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Abstract

Background: Individual patient data meta-analyses (IPD-MA) are often performed using a one-stage approach– a
form of generalized linear mixed model (GLMM) for binary outcomes. We compare (i) one-stage to two-stage
approaches (ii) the performance of two estimation procedures (Penalized Quasi-likelihood-PQL and Adaptive
Gaussian Hermite Quadrature-AGHQ) for GLMMs with binary outcomes within the one-stage approach and
(iii) using stratified study-effect or random study-effects.

Methods: We compare the different approaches via a simulation study, in terms of bias, mean-squared error (MSE),
coverage and numerical convergence, of the pooled treatment effect (β1) and between-study heterogeneity of the
treatment effect (τ12). We varied the prevalence of the outcome, sample size, number of studies and variances and
correlation of the random effects.

Results: The two-stage and one-stage methods produced approximately unbiased β1 estimates. PQL performed better
than AGHQ for estimating τ12 with respect to MSE, but performed comparably with AGHQ in estimating the bias of
β1 and of τ12. The random study-effects model outperformed the stratified study-effects model in small size MA.

Conclusion: The one-stage approach is recommended over the two-stage method for small size MA. There was no
meaningful difference between the PQL and AGHQ procedures. Though the random-intercept and stratified-intercept
approaches can suffer from their underlining assumptions, fitting GLMM with a random-intercept are less prone to
misfit and has good convergence rate.

Keywords: Individual patient data meta-analyses, One- and two-stage models, Generalized linear mixed models,
Penalized quasi-likelihood, Adaptive gauss-hermite quadrature, Fixed and random study-effects

Background
Individual Patient Data (IPD) meta-analyses (MA) are
regarded as the gold standard in evidence synthesis and
are increasingly being used in current practice [1, 2].
However, the implementation of the analysis of IPD-MA
requires additional expertise and choices [3], particularly
when the outcome is binary. These include (i) should a
one- or two-stage model be used [4, 5], (ii) what estima-
tion procedure should be used to estimate the one-stage
model [6, 7] and, (iii) should the study effect be fixed or
random [8].

Although IPD-MA were conventionally analyzed via a
two-stage approach [9], over the last decade, use of the
one-stage approach has increased [10]. Recently, some
have suggested that the two-stage and one-stage frame-
works produce similar results for MA of large randomized
controlled trials [5]. The literature suggests the one-stage
method is particularly preferable when few studies or few
events are available as it uses a more exact statistical ap-
proach than relying on a normality approximation [3–5].
When IPD are available and the outcome is binary, the

one-stage approach consists of estimating Generalized
Linear Mixed Models (GLMMs) with a random slope for
the exposure, to allow the exposure effect to vary across
studies. Penalized quasi-likelihood (PQL) introduced by
Breslow and Clayton is a popular method for estimating

* Correspondence: andrea.benedetti@mcgill.ca
1Department of Epidemiology, Biostatistics & Occupational Health, McGill
University, Montreal, Canada
2Department of Medicine, McGill University, Montreal, Canada
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Thomas et al. BMC Medical Research Methodology  (2017) 17:28 
DOI 10.1186/s12874-017-0307-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-017-0307-7&domain=pdf
mailto:andrea.benedetti@mcgill.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


the parameters in GLMMs [11]. However, regression pa-
rameters can be badly biased for some GLMMs, especially
with binary outcomes with few observations per cluster,
low outcome rates, or high between cluster variability
[12, 13]. Adaptive Gaussian Hermite quadrature (AGHQ)
is the current favored competitor to PQL, which approxi-
mates the maximum likelihood by numerical integration
[14]. Although estimation becomes more precise as the
number of quadrature points increases, it often gives rise
to computational difficulties for high-dimension random
effects and convergence problems where variances are
close to zero or cluster sizes are small [14].
The heterogeneity between studies is an important

aspect to consider when carrying out IPD-MA. Such het-
erogeneity may arise due to differences in study design,
treatment protocols or patient populations [8]. When such
heterogeneity is present, the convention is to include a
random slope in the model as it captures the variability of
the exposure across studies. However, there are corre-
sponding assumptions in regards to the study effect being
modelled as stratified or random [4, 15].
Few comparisons of GLMMs have been reported in the

context of IPD-MA with binary outcomes [4, 15], that is,
when the number of studies and the number of subjects
within each study is small, study sizes are imbalanced, in
the presence of large between-study heterogeneity and
small exposure effects and there is an interest in the vari-
ance parameter of the random treatment effect. According
to previous literature, these factors have all been identified
as influencing model performance [6]. While several simu-
lation studies have been published, these have mainly lim-
ited their attention to simple models with only random
intercepts [13, 16]. Thus, the performance of the random
effects models including both a random intercept and a
random slope are less well known.
Our objective was to assess and compare via simulation

studies, (i) one-stage approaches to conventional two-
stage approaches (ii) the performance of different estima-
tion procedures for GLMMs with binary outcomes, and
(iii) using stratified study-effect or random study-effects in
a randomized trial setting. We use our results to develop
guidelines on the choice of methods for analyzing data
from IPD-MA with binary outcomes and to understand
explicitly the trade-offs between computational and statis-
tical complexity.
Methods section introduces the models we are consider-

ing, the design of the simulation study and the assessment
criteria. In Results section, results for the different
methods under varying conditions are presented and dis-
cussed. Discussion section concludes with a discussion.

Methods
We conducted a simulation study to compare various
analytic approaches to analyze data from IPD-MA with

binary outcomes. Hereto, our methods all assume that
between-study heterogeneity exists, as it is likely in
practice, and so only random treatment-effects IPD
meta-analysis models are considered.

