ratio normally distributed across studies.
When the sample sizes are small and binary out-

comes are sparse, it is well known that the standard
methods of meta-analysis have considerable bias in the
estimation of both τ 2 and θ . This is also demon-
strated in our simulations. According to Stijnen et al.
[3], the generalized linear mixed models were sup-
posed to resolve this issue. In particular, a conditional
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Table 5 Meta-analysis of diuretics in pre-eclampsia

Model Method Hetero L U LOR L U Length OR L U
geneity of CI

GLMM FIM 0.254 -0.513 -0.923 -0.104 0.819 0.599 0.398 0.901

GLMM RIM 0.264 -0.516 -0.930 -0.102 0.828 0.597 0.395 0.903

GLMM NCHGN 0.260 −0.147(0) 0.667 -0.513 -0.927 -0.100 0.827 0.599 0.396 0.905

GLMM ABNM 0.165 -0.434 -0.777 -0.091 0.686 0.648 0.460 0.913

FEM -0.398 -0.573 -0.223 0.530 0.672 0.564 0.800

REM DL 0.230 0.072 2.202 -0.517 -0.916 -0.117 0.799 0.596 0.400 0.889

REM REML 0.300 0.043 1.475 -0.518 -0.956 -0.080 0.876 0.596 0.384 0.923

Estimates and confidence intervals (CIs) for the heterogeneity parameter τ 2, for the overall log-odds-ratio (LOR) and for the overall odds ratios (OR); GLMM is the generalized
linear mixed model, REM is the random-effects model and FEM is the fixed-effect model. L and U are the lower and upper limits of the respective 95% confidence intervals

generalized linear mixed model with an exact noncen-
tral hypergeometric-normal likelihood was suggested as
an alternative to the standard random effects model. Our
simulations showed that the standard REML-based esti-
mation works well for large studies (from n = 250)
and/or large event probabilities, but the NCHGNmethod
provides considerably less biased estimation of the hetero-
geneity variance τ 2 than all the other methods, including
the DL and the REML methods, when the data are sparse,
the sample sizes are small, and especially so for the large
number of studies or for moderate to large values of
τ 2. However, our simulations demonstrated that the esti-
mates of the LOR θ are considerably positively biased for
all the studied methods, including the conditional GLMM
with an exact noncentral hypergeometric likelihood, when
θ = 0. These biases, combined with the underestimation
of the standard error of θ by the NCHGN and ABNM,
resulted in coverage lower than the nominal confidence
level of 0.95 for θ . We did not study the coverage of wider
confidence intervals based on t critical values, as these
intervals would still provide lower than nominal cover-
age due to aforementioned biases. One of the limitation
of the conditional GLMM with approximate likelihood is
that the assumption of small total numbers of events rel-
ative to the total group sizes is too strong and rare in
real data meta-analysis of binary outcomes. In our simu-
lations, this method performed considerably worse than
the exact method for the estimation of τ 2, and we do
not recommend it. The two other models, with the fixed
and the random study effects, were somewhere between
the two conditional methods, although the random inter-
cept model resulted in the largest positive bias for θ , and
therefore cannot be recommended. The REML method
performed the best in respect to the coverage of the log
odds ratio θ .
The R package metafor can use either of two meth-

ods for fitting the conditional generalized linear mixed
model with exact likelihood. The default method uses

the density function dFNCHypergeo from the Biase-
dUrn package. The second method uses the density
function dnoncenhypergeom from theMCMCpack pack-
age. The stability and performance of the two meth-
ods are similar. There are computational issues to
do with the default optimizer “optim” used in the
NCHGN method when the sample sizes are large, espe-
cially when the between-studies variance τ 2 is consid-
erable. However, the other optimizers are also dogged
by computational issues, and overall perform worse.It
would be certainly of interest to repeat our simulations
using SAS.

Conclusions
To summarise, even though there is no uniformly best
method for estimating the between-study variance and
overall effect measure, we recommend using the REML
for the point and interval estimation of θ , whereas the
NCHGN may be used for the estimation of τ 2 when the
sample sizes are small and the data are sparse. When
the sample sizes are large, we recommend using the REML
instead of the NCHGN for the estimation of τ 2. Finally, no
methods perform well when the number of studies is very
small (K = 3), especially for sparse data, but the REML is
somewhat better overall.
The design of our simulations, which used equal sample

sizes and equal probabilities in all studies may be consid-
ered a limitation. However, we would not expect better
performance of the GLMMs in a more realistic scenario.
At the moment, it is difficult to recommend the use of
GLMMs in the practice of meta-analysis.
We believe that the bias in the estimation of θ in

the NCHGN model is the result of the exponential
transformation of the random effect in the noncentral
hypergeometric-normal model (8). Similarly, the biases
in the FIM and the RIM may be due to the expit trans-
formation of the random effect necessary to obtain the
probability of an event in the treatment group. The
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biases of order 1/N are well known in fixed effect and
mixed effects models. Nemes et al. [41] show that logis-
tic regression overestimates the odds ratio because of
bias of order 1/N in studies with small and moderate
sample sizes. Kosmidis et al. [42] studied bias of order
1/N in the maximum-likelihood estimates of the over-
all effect measure and the between-study variance under
the normal random-effects model. However, the transfor-
mation biases in the mixed effects models are of order
1, as discussed in [6]. The problem of finding reasonably
good methods of the meta-analysis for binary outcomes is
still open.
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