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Abstract

Background: In many studies the information of patients who are dying in the hospital is censored when examining
the change in length of hospital stay (cLOS) due to hospital-acquired infections (HIs). While appropriate estimators of
cLOS are available in literature, the existence of the bias due to censoring of deaths was neither mentioned nor
discussed by the according authors.

Methods: Using multi-state models, we systematically evaluate the bias when estimating cLOS in such a way. We
first evaluate the bias in a mathematically closed form assuming a setting with constant hazards. To estimate the cLOS
due to HIs non-parametrically, we relax the assumption of constant hazards and consider a time-inhomogeneous
Markov model.

Results: In our analytical evaluation we are able to discuss challenging effects of the bias on cLOS. These are in
regard to direct and indirect differential mortality. Moreover, we can make statements about the magnitude and
direction of the bias. For real-world relevance, we illustrate the bias on a publicly available prospective cohort study
on hospital-acquired pneumonia in intensive-care.

Conclusion: Based on our findings, we can conclude that censoring the death cases in the hospital and considering
only patients discharged alive should be avoided when estimating cLOS. Moreover, we found that the closed
mathematical form can be used to describe the bias for settings with constant hazards.
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Background
Change in length of stay (cLOS) in hospital is a key out-
comewhen studying the health impact and economic con-
sequences of hospital acquired infections (HIs). A patient
with an HI is likely to stay longer in the hospital, incur-
ring extra costs. Thus, appropriately quantifying the cLOS
in hospitals (in days) due to HIs is crucial for economical
and policy decision making. However, a correct estima-
tion of cLOS is challenging and prone to bias. This is
not only because HIs are time-dependent covariates but
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also because there are two possible controversy outcomes,
namely in-hospital death and discharge from the hospital
alive.
Barnett et al. [1] used a multi-state model to show the

occurrence of substantial bias in estimating cLOS when
studies fail to treat HIs as a time-dependent exposure (this
bias is known as ’time-dependent bias’).
Brock et al. [2] found that the way in which mor-

tality is handled while investigating other time-related
outcomes (such as discharge alive) influences the esti-
mate of cLOS. They contrasted two ad-hoc approaches.
In the first approach they restricted the analysis to the
patients who survived. In the second approach, individu-
als who died were right-censored at the longest possible
follow-up time. They concluded that the two methods can
potentially give different results for the same data. Brock
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et al. argue that this could lead to conflicting conclu-
sions, unless the investigators are aware of the differences
between the estimators.
In many studies patients who are dying in the hos-

pital are censored at the time of death to study the
cLOS in hospitals due to HIs. One recent example is a
study by Noll et al. [3]. They calculated cLOS by cen-
soring the outcome of patients who died in the hospital,
had ventilator dependent respiratory failure, or with-
drew from the study. Another recent study by Guerra
et al. [4] censored the patients who were not discharged
from the hospital to their usual residence within the
study period, namely death cases or patients that were
transferred, to investigate the cLOS due to HIs. Zuniga
et al. [5] censored death cases and analysed the cLOS
considering information only of the patients who were
discharged alive.
However, death in the hospital is informative censoring

and should be treated in a competing risks framework as
proposed by Schulgen et al. [6]. In this article, we show that
treating death-cases in the hospital as non-informative
censoring can lead to biased estimates of cLOS.
It may be argued that the mortality rates in hospitals

are usually not very high, as most of the patients are dis-
charged alive. Thus, using only the information of the
patients discharged alive might lead to reasonable esti-
mation of cLOS in many cases. However, the efficiency
of such an estimator might be questionable. Moreover, in
intensive-care units (ICUs) where HIs are a serious prob-
lem, the mortality can reach up to 30-50%. This is for
instance the case for ventilated and critically-ill patients.
Since cLOS is often used to calculate costs as costs are
driven by bed days, we argue that the costs of a hospital
stay are not affected by the status of the patient at the end
of stay.
A reason for censoring the death cases may be the

wish to give cLOS (and cost) estimates for a hospital-
population which is discharged alive. Therefore, we pro-
pose to follow the approach by Allignol et al. [7]. They
suggest to first use the combined endpoint ’discharge
(dead or alive)’ to calculate the overall cLOS (which can
also be used for a cost analysis) and second, to distinguish
the impact of HIs on cLOS between patients discharged
alive and patients deceased. Based on this approach, stud-
ies censoring the patients at the time of their death are
prone to bias.
To understand and quantify the difference of the com-