Data Generation
The data generation algorithm was developed to generate
two-level data sets (e.g. patients grouped into studies). We
generated a binary outcome (Yij) and a single binary
exposure (Xij). We denote the number of studies j = 1, 2
…,K and i = 1, 2…, nj denotes the individuals per study.
Therefore, Yij is the outcome observed for the ith individ-
ual from the jth study.
The dichotomous exposure variable, Xij, was generated

from a Bernoulli distribution with probability = 0.5 and
recoded �1

2= to indicate control/treatment group [15].
To generate the binary outcome variable Yij, first the
probability of the outcome was calculated from the
random-study and –treatment effects logistic regression
model (Eq. 1), or the stratified-study effects model
(Eq. 2):

logit πij
� � ¼ β0 þ b0j

� �þ β1 þ b1j
� �

xij ð1Þ

logit πij
� � ¼ βj þ β1 þ b1j

� �
xij ð2Þ

Here πij is the true probability of the outcome for the ith

individual from the jth study, β0denotes the mean log-odds
of the outcome (study-effect) and β1 the pooled treatment
effect (log odds ratio). The random effects (b0j and b1j)
were generated from a bivariate normal distribution with

mean = 0 and variance-covariance matrix Σ ¼
σ2 ρστ
ρστ τ2

� �
for the random study-effect case. In the

stratified study effects case, (i.e. Eq. (2)), βj, were generated
from a uniform distribution and b1j was generated from a
normal distribution with zero mean and variance, τ2.
A Bernoulli distribution with probability πij from

Eqs. (1) and (2) was used to generate the binary out-
come Yij.
The number of studies, study size, total sample size,

variances and correlation of the random effects, and
average conditional probability were all varied, with
levels described in Table 1. For each distinct combin-
ation (n = 480) of simulation parameters, 1000 IPD-MA
were generated from each Eqs. (1) and (2), allowing
us to investigate a wide range of scenarios. The het-
erogeneity was set at I2 = 0.01, 0.23 and 0.55 as de-
fined by τ2/(τ2 + π2/3) for a binary outcome using an
odds ratio [17]. The levels correspond to: little or no,
low and moderate heterogeneity respectively [18].
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A sensitivity analysis was also considered to explore
the performance of different methods when just 5% of
observation had a positive outcome.

Models
Two-stage IPD methods
In the two-stage approach, each study in the IPD was
analyzed separately via logistic regression

yi∼Bernoulli pið Þ

logit pij
� �

¼ γ0 þ γ1xi

The first step estimated the study-specific intercept and
slope and their associated within-study covariance matrix
(consisting of the variances of the intercept and slope, as
well as the covariance) for each study. This model reduces
the IPD to its relative treatment effect estimate and
variance for each study then at the second stage these
aggregate data (AD) are synthesized (described below).

Model 1- Bivariate meta-analysis The AD were
combined via a bivariate random-effects model that
simultaneously synthesized the estimates whilst account-
ing for their correlation, and the within-study correlation
[4]. The model assumes that the true effects follow a
bivariate normal distribution and is estimated via re-
stricted maximum likelihood with the following marginal
distributions of the estimates [19]:

cγ0Jcγ1J
� 	

∼N
γ0
γ1

� �
;Σ þ Cj

� �
;Σ ¼ τ20

τ201

τ201
τ21

� �

where Σ is the unknown between-study variance-
covariance matrix of the true effects (γ0 and γ1) and

Cj (j = 1,…, K) the with-in study variance-covariance
matrix with the variances of the estimates.

Model 2: Conventional DerSimonian and Laird
approach The with-in study and between-study covari-
ance estimates are often times not estimated since most
researchers assumed that studies are independent, and
instead a univariate meta-analysis of the logit of the odds
ratios is performed [20]. The marginal distribution of the
pooled estimated treatment effect under this approach is
easily obtained as:

cγ1J ∼N γ1; τ
2
1 þ var bγ J� �� �

with unknown parameters γ1 and τ1
2, estimated via the

inverse variance weighted non-iterative method (method-
of-moments) [21].

One-stage IPD methods
The one-stage approach analyzes the IPD from all studies
simultaneously, while accounting for clustering of subjects
within studies [4]. The one-stage model is a form of
GLMM. Two different specifications are considered.

Model 3- Random intercept and random slope We
estimated a GLMM with a random study effect u0j and a
random treatment effect u1j via PQL and AGHQ, and
allowed the random effects to be correlated, which
implies that the between-study covariance between u0j
and u1j is fully estimated.

logit pij
� �

¼ γ0 þ u0j þ γ1 þ u1j
� �

xij

u0j
u1j

� 	
eN 0

0

� �
;Σj

� �
; Σj ¼ τ20 τ201

τ201 τ21

� �

Model 4-Stratified intercept one-stage Finally, the
stratified one-stage approach estimates a separate inter-
cept for each study rather than constraining the intercepts
to follow a normal or other distribution. Therefore, there
is no need for the normality assumption for the study
membership, hence, the between-study covariance term is
no longer estimated. The model is defined as follows:

logit pij
� �

¼
XK
k¼1

γkIk¼j
� �þ γ1 þ u1j

� �
xij

where Ik = j indicates that a separate intercept should be
estimated for each study j = 1,…, K and u1j ~N(0, τ1

2).
Parameters of both Models 3 and 4 were estimated via
PQL and AGHQ.

Table 1 Summary of Simulation Parametersa

Parameters Values

IPD-Meta-analyses generated: M = 1000

(Number of studies, number of
subjects per study, total average
sample sizes)b:

(K, ni, N) ∈ {(5,100,500),
(15,33,500), (15,200,3000),
(5,357,500), (15,98,500),
(15,588,3000)}

Fixed effects (intercepts): β0 = − 0.85

Prevalence of the outcome π = 30%

Fixed effects (Slopes): β1 = 0.18

Random effects distribution: Normal

Random effects variances: {τ02, τ12} ∈ (0.05, 1, 4)

Correlation between random effects: ρ ∈ (0,0.5)
aIn a sensitivity analysis, we extended the number of studies to 50 with an
average sample size of 9000 and reduced the prevalence of the outcome to
5%. The prevalence of the outcome was fixed to 30% by setting the value of
the intercept β0 to –0.85
bThe number of subjects per study was reported for only large studies when
data sets were generated with imbalanced study sizes (bold text: 25% large
studies-10 times more subjects)
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Estimation Procedures and Approximations
The parameters of the one-stage models were estimated
using PQL and AGHQ. For the two-stage approach, a
logistic regression was first estimated for each study via
maximum likelihood. The parameters of the two-stage
model were estimated via method-of-moments (MOM)
(Model 2) and restricted maximum likelihood (REML)
(Model 1) [21–23] at the second stage.
Both likelihood-based methods (PQL and AGHQ)

were implemented on SAS version 9.4 using PROC
GLIMMIX with default options [24]. The number of
quadrature points in AGHQ was selected automatically
[25], the absolute value for parameter convergence
criterion was 10–8 and the maximum number of
iterations was 100.
Therefore, for each generated data set the following

models were fit.

� Two-stage approach (Models 1 and 2)
� One-stage approach via GLMMs (Models 3 and 4)

estimated with PQL.
� One-stage approach via GLMMs (Models 3 and 4)

estimated with AGHQ.

Assessment criteria
The performance of the estimation methods was evaluated
using: a) numerical convergence, b) absolute bias; c) root
mean square error (RMSE); and d) coverage probability -
of the pooled treatment effect and its between-study
variability.

Numerical convergence The convergence rate was
estimated for all models fit, as the number of simulation
repetitions that did converge (without returning a warn-
ing message) divided by the total attempted (M = 1000).
Models that returned a warning message specifying that
the estimated variance-covariance matrix was not posi-
tive definite or that the optimality condition was violated
were considered not to have converged.

Bias The Monte Carlo bias of the pooled treatment
effect and its between-study heterogeneity is defined as
the average of the bias in the estimates provided by each
method as compared to the truth, across the 1000 IPD-
MA in each scenario. The Monte Carlo estimate of the
bias is computed as

bias ¼ 1
1000

X1000
j¼1

θ̂ j−θ;

where θ̂j were the parameter estimates and θ was the

true parameter of the pooled treatment effect or its

between-study variance. We also reported the mean
absolute bias (AB).

Mean square error The mean square error (MSE) is a
useful measure of the overall accuracy, because it penalizes
an estimate for both bias and inefficiency. The Monte
Carlo estimate of the MSE is:

MSE θ̂
� �

¼ 1
1000

X1000
j¼1

cðθ j−θÞ2;

For each scenario, the RMSE of the pooled treatment
effect and its between-study heterogeneity was reported,
as this measure is on the same scale as the parameter.

Coverage probability We estimated coverage for the
pooled treatment effect and its between-study hetero-
geneity for the various methods. Gaussian coverage was
estimated, where if θ ̂ −θj j≤1:96� SE θ ̂ð Þ the true value
was covered, and if θ ̂ −θj j > 1:96� SE θ ̂ð Þ it was not.
We reported the median, the 25th and 75th percentiles

of the AB and RMSE of the pooled treatment effect and
its between-study heterogeneity but reported percentages
for the numerical convergence and coverage rate.

Results
Tables 2, 3, 4, 5, 6 and 7 present the median and interquar-
tile range of the AB, RMSE, coverage and convergence of
the pooled treatment effect and its between-study variance,
respectively, as estimated via two- and one-stage; AGHQ
and PQL; random-intercept and stratified-intercept
methods. We reported results for data generated with im-
balances in study sizes (different sample size in all studies)
for both the random-intercept and stratified-intercept
data generation (Eqs. 1 and 2) with correlated random
effects (ρ = 0.5), as this scenario is likely the closest to
real-life.
We did not exclude results from meta-analyses that

returned a warning message (imperfect convergence).
These meta-analyses were included as non-convergence
and although these models failed to produce proper
parameter estimates, these estimates were included in
the calculation of the bias and the MSE.

One- versus Two-stage
In Tables 2 and 3, results for the absolute bias (AB) of
the estimates for the pooled treatment effect β1 are
given. Recalling that the true parameter value was 0.18,
we see that the biases were identical and under 0.05 in
the one-stage and the two-stage approaches in both
small and large data sets. Results were very comparable
when the outcome rate was reduced from 30 to 5%
(Additional file 1: Table S1). For both the one- and the
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Table 2 Performance of the one- and two-stage approaches in small data setsa with greater (Top panel) and lesser (Bottom panel)
heterogeneity of random effectsb

Data generation

Performance measuresc Random-study and treatment effect (Eq. 1) Stratified-study effect (Eq. 2)

Two-staged One-stage Two-stage One-stage

(τ02, τ12) = (4, 4) e AB (β1) 0.04 (0.02 0.06) 0.04 (0.02, 0.07) 0.04 (0.02, 0.06) 0.04 (0.01, 0.07)