peting risks and the censoring approach, we assume the
simplified setting of constant hazards. For this setting, we
derive an analytical expression for the difference of cLOS
estimated as proposed by Allignol et al. [7] and cLOS
estimated by censoring the deceased patients. This ana-
lytical expression can be used to investigate and analyse
the magnitude of the bias that occurs when estimating

cLOS by censoring patients that die. Motivated by the
work of Joly et al. [8] and Binder and Schumacher [9], we
systematically investigate the bias with respect to “dif-
ferential mortality”. In their setting differential mortal-
ity is a term which defines the difference in the rate
of mortality of the patients with and without the infec-
tion. They consider an illness-death model where HI is
an intermediate event between admission and death. In
our setting we have two competing outcomes (death in
hospital or discharge alive). HI is an intermediate event
between admission and death or discharge which ever
comes first. Therefore, we have considered two kinds
of “differential mortality” in the time-constant hazards
set up, which affects the absolute mortality risk of a
patient: 1. “direct differential mortality”, when the death
hazards with and without the infection differ while the
discharge hazards with and without the infection remain
the same. 2. “indirect differential mortality”, when dis-
charge hazard rates with and without the infection differ
while death hazards with andwithout the infection remain
the same. The type of differential mortality can be stud-
ied with cause-specific Cox proportional hazards mod-
els for death and discharge with HI as time-dependent
covariate.
Moreover, we compare the estimate of cLOS

from the biased model with the cLOS attributed to
patients discharged alive. To do so, we use the for-
mula derived by Allignol et al. [10]. They propose a
simple method to split the extra days due to HIs in
the hospital into days attributable to patients that die
and attributable to those that are discharged alive.
This can be done for both homogeneous Markov
models and for time-inhomogeneous Markov mod-
els. The methods for the time-inhomogeneous model
are implemented in the R-packge etm, developed by
Allignol et al. [7].
In “Methods” section part 1 we shortly discuss the for-

mulas to estimate cLOS with the two approaches under
the constant hazards assumption. In “Methods” section
part 2, we aim to provide a proper analytical expression
of the potential bias in estimating the cLOS due to HIs
when the information on the death cases in the hospital is
censored. Assuming a time-homogeneous Markov model,
where the transition hazards are time-independent, we
systematically explore the amount and direction of the
bias. In “Results and discussion” section, we illustrate the
real-world relevance of the bias by analysing a random
subset of the SIR-3 prospective cohort study on hospi-
tal acquired pneumonia in ICUs in Berlin, Germany. For
the real data analysis, we estimate the cLOS by apply-
ing the method for time-inhomogenuous Markov models
developed by Allignol et al. [7], which is based on the
Aalen-Johansen estimator. The paper ends with a short
discussion in “Conclusion” section.
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Methods
Multi-state model for hospital infections
We focus on estimating the cLOS in the hospital due
to HIs. We study the amount of bias which can occur
when estimating the cLOS by treating patients that die as
censored.
To do so, we describe the data setting with a multi-

state model as proposed by e.g. [7]. Figure 1 displays this
model (model A), which is a multi-state model with states,
0 = admission, 1 = infection, 2 = discharge alive and
3 = death. For simplicity we assume that the hazard rates
are constant over time so that we can focus on the key
points concerning the censoring of the death cases. We
denote αij(t) = αij as the hazard of moving from state “i”
to state “j”. An example hazard is,

α01(t)·�t≈P(HI acquired by time t+�t|no HI up to time t).