RMSE (β1) 1.11 (0.49, 1.94) 1.19 (0.53, 2.12) 1.18 (0.59, 1.96) 1.23 (0.61, 2.14)

Coverage (β1) 89.3 91.8 92 92.6

AB (τ12) 0.23 (0.14,0.30) 0.16 (0.08, 0.24) 0.15 (0.08,0.24) 0.24 (0.20, 0.27)

RMSE (τ12) 7.26 (4.39,7.51) 4.93 (2.56, 7.51) 4.81 (2.38,7.42) 7.47 (6.28, 8.64)

Coverage (τ12) f NA NA NA NA

Convergence 100 97.7 100 99.8

(τ02, τ12) = (1, 1) AB (β1) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 0.03 (0.01, 0.04) 0.03 (0.01, 0.04)

RMSE (β1) 0.73 (0.35, 1.29) 0.75 (0.37, 1.33) 0.80 (0.37, 1.30) 0.79 (0.39, 1.34)

Coverage (β1) 89.1 90.6 91.1 91.6

AB (τ12) 0.06 (0.03, 0.08) 0.04 (0.02, 0.1) 0.05 (0.03, 0.08) 0.03 (0.01, 0.07)

RMSE (τ12) 1.73 (0.85, 2.65) 1.22 (0.53, 3.16) 1.59 (0.80, 2.46) 1.06 (0.46, 2.06)

Coverage (τ12) NA NA NA NA

Convergence 100 90.4 100 100
aSmall data sets had 15 studies and on average 500 total subjects
bBold text represent “best value” of performance
cMedian (25th and 75th percentile) were reported for AB and RMSE, the proportion was reported for coverage and convergence
dTwo-stage method via conventional DerSimonian and Laird (Model 2). One-stage (Random-intercept and random treatment effect with PQL (Model 3)
e(τ0

2, τ1
2): (Random treatment-effect variance, random study-effect variance)

fThe two-stage approach did not return a confidence interval for τ1
2, hence no coverage was estimated and comparison was not applicable (NA) to the one-stage method

Table 3 Performance of the one- and two-stage approaches in large data setsa with greater (Top panel) and lesser (Bottom panel)
heterogeneity of random effectsb

Data generation

Performance measuresc Random-study and treatment effect (Eq. 1) Stratified-study effect (Eq. 2)

Two-staged One-stage Two-stage One-stage

(τ0
2, τ1

2) = (4, 4) e AB (β1) 0.03 (0.02 0.06) 0.03 (0.02, 0.06) 0.04 (0.01, 0.06) 0.04 (0.01, 0.06)

RMSE (β1) 1.02 (0.50, 1.85) 1.07 (0.49, 1.84) 1.15 (0.57, 1.93) 1.11 (0.58, 1.87)

Coverage (β1) 91.9 92.3 92.4 93.6

AB (τ12) 0.14 (0.07,0.22) 0.12 (0.06, 0.20) 0.11 (0.05,0.17) 0.22 (0.20, 0.25)

RMSE (τ12) 4.36 (2.22,6.80) 3.87 (1.81, 6.21) 3.40 (1.70,5.47) 6.99 (6.20, 7.80)

Coverage (τ12) f NA NA NA NA

Convergence 100 98.3 100 89.9

(τ02, τ12) = (1, 1) AB (β1) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03)

RMSE (β1) 0.61 (0.30, 1.04) 0.59 (0.29, 1.05) 0.61 (0.30, 1.02) 0.63 (0.30, 1.03)

Coverage (β1) 91.2 91.9 93 93.3

AB (τ12) 0.03 (0.02, 0.06) 0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 0.02 (0.01, 0.03)

RMSE (τ12) 1.08 (0.53, 1.73) 1.03 (0.49, 1.68) 1.00 (0.51, 1.68) 0.57 (0.27, 1.00)

Coverage (τ12) NA NA NA NA

Convergence 100 96.5 100 88.8
aLarge data sets had 15 studies and on average 3000 total subjects
bBold text represent “best value” of performance
cMedian (25th and 75th percentile) were reported for AB and RMSE, the proportion was reported for coverage and convergence
dTwo-stage method via conventional DerSimonian and Laird (Model 2). One-stage (Random-intercept and random treatment effect with PQL (Model 3)
e(τ0

2, τ1
2): (Random treatment-effect variance, random study-effect variance)

fThe two-stage approach did not return a confidence interval for τ1
2, hence no coverage was estimated and comparison was not applicable (NA) to the one-stage method
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Table 4 Performance of Penalized Quasi-likelihood and Adaptive Gaussian Hermite Quadrature estimation approaches in small data
setsa with greater (Top panel) and lesser (Bottom panel) heterogeneity of random effectsb

Performance measuresc Data generation

Random-study and treatment effect (Eq. 1) Stratified-study effect (Eq. 2)

AGHQd PQLd AGHQ PQL

(τ02, τ12) = (4, 4)e AB (β1) 0.05 (0.02, 0.08) 0.04 (0.02, 0.07) 0.04 (0.02, 0.07) 0.04 (0.02, 0.07)

RMSE (β1) 1.42 (0.64, 2.52) 1.19 (0.53, 2.12) 1.35 (0.65, 2.27) 1.23 (0.61, 2.14)

Coverage (β1) 93.2 91.8 91.7 92.6

AB (τ12) 0.18 (0.09,0.29) 0.16 (0.08, 0.24) 0.15 (0.08,0.24) 0.24 (0.20, 0.27)