The actual hazard α01(t) is obtained by taking limits as
�t → 0. We define the hazard rates, α01 = infection haz-
ard rate; α02 = discharge hazard rate without infection;
α03 = death hazard rate without infection; α12 = discharge
hazard rate with infection and α13 = death hazard rate
with infection. Under a constant hazards assumption, one
estimates αij by using the maximum likelihood estimator

α̂ij = number of i → j transitions
person-time in state i

. (1)

Under this model the mean sojourn time of an infected
patient in the hospital is 1

α12+α13
and of an uninfected

patient it is 1
α01+α02+α03

. We write Xt for the state occu-
pied by the patient at time t. At a time point t, the patient

status Xt ∈ {0, 1, 2, 3}. By definition, all individuals start
in the initial state 0 of being alive in the hospital and free
of HI, i.e., X0 = 0. We denote T as the smallest time at
which the process is in an absorbing state, T = inf{t : Xt ∈
{2, 3}}. Eventually, end of the hospital stay occurs when
XT ∈ {2, 3}.
To evaluate the impact of HIs on the subsequent hos-

pital stay, Schulgen and Schumacher (1996) [6] suggested
to consider the difference of the expected subsequent stay
given infectious status at time s, φ(s) = E(T |Xs = 1) −
E(T |Xs = 0). Schulgen and Schumacher called φ(s) the
’expected extra hospitalization time of an infected indi-
vidual dependent on time s’. In our setting, the process
follows a homogeneous Markov model. Allignol et al. [7]
studied the cLOS for model A (Fig. 1) mathematically and
found that cLOS does not depend on the time s in the
homogeneous case. The cLOS can therefore be expressed as

CLOStrue = φ(s) =
[

α02 + α03
α12 + α13

− 1
]

× 1
α01 + α02 + α03

(2)

Furthermore, Allignol et al. provided a formula to sepa-
rate the estimation of the cLOS for the discharged patients
and the deceased patients under the constant hazard set
up. This formula is given by

CLOS = CLOS(due to discharged alive)
+ CLOS(due to deaths)

= α12
α12 + α13

× CLOS + α13
α12 + α13

× CLOS
(3)

Fig. 1Model A: The four state Multistate Model; 0 is “Admission” without hospital acquired infection (HI); 1 is hospital acquired “Infection”; 2 is the
status of the patients who are “Discharged Alive” and 3 is the “Death” of the patient in the hospital. The constant hazard rates, α01 is the hazard rate
to acquire the hospital infection during the hospital stay; α02 is the hazard rate to be discharged alive without the HI; α03 is the hazard rate to dead
without the HI and α12 is the hazard rate to be discharged alive after the HI; α13 is the hazard rate to be dead after the HI
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Hence, we can separately estimate cLOS attributable to
patients discharged alive and cLOS attributable to death
cases by plugging in the estimates of the constant hazards
obtained with (1).
Model B results frommodel Awhen treating death cases

as censored. In contrast to model A, patients that die
are assumed to remain under the same risk of being dis-
charged alive as patients that are still in the hospital.While
the discharge hazards of model A and B are the same, the
absolute chance of discharge alive in model A depends on
the competing risk death and therefore differs from the
discharge probability modelled in model B. To derive the
cLOS that results from model B, we apply the formula
proposed by Allignol et al. which is then

CLOS∗ =
[

α02
α12

− 1
]

1
α01 + α02

. (4)

Analytic expression for the bias
Our focus is on investigating the bias in cLOS when the
information of the patients that die is censored. Using the
formulas in Eqs. (2) and (4), we deduce that the bias in
cLOS due to censoring is,

CLOS∗ − CLOStrue = α03(α02 − α12)

α12(α01 + α02 + α03)(α01 + α02)

+ (α02α13 − α03α12)

α12(α01 + α02 + α03)(α12 + α13)

=α03(α02−α12)

α12α0·α∗
0·

+ (α02α13−α03α12)

α0·α1·α12
,

(5)

where α0· = α01 + α02 + α03, α∗
0· = α01 + α02, α1· =

α12 + α13 and α∗
1· = α12. The formula shows that the bias

depends on the product of the mean LOS in state 0 (α0.)
and a term depending on all hazards. The second term
determines the direction of the bias which could be pos-
itive or negative. In the following, we study the bias in
specific settings which we call differential mortality. We
define “direct differential mortality” as the setting where
the discharge hazards α02 and α12 are the same but the
death hazards α03 and α13 differ. In contrast, “indirect
differential mortality” is described by equal death haz-
ards but different discharge hazards. Of note, due to the
competing risk situation both settings influence - directly
or indirectly - the overall hospital mortality. We define
�1 = α13 − α03 and �2 = α02 − α12 and emphasize that
both quantities are likely to be positive because infected
patients often have a higher mortality hazard and a lower
discharge hazard, i.e., they stay longer in the hospital.
A formal mathematical derivation of the bias can be

found in Additional file 1.

No differential mortality
The bias predominately depends on the hazard rates. In
the following we study the magnitude of the bias under
differential mortality. When there is no differential mor-
tality, that is, no difference between the death hazards
with and without infection and no difference between the
discharge hazards with and without infection, �1 = α13−
α03 = 0 and �2 = α02 − α12 = 0, the bias becomes 0.
The following formula can be used to obtain an idea of the
magnitude and the direction of the bias for given values of
the hazard functions when the death cases are censored.

Direct differential mortality
Under direct differential mortality, there is a non-zero
difference between the death hazards with and without
infection while the discharge hazards with and without
infection are the same, that is �2 = α02 − α12 = 0 and
�1 = α13 − α03 �= 0. Then, the bias can be expressed as

CLOS∗ − CLOStrue = (α13 − α03) · 1
α0·

· 1
α1·

(6)

= �1 · 1
α0·

· 1
α1·

.

The bias changes with �1. Moreover, as 1
α0· and

1
α1· are

the average sojourn time in state 0 and state 1 of unin-
fected and respectively infected patients, the bias also
increases when the average sojourn times increase.

Indirect differential mortality
Under indirect differential mortality, there is a non-zero
difference between the discharge hazards with and with-
out infection while the death intensities with and without
infection are the same, that is �1 = α13 − α03 = 0 and
�2 = α02 − α12 �= 0. Then, the bias is

CLOS∗−CLOStrue=(α02 − α12)· 1 · 1
α1·

· α03 (α0· + α12)

α12α∗
0·

= �2 · 1
α0·

· 1
α1·

· α03 (α0· + α12)

α12α∗
0·

. (7)

The bias changes with �2. The bias also increases with
the average waiting time in state 0 and in state 1. Again,
in most of the real world situations, we observe �2 > 0,
which means the infected patients have lower discharge
rates than the uninfected ones. Then, the bias is positive
which leads to an overestimation of the cLOS.
The derived analytical expressions demonstrate for a

simplified setting (constant hazards, differential mortal-
ity) how estimation of cLOS is influenced when informa-
tion of the death cases is censored. Only in the situation
where HIs have neither an effect on the death hazards
nor on the discharge hazards, the bias is avoided. Other-
wise, the bias increases with increasing magnitude of the
differential mortality.
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Results and discussion
To show the real world relevance of our findings, we
apply the method to a data example. The constant hazards
assumption is a facilitating way to compare the estimands
of cLOS resulting from model A and model B. However,
for real data application it is often too restrictive. There-
fore, in our data example we compare models A (Fig. 1)
and B (Fig. 2) both under the constant hazards assumption
(time-homogeneous Markov model) and more generally
under a time-inhomogeneous Markov model.
We consider a subset of the SIR-3 cohort study from

the Charite university hospital in Berlin, Germany, with
prospective assessment of data to examine the effect of
HIs in intensive care (Beyersmann et al. 2006a) [11]. The
aim of this study was to investigate the effect of pneu-
monia which may be acquired by the patients during
their stay in the ICU. The data is publicly available in
the format of los.data from the etm R package. Briefly,
los.data includes 756 patients who are admitted to the
ICU between February 2000 and July 2001. After having
been admitted to the ICU, 124 (16.4%) patients acquired
pneumonia (infection) in the hospital. Among those who
got infected, 34 (27.4%) patients died. Overall, 191 patient
died after ICU admission which is 25.3%. None of the
patients were censored.
For the analysis, we first modify the data structure such

that it corresponds to model A. Moreover, to analyze the

Fig. 2Model B: Multistate Model resulting from censoring the death
cases; 0 is the “Admission” state; 1 is HI; 2 is the status of the patients
who are “Discharged Alive” and information on rest of the patients are
“Censored”. The constant hazard rates that can be calculated from the
model, α01 is the hazard rate to acquire a HI infection during the
hospital stay; α02 is the hazard rate to be discharged alive without the
HI; and α12 is the hazard rate to be discharged alive after the HI

cLOS under the “censored model” (model B), the informa-
tion of the patients who died is censored at the time of
their death. Table 1 shows an extract of the dataset under
each model.
To obtain first insights into the data structure, we esti-

mate the cause-specific cumulative hazards for model A
(shown in Fig. 3). The graph indicates that the cumula-
tive discharge hazards are not straight lines (which implies
that they are not constant). Moreover, we observe that
the discharge hazard is consistently reduced for patients
with an HI. The cumulative hazards are estimated using
the R-package mvna, developed by Allignol et al. (2008)