RMSE (τ12) 5.76 (2.80,9.07) 4.93 (2.56, 7.51) 4.79 (2.37,7.62) 7.47 (6.28, 8.64)

Coverage (τ12) 85.5 76.2 81.4 4.6

Convergence 99 97.7 96.7 99.8

(τ02, τ12) = (1, 1) AB (β1) 0.03 (0.01, 0.05) 0.02 (0.01, 0.04) 0.03 (0.01, 0.04) 0.03 (0.01, 0.04)

RMSE (β1) 0.79 (0.41, 1.42) 0.75 (0.37, 1.33) 0.84 (0.42, 1.38) 0.79 (0.39, 1.34)

Coverage (β1) 92.3 90.6 93.4 91.6

AB (τ12) 0.06 (0.03, 0.09) 0.04 (0.02, 0.1) 0.05 (0.02, 0.08) 0.03 (0.02, 0.07)

RMSE (τ12) 1.76 (0.84, 2.70) 1.22 (0.53, 3.16) 1.54 (0.72, 2.40) 1.06 (0.46, 2.06)

Coverage (τ12) 74.5 81.1 71.6 77.2

Convergence 96.8 90.4 85.8 100
aSmall data sets had 15 studies and on average 500 total subjects
bBold text represent “best value” of performance
cMedian (25th and 75th percentile) were reported for AB and RMSE, the proportion was reported for coverage and convergence
dResults are given for Adaptive Gaussian Hermite Quadrature (AGHQ) and Penalized Quasi-likelihood (PQL) for the One-stage random-intercept and random
treatment effect model (Model 3)
e(τ0

2, τ1
2): (Random treatment-effect variance, random study-effect variance)

Table 5 Performance of Penalized Quasi-likelihood and Adaptive Gaussian Hermite Quadrature estimation approaches in large data
setsa with greater (Top panel) and lesser (Bottom panel) heterogeneity of random effectsb

Performance measuresc Data generation

Random-study and treatment effect (Eq. 1) Stratified-study effect (Eq. 2)

AGHQd PQLd AGHQ PQL

(τ0
2, τ1

2) = (4, 4)e AB (β1) 0.04 (0.02, 0.06) 0.03 (0.02, 0.06) 0.04 (0.01, 0.06) 0.04 (0.01, 0.06)

RMSE (β1) 1.20 (0.55, 1.99) 1.07 (0.49, 1.84) 1.16 (0.58, 1.95) 1.11 (0.58, 1.87)

Coverage (β1) 92.2 92.3 92.1 93.6

AB (τ12) 0.13 (0.07,0.21) 0.12 (0.06, 0.20) 0.11 (0.05,0.18) 0.22 (0.20, 0.25)

RMSE (τ12) 4.12 (2.06,6.77) 3.87 (1.81, 6.21) 3.42 (1.71,5.77) 6.99 (6.20, 7.80)

Coverage (τ12) 81.9 78.9 84.7 1.0

Convergence 100 98.3 100 89.9

(τ02, τ12) = (1, 1) AB (β1) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03)

RMSE (β1) 0.60 (0.30, 1.06) 0.59 (0.29, 1.05) 0.63 (0.30, 1.05) 0.63 (0.30, 1.03)

Coverage (β1) 91.7 91.9 92.4 93.3

AB (τ12) 0.04 (0.02, 0.06) 0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 0.02 (0.01, 0.03)

RMSE (τ12) 1.09 (0.52, 1.75) 1.03 (0.49, 1.68) 1.01 (0.49, 1.69) 0.57 (0.27, 1.00)

Coverage (τ12) 83.6 82.5 82.5 76.5

Convergence 99.5 96.5 99.1 88.8
aLarge data sets had 15 studies and on average 3000 total subjects
bBold text represent “best value” of performance
cMedian (25th and 75th percentile) were reported for AB and RMSE, the proportion was reported for coverage and convergence
dResults are given for Adaptive Gaussian Hermite Quadrature (AGHQ) and Penalized Quasi-likelihood (PQL) for the One-stage random-intercept and random
treatment effect model (Model 3)
e(τ0

2, τ1
2): (Random treatment-effect variance, random study-effect variance)
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Table 6 Performance of the stratified- and random-intercepta models approaches in small data setsb with greater (Top panel) and
lesser (Bottom panel) heterogeneity of random effectsc

Performance measuresd Data generation

Random-study and -treatment effect (Eq. 1) Stratified-study effect (Eq. 2)

Stratified-intercept Random-intercept Stratified-intercept Random-intercept

(τ02, τ12) = (4, 4)e AB (β1) 0.04 (0.02, 0.08) 0.04 (0.02, 0.07) 0.05 (0.02, 0.07) 0.04 (0.01, 0.07)

RMSE (β1) 1.24 (0.49, 2.44) 1.19 (0.53, 2.12) 1.43 (0.70, 2.32) 1.23 (0.61, 2.14)

Coverage (β1) 99.1 91.8 97.4 92.6

AB (τ12) 0.16 (0.07, 0.25) 0.16 (0.08, 0.24) 0.15 (0.07,0.24) 0.24 (0.20, 0.27)

RMSE (τ12) 5.01 (2.35,7.95) 4.93 (2.56, 7.51) 4..75 (2.23,7.64) 7.47 (6.28, 8.64)

Coverage (τ12) 11.6 76.2 28.4 4.6

Convergence 13.8 97.7 32.3 99.8

(τ02, τ12) = (1, 1) AB (β1) 0.03 (0.01, 0.04) 0.02 (0.01, 0.04) 0.03 (0.01, 0.05) 0.03 (0.01, 0.04)