Table 1 Extract of the data showing the artificial censoring of the
patients who died in the hospital at the time of their death,
denoted by “cens”. It shows the patient identification number
(“id”), transition state (“from” and “to”), time taken by the patient
to move from state 0 to the current state “to” is given by “time”.
State “1” defines when the patient is infected, state “2” defines
when the patient is discharged alive and in model A, state “3”
defines death of the patient at the hospital while the same
patients are artificially censored in model B

Id From To Time

Model A

22 0 1 4

22 1 2 16

29 0 1 6

29 1 3 22

.. .. .. ..

245 0 2 28

250 0 2 9

.. .. .. ..

4 0 3 11

17 0 3 4

.. .. .. ..

.. .. .. ..

Model B

22 0 1 4

22 1 2 16

29 0 1 6

29 1 cens 22

.. .. .. ..

245 0 2 28

250 0 2 9

.. .. .. ..

4 0 cens 11

17 0 cens 4

.. .. .. ..

.. .. .. ..
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Fig. 3 Estimated Cumulative hazards rates in the first 80 days for the multi-state models in Figs. 1 and 2. The slope of each line corresponds to the
actual hazard rate, e.g a straight line would mean a constant hazard rate. The left figure shows the cumulative hazard functions for model A, when
death is considered as competing event. The right figure corresponds to that of model B, when the patients are censored at the time of death

[12] based on the Nelson-Aalen estimator. We also esti-
mated the cumulative hazard rates for model B where
the patients are censored at the time of their death (also
shown in Fig. 3). We can clearly see that the censoring
does not affect the other hazard rates. This means the dis-
charge hazards as well as the infection hazard of model
A and B are the same. Note that pneumonia appears to
have no effect on the death hazard. However, this does
not imply that pneumonia has no effect on mortality. The
reason is that pneumonia reduces the discharge hazard
as a consequence patient with pneumonia stay longer in
the ICU. As a consequence, more patients with pneumo-
nia are observed to die in the ICU than patients without
pneumonia. The effects of HI on the death and discharge
rates can be estimated with two cause-specific hazards
model (for death and discharge). The indirect effect on
mortality due to a decreased discharge hazard is com-
monly observed for hospital-acquired infections [13, 14].

Data analysis on the effect of censoring on the estimated
extra length of stay
In this section we estimate the cLOS of the SIR-3 data
sample. We first use the non-parametric approach for
time-inhomogeneous Markov models followed by the
parametric approach assuming the hazard rates of the
dataset are constant. In both approaches we estimate the
cLOS by describing the data with model A and model B
respectively. Then we calculated the magnitude of the bias
occurring in model B.
Moreover, we distinguish the cLOS obtained from

model A between patients being discharged alive and
patients that die. This way we can investigate how
many extra ICU days are attributable to patients being
discharged alive. This quantity is also compared to
the biased model where the cLOS attributable to dis-
charged patients is estimated by treating patients that die
as censored.
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Non-parametric model
We estimate the difference in cLOS associated with HIs
within the framework of model A (no censoring of death
cases) and model B (censoring of patients at the time
of their death) by using the R-package etm. The pack-
age is based on computing the Aalen-Johansen estima-
tors assuming a time-inhomogeneous Markov model. For
model A, the estimated cLOS due to HIs is greater for ear-
lier days (see the lower graphs in Fig. 4). The average cLOS
over all days is calculated by weighting the differences in
length of stay on each day. This gives an estimated cLOS
of 1.975 days. The corresponding weight distributions are
also illustrated in Fig. 4. The average expected cLOS esti-
mated after censoring the information of the patients at
the time of their death is 0.446 days (model B). So the dif-
ference in the cLOS estimated frommodel B and model A
using the R package etm is 1.529 days.
We note in Fig. 4 that for model B the estimate for the

cLOS in hospitals with and without infection cross each
other. This implies that the underlying assumption of a
homogeneous Markov model, i.e, when the hazard rates
are constant, may not be a viable assumption for the data
set. As Allignol et al. noted, these curves should be parallel
for the homogeneous Markov assumption to be plausible.

Parametric model with constant hazards
To compare and investigate the results from the etm pack-
age with the analytical expressions derived in “Results

and discussion” section, we further estimate the cLOS by
assuming that the hazard rates are constant.
We first estimate the constant hazard rates with Eq. (1).

We obtain, α̂01 = 0.019, α̂02 = 0.074, α̂03 = 0.024,
α̂12 = 0.059 and α̂13 = 0.022. Under a homogeneous
Markov process, this data-situation is similar to indirect
differential mortality. Plugging the estimates into the for-
mulas in Eqs. (2) and (4), the cLOS from model A is
1.773. The cLOS due to HIs with censoring of the death
cases is 2.699 (model B). Thus, censoring of the death
cases is overestimating the cLOS by 0.926 days in the
time-constant hazards set up. Unlike in the case of etm-
estimation (time-inhomogenuous Markov model), in the
time-constant hazards set up, model B is overestimating
the cLOS with respect to model A.
Comparing the two estimation methods, we find that

the cLOS under constant hazards is similar to the value
obtained with the etm-package for model A (1.773 days
and 1.975 days respectively). From model B, we obtain
2.699 days under the constant hazards assumption and
0.446 days with etm. Thus, the values obtained from
model B clearly differ. While in the estimation with etm,
model B is underestimating the cLOS with respect to
model A, we observe the opposite under the constant
hazards assumption.
This difference in behavior could be attributed to the

consequence of the violation of the constant hazards
assumption. As seen in Fig. 4, the cLOS of patients with

Fig. 4Weights and expected LOS for patients with and without an HI in the first 15 daysof los.data, which is a subset of the SIR-3 study. The left
figure corresponds to model A (death cases are considered as competing event). The right figure corresponds to model B (death cases are
censored). The estimated cLOS due to model A is 1.975 days and that for model B is 0.446 days
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and without HI cross for model B indicating a much
stronger discrepancy to the assumption than for model
A, where the curves rather touch than cross. These cir-
cumstances can further be understood when comparing
the combined hazards with and without HI of model A
and B with their time-constant counterparts shown in the
Additional file 1: Figure S5.
For a more detail inspection, we estimate the cause-

specific hazard rates non-parametrically with B-splines
using the R-package bshazard. A detailed description of
the method is given by Rebora et al. [15]. The estimated
death and discharge hazards both with and without HI are
shown in the Additional file 1: Figure S6. The plots show
also the hazard rates obtained by using equation (1), where
we assume that they are constant. Comparing the esti-
mated hazard rates with their time-constant analogues we
clearly see that the data does not correspond to a homo-
geneous Markov model. The discharge hazard before HI
increases strongly in the first 10 days. After a peak at day
10 it strongly decreases again and remains on a moder-
ate level from day 20 onward. The behavior of the death
hazard before HI is similar but on a much lower level. Fur-
thermore, it remains below the discharge hazard before HI
at all time-points. In contrast, the discharge hazard after
HI seems to be almost constant and is well approximated
by α̂12 from formula (1). The death hazard after HI con-
tinuously slightly decreases and always remains below the
discharge hazard after HI.
While the constant hazards assumption is not plausible,

the time-inhomogeneous Markov assumption is. Testing
this assumption by including time of HI as covariate in a
Cox regression model showed no effect on the death and
discharge hazards after HI. The hazard ratios were 0.98
([0.94 ; 1.01]) and 1.03 ([0.96 ; 1.09]) respectively.