RMSE (β1) 0.83 (0.41, 1.38) 0.75 (0.37, 1.33) 0.90 (0.42, 1.47) 0.79 (0.39, 1.34)

Coverage (β1) 96.4 90.6 94 91.6

AB (τ12) 0.05 (0.03, 0.09) 0.04 (0.02, 0.1) 0.05 (0.02, 0.08) 0.03 (0.01, 0.07)

RMSE (τ12) 1.72 (0.85, 2.78) 1.22 (0.53, 3.16) 1.55 (0.75, 1.61) 1.06 (0.46, 2.06)

Coverage (τ12) 37.3 81.1 54.4 77.2

Convergence 42.6 90.4 62.3 100
aResults are given for Penalized Quasi-likelihood (PQL) for the One-stage random-intercept and random treatment effect model (Model 3) and the stratified-intercept
and random-slope model (Model 4)
bSmall data sets had 15 studies and on average 500 total subjects
cBold text represent “best value” of performance
dMedian (25th and 75th percentile) were reported for AB and RMSE, the proportion was reported for coverage and convergence
e(τ0

2, τ1
2): (Random treatment-effect variance, random study-effect variance)

Table 7 Performance of the stratified- and random-intercepta models approaches in large data setsb with greater (Top panel) and
lesser (Bottom panel) heterogeneity of random effectsc

Performance measuresd Data generation

Random-study and -treatment effect (Eq. 1) Stratified-study effect (Eq. 2)

Stratified-intercept Random-intercept Stratified-intercept Random-intercept

(τ0
2, τ1

2) = (4, 4)e AB (β1) 0.04 (0.02, 0.06) 0.03 (0.02, 0.06) 0.04 (0.02, 0.06) 0.04 (0.01, 0.06)

RMSE (β1) 1.11 (0.55, 1.94) 1.07 (0.49, 1.84) 1.15 (0.58, 1.98) 1.11 (0.58, 1.87)

Coverage (β1) 95.2 92.3 92.3 93.6

AB (τ12) 0.13 (0.06, 0.20) 0.12 (0.06, 0.20) 0.11 (0.05,0.18) 0.22 (0.20, 0.25)

RMSE (τ12) 4.05 (1.85,6.25) 3.87 (1.81, 6.21) 3.39 (1.57,5.56) 6.99 (6.20, 7.80)

Coverage (τ12) 53.7 78.9 89.8 1.0

Convergence 63.8 98.3 99.7 89.9

(τ02, τ12) = (1, 1) AB (β1) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03)

RMSE (β1) 0.63 (0.29, 1.07) 0.59 (0.29, 1.05) 0.63 (0.30, 1.05) 0.63 (0.30, 1.03)

Coverage (β1) 91.8 91.9 93.1 93.3

AB (τ12) 0.03 (0.02, 0.06) 0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 0.02 (0.01, 0.03)

RMSE (τ12) 1.06 (0.52, 1.74) 1.03 (0.49, 1.68) 0.98 (0.48, 1.69) 0.57 (0.27, 1.00)

Coverage (τ12) 86.3 82.5 87.9 76.5

Convergence 95.3 96.5 99.2 88.8
aResults are given for Penalized Quasi-likelihood (PQL) for the One-stage random-intercept and random treatment effect model (Model 3) and the stratified-intercept
and random-slope model (Model 4)
bLarge data sets had 15 studies and on average 3000 total subjects
cBold text represent “best value” of performance
dMedian (25th and 75th percentile) were reported for AB and RMSE, the proportion was reported for coverage and convergence
e(τ0

2, τ1
2): (Random treatment-effect variance, random study-effect variance)
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two-stage, results depended on the true τ2, and the
sample size.
For the larger sample size, root mean square error

(RMSE) in β1 was generally slightly larger when the one-
stage method was used than when the two-stage was
used. The picture was similar across all heterogeneity
levels (Tables 2 and 3) and when the outcome rate was
reduced (Additional file 2: Table S3).
Neither one-stage nor two-stage methods yielded cover-

age of β1 close to nominal levels (Tables 2 and 3). Increas-
ing sample size had a positive effect on percent coverage,
and increasing the true heterogeneity made estimation
more difficult, hence decreasing the coverage (Table 3).
Absolute bias of the between-study heterogeneity, τ1

2

was usually slightly lower when the one-stage approach
was used than when the two-stage approach was (Ta-
bles 2 and 3), particularly, when the sample size was
small (Table 2) and when greater amount of heterogen-
eity exist in the random effects (Bottom panel of Table 2).
Regarding the effects of the simulation parameters, AB
decreased when data was generated with equal study
sizes and increased when the rate of occurrence was re-
duced (Additional file 3: Table S2). In these cases, the
one-stage approach was most biased.
The RMSE of τ1

2 for the one-stage estimates was
mostly smaller than the RMSE of the two-stage method
estimates. For increased sample size or reduction in the
level of heterogeneity in the random effects, RMSE of
τ1

2 decreased at least by a factor of three across both
methods. While the RMSE of τ1

2 was inflated when the
outcome rate was reduced, the one-stage method
continued to outperform that of the two-stage method
(Additional file 4: Table S4).
Convergence was not a problem for the two-stage

approach while convergence of the one-stage method
varied from 90 to 100% (Tables 2 and 3).