Distinction between discharged (alive) and dead
Using the clos function in the etm-package, we obtain
1.998 days as the estimated cLOS attributable to patients
who are discharged alive and −0.0234 days attributable

to those who died in the ICU. The difference in the
estimated cLOS for model B and that attributable to
patients discharged alive undermodel A is therefore about
1.552 days. Thus, model B also underestimates cLOS
attributable to patients discharged alive. It is further to
be noted that under estimation with etm (model A) over-
all cLOS is similar to that of the cLOS estimated for
discharged patients (model A). This is due to the circum-
stance that most of the patients are discharged alive.
Using the formula (3) for the constant hazards approach,

we obtain 1.291 days for discharged patients and 0.4815
days for the deceased patients. In Table 2, we see that
model B is overestimating the cLOS with respect to
the cLOS (due to discharge alive) by 1.408 days. This
means model B is clearly overestimating the estimate
from cLOS using only the discharged patients assuming a
time-constant hazards set up.
When comparing the time-inhomogeneous to the

homogeneous (constant hazards) approach under model
A we observe that the difference between overall cLOS
and cLOS due to patients discharged alive is higher for the
homogeneous approach. This is due to the circumstance
that under constant hazards the effect of HI is averaged
over the complete time-interval to estimate cLOS. Using
the time-inhomogeneous approach by Allignol et al. cLOS
is weighted according to the different lengths of stay. As
most patients are discharged alive within the first few
days, the weights are highest at these time-points (see
Fig. 4). When using the homogeneous approach then the
influence of the discharged patients on the estimate of
cLOS is less strong.
The complete R code of the data analysis is provided in

the Additional file 2.

Conclusion
The major innovation of this study was the systematic
evaluation of the bias due to censoring of death cases
when studying cLOS in the hospital due to HIs. While
Allignol et al. [7] provided an appropriate estimator, the

Table 2 Estimation of cLOS with respect to model A (no censoring of deaths) as well as cLOS (discharged) and cLOS (death) (based on
model A but distinguishing between death and discharge). Moreover, cLOS with respect to model B (censoring of deaths). Additionally
we calculate the bias between model A and model B and the bias between model B and cLOS based on model A for discharged
patients only. The comparison is done for the estimation of cLOS by assuming constant hazard and by using the etm package
(assuming time-dependent hazards)

CLOS CLOS CLOS CLOS∗ Bias Bias

(Model A) discharged (Model A) death (Model A) (Model B) (Model B - Model A) (Model B - discharged only)

constant 1.773 1.291 0.482 2.699 0.926 1.408

hazard

etm 1.975 1.998 -0.0234 0.446 -1.529 -1.552

package
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existence of the bias due to censoring of death cases was
neither mentioned nor discussed by the authors.
We first evaluated the bias in a mathematically closed

form assuming a setting with constant hazards. A similar
approach in a simpler setting without competing out-
comes has been used by Joly et al. [8]. Our analytical
evaluation has the advantage that we are able to discuss
challenging effects regarding direct and indirect differen-
tial mortality. Moreover, it allows us to make statements
about the magnitude and direction of the bias.
The real data application also showed that effects

regarding direct and indirect differential mortality do exist
and that the bias influences the estimates of cLOS. In
model A, the cLOS estimation via the time-homogeneous
model gave similar estimates as the one which allows
time-inhomogeneity, whereas it was different for model
B where we treated patients that die as censored obser-
vations. Although a difference in estimation of cLOS has
been observed due to censoring of death cases both by
using the “time-dependent hazard” (via etm package) and
the “time-constant hazard” assumptions, the bias shown
in the two set ups goes in different direction. Thus, our
closed formula has limitations if the assumptions are
not fulfilled. Therefore, a time-dependent hazards model
should be considered for future research. However, before
dealing with a complicated time-inhomogeneous model
one must understand the behavior of the bias for the sim-
pler constant hazards model. Understanding the bias in
a simple setting was the aim of this paper. To point out
the presence of bias in a real world situation we have used
the publicly available SIR-data. Even thought the constant
hazards assumption is not possible for this data set we
could demonstrate the existence of the bias.
A further limitation of our study was not considering

confounding factors as the length of stay of the patients
may depend on the underlying morbidity of the patient.
We emphasize that the bias due to censoring the death
cases is a type of survival bias and systematically differ-
ent from confounding. Based on our findings, we can
conclude that censoring the deaths should be avoided.
Moreover, the formula we derived can be used to describe
the bias for settings with constant hazards.

Additional files

Additional file 1: The document contains Figures S5 and S6mentioned
in section ’Results and discussion’ as well as the detailed mathematical
derivation of the bias formula presented in section ’Methods’. (PDF 192 kb)

Additional file 2: The document is the complete R script used in section
4 for the data analysis. (R 6 kb)
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