AGHQ versus PQL
One-stage models estimated via PQL and AGHQ
methods often yielded similar AB in β1. There was no
observed difference in the AB (β1) between the methods
when the outcome rate was reduced (Additional file 1:
Table S1).
RMSE of β1 were generally greater when AGHQ was

used than when PQL was used (Tables 4 and 5).
Decreasing sample size, increasing the variances of the
random effects or reducing the event rate (Additional
file 2: Table S3) made precise estimation more difficult,
hence RMSE increased.
When the true heterogeneity was large and total sam-

ple was small (Top panel of Table 4), AGHQ provided
coverage for β1closer to nominal levels than PQL, while
both methods provided comparable coverage when the
sample size was increased (Table 5). Note that across

both methods, levels of coverage were higher as hetero-
geneity increased and similar coverage was observed
when the outcome rate was reduced (Additional file 5:
Table S5).
AB in τ1

2, was very comparable but slightly lower
when PQL was used rather than AGHQ (Tables 4 and
5). The AB decreased with increasing sample size, par-
ticularly, when PQL was used (Table 5). There was sub-
stantial bias in τ1

2 estimates when the event rate was
reduced (Additional file 3: Table S2).
On account of a better overall performance of PQL with

regards to AB, RMSE of τ1
2 was generally lower with PQL

than with AGHQ (Tables 4 and 5). RMSE decreased with
decreased variability in the random effects, and with in-
creased sample size. In addition, PQL-estimates continued
to yield smaller RMSE than AGHQ-estimates when the
outcome rate was reduced (Additional file 4: Table S4).
We found important under-coverage of the estimates

for τ1
2 for both estimation methods, particularly when

PQL was used (Tables 4 and 5). The percent coverage
was usually fair for both estimation methods when
sample size increased, but was poor when the outcome
rate was reduced (Additional file 6: Table S6).
Convergence occurred more often when AGHQ was

used than when PQL was used (Tables 4 and 5). Conver-
gence was problematic for PQL, particularly when true
heterogeneity was low and sample size was small (Bottom
panel of Table 4). Comparable convergence was seen when
the event rate was reduced (Additional file 5: Table S5).

Random- intercept versus stratified-intercept
The results of the simulation studies, modeling the
intercept as random or fixed (random slope was always
considered) via PQL estimation are summarized in the
Tables 6 and 7.
The convergence was markedly low (14-97%) for the

fixed intercept & random slope method (Tables 6 and 7).
Convergence was only reasonable for the approach when
the sample size was large and heterogeneity was small,
whereas convergence was always greater than 80% for
the random intercept and slope approach.
In general, AB in β1 was similar for both stratified-

intercept (random-slope only) and random intercept &
slope methods. Regarding the simulation parameters,
sample size and variability of the random effects, were
not influential in reducing the AB in β1.
The RMSE in β1 was smaller when estimated via the

random intercept and slope model than when only a
random slope was fit (Tables 6 and 7).
Increased sample size and level of heterogeneity in the

random effect was most influential in determining cover-
age probability.
Absolute bias in τ1

2 was clearly comparable when fit
with a random intercept & slope approach or a random
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slope only (Tables 6 and 7). For lower outcome rate,
there was a trend towards less pronounced bias when a
random slope only was fit (Additional file 3: Table S2).
We observed lower RMSE of τ1

2 when a random
intercept was fit, especially when the true heterogeneity
was large (Top panels of Tables 6 and 7). Comparable
results were seen when both models were fit in large
sample and the true heterogeneity was small (Bottom
panel of Table 7)- also when outcome rate was re-
duced (Additional file 4: Table S4).
We found significant under coverage of τ1

2 when both
models were fit, however, this was more severe when a
random slope only model was fit (Tables 6 and 7). When
the generated values of τ0

2 or τ1
2 were low (i.e. low

variability in the random effects) and sample size was
increased, we had less difficulty to estimate the coverage
of τ1

2 when both models were fit. The coverage prob-
ability continued to be an issue when the rate of occur-
rence was reduced (Additional file 6: Table S6).

Discussion
Findings
Our simulation results indicate that when the number of
subjects per study is large, the one- and two-stage
methods yield very similar results. Our results also con-
firm the finding of previous empirical studies [5, 26, 27]
that in some cases, the one-stage and two-stage IPD-
MA results coincide. However, we found discrepancies
between these methods, with a slight preference towards
the one-stage method when the number of subjects per
study is small. In these situations, neither method pro-
duced accurate estimates for the between-study hetero-
geneity associated with the treatment-effect; however,
the biases were larger for the two-stage approach.
Furthermore, one-stage methods produced less biased
and more precise estimates of the variance parameter
and had slightly higher coverage probabilities, though
these differences may be due to using the REML esti-
mate of τ1

2 instead of the der Simonian and Laird esti-
mator used in the two-stage approach.
Estimation of GLMMs with binary outcomes con-

tinues to pose challenges, with many methods producing
biased regression coefficients and variance components
[7]. AGHQ has been shown to overestimate the variance
component with few clusters or few subjects [17]. On
the contrary, PQL has been found to underestimate the
variance component while the standard errors are over-
estimated [12]. In the context of IPD-MA, we found
similar absolute bias of the PQL- and AGHQ-estimated
pooled treatment effect, while the PQL-estimates of the
between-study variance had greater precision when
study sizes were small and random effects were corre-
lated. This somewhat confirms previous results, which
found that PQL suffers from large biases but performs

better in terms of MSE than AGHQ [6]. Both estimation
methods experienced difficulty in attaining nominal
coverage of the between-study heterogeneity associated
with the treatment effect in two situations: (i) when the
number of studies included was small and/or (ii) the
true variances of the random effects were small. We also
found that convergence was not an important problem
for AGHQ when meta-analyses included studies with
less than 50 individuals per study. However, convergence
was poor when the prevalence of the outcome was
reduced to 5% and the true heterogeneity was close to
zero.
Stratification of the intercept in one-stage models

avoids the need to estimate the random effect for the
intercept and the correlation between the random
effects. This approach may be preferable in situations
not investigated in this work (e.g. when the distribution
of the random effects is skewed). However, this approach
suffered from marked convergence rates when fit to
small data sets (15 studies and on average 500 subjects).

Strengths and Limitations
We used simulation studies to compare various analytic
strategies to analyze data arising from IPD-MA across a
wide range of data generation scenarios but made some
simplifications. We only considered binary outcomes,
one dichotomous treatment variable, a two-level data
structure, and no confounders. Moreover, we estimated
GLMMs via PQL and AGHQ, but did not compare
Bayesian or other estimation methods, which might be
particularly useful in sparse scenarios [28]. We have
made the assumption throughout that IPD were avail-
able. Certainly, the time and cost associated with collect-
ing IPD are considerable. However, once such data is in
hand, we have addressed several open questions relating
to the best way to analyze it. We should also note that
methods exist for combining IPD and aggregated data
[7]. Further study is needed to investigate alternative
confidence intervals (or coverage probability) for the
between-study heterogeneity that can be used to remedy
the under-coverage of Gaussian intervals. The normality-
based intervals (coverage rate) we studied greatly under-
performed in most scenarios because the constructions of
the confidence interval are likely to be invalid. A further
simplification that limits the generalizability of this work
is that it is restricted to only two-arm trials. The extension
to three or more arms would require careful consideration
of more complicated correlation structures in treatment
effects across arms and within studies [29].
One important comparison we have not addressed is,

computational speed where the two-stage method had a
distinct advantage over the one-stage; PQL was faster
than AGHQ and the stratified-intercept model run-time
was quicker than the random-intercept model.
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As far as we know, this simulation study is the first to
simultaneously generate data with normally distributed
and stratified random intercepts. This study also com-
pares approaches that include a random intercept for
study membership to those that do not. Furthermore,
the use of simulation - to systematically investigate the
robustness of the approaches to variation in sample size,
study number, outcome rate, magnitude of correlation
and variances. As a result, our scenarios have allowed us
to assess performance without being too exhaustive.

Guidelines for Best Practice
On the basis of these findings, we can make several
recommendations. When the IPD-MA included many
studies and the outcome rate was not too low, this work
supports the conclusion of a previous study [5] that the
conventional two-stage method by DerSimonian and
Laird [21] is a good choice under the data conditions sim-
ulated here. Cornell et al. found that the DL method pro-
duced too-narrow confidence bounds and p values that
were too small when the number of studies was small or
there was high between-study heterogeneity [30]. In such
cases, a modification such as the Hartung-Knapp ap-
proach may be preferable [31]. Further, while the bivariate
two-stage approach is very rarely used in practice, we
found that it tended to yield good overall model perform-
ance, comparable with that of the one-stage models when
study sizes are small. In addition, our results also suggest
that the one-stage method can be used in IPD-MA where
study sizes are less than 50 subjects per study or few
events were recorded in most studies (outcome rate of
5%). In these cases, the one-stage approach is more appro-
priate as it models the exact binomial distribution of the
data and offers more flexibility in model specification over
the two-stage approach [32].
If interest lies in estimation of the pooled treatment ef-

fect or the between-study heterogeneity of the treatment
effect, estimation using PQL appeared to be a better
choice due to its lower bias and mean square error for
the settings considered. On the contrary, computational
issues such as convergence occurred less with this tech-
nique than with AGHQ. However, it is important to note
that convergence and coverage in τ2 was an issue in small
and large total sample sizes and also, when level of true
heterogeneity was large.
For these simulated data, the results of both the

random-intercept and stratified-intercept models were
not importantly different. However, under both data
generations, fitting a GLMM with the random-intercept
was overall less sensitive to misspecification in small
sample sizes with large between-study heterogeneity
than the stratified-intercept GLMM since we have
observed high rates of non-convergence via the
stratified-intercept model.

There are four important caveats to these recommen-
dations. First, our simulations show greater accuracy of
the pooled odds ratio as the number of studies increase.
Therefore, an IPD-MA with more studies will provide
more accurate estimates. Secondly, our results show that
the estimation of the between-study heterogeneity of the
treatment effect is highly biased regardless of the sample
size and number of studies. Therefore, we should always
expect that the variance parameter be estimated with some
error. Thirdly, small overall samples mark the trade-off
under which a meta-analyst might consistently choose pre-
cision over bias and our simulations show that PQL estima-
tion may be preferred in these situations. Finally, large
overall sample size can eliminate the lack of statistical
power present in small overall samples. In such cases, com-
parable results are seen for one- and two-stage methods
and fitting a two-stage analysis as a first step may be advis-
able. This could aid as a quick and efficient investigation of
heterogeneity and treatment-outcome association.

Conclusion
To summarize, the one- and two-stage methods consist-
ently produced similar results when the number of studies
and overall sample are large. Although the PQL and
AGHQ estimation procedures produced similar bias of the
pooled log odds ratios, PQL-estimates had lower RMSE
than the AGHQ-estimates. Both the random-intercept and
stratified-intercept models yielded precise and similar
estimates for the pooled log odds ratios. However, the
random-intercept models gave good coverage probabilities
of the between-study heterogeneity in small sample sizes
and yielded overall good convergence rate as compared to
the random slope only model.
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