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Abstract

Background: The study of circulating biomarkers and their association with disease outcomes has become progressively
complex due to advances in the measurement of these biomarkers through multiplex technologies. The Least Absolute
Shrinkage and Selection Operator (LASSO) is a data analysis method that may be utilized for biomarker selection in these
high dimensional data. However, it is unclear which LASSO-type method is preferable when considering data scenarios
that may be present in serum biomarker research, such as high correlation between biomarkers, weak associations with
the outcome, and sparse number of true signals. The goal of this study was to compare the LASSO to five LASSO-type
methods given these scenarios.

Methods: A simulation study was performed to compare the LASSO, Adaptive LASSO, Elastic Net, Iterated LASSO,
Bootstrap-Enhanced LASSO, and Weighted Fusion for the binary logistic regression model. The simulation study was
designed to reflect the data structure of the population-based Tucson Epidemiological Study of Airway Obstructive
Disease (TESAOD), specifically the sample size (N = 1000 for total population, 500 for sub-analyses), correlation of
biomarkers (0.20, 0.50, 0.80), prevalence of overweight (40%) and obese (12%) outcomes, and the association of
outcomes with standardized serum biomarker concentrations (log-odds ratio = 0.05–1.75). Each LASSO-type method
was then applied to the TESAOD data of 306 overweight, 66 obese, and 463 normal-weight subjects with a panel of 86
serum biomarkers.

Results: Based on the simulation study, no method had an overall superior performance. The Weighted Fusion correctly
identified more true signals, but incorrectly included more noise variables. The LASSO and Elastic Net correctly identified
many true signals and excluded more noise variables. In the application study, biomarkers of overweight and obesity
selected by all methods were Adiponectin, Apolipoprotein H, Calcitonin, CD14, Complement 3, C-reactive protein,
Ferritin, Growth Hormone, Immunoglobulin M, Interleukin-18, Leptin, Monocyte Chemotactic Protein-1, Myoglobin, Sex
Hormone Binding Globulin, Surfactant Protein D, and YKL-40.

Conclusions: For the data scenarios examined, choice of optimal LASSO-type method was data structure dependent
and should be guided by the research objective. The LASSO-type methods identified biomarkers that have known
associations with obesity and obesity related conditions.

Keywords: LASSO, Biomarkers, High-Dimensional, Obesity, Overweight

* Correspondence: mmv@email.arizona.edu
1Mel and Enid Zuckerman College of Public Health, The University of Arizona,
1295 North Martin Avenue, P.O. Box 245211, Tucson, AZ 85724, USA
2Asthma and Airway Disease Research Center, The University of Arizona,
1501 North Campbell Avenue, P.O. Box 245030, Tucson, AZ 85724, USA
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Vasquez et al. BMC Medical Research Methodology  (2016) 16:154 
DOI 10.1186/s12874-016-0254-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-016-0254-8&domain=pdf
mailto:mmv@email.arizona.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The study of circulating biomarkers and their association
with disease outcomes has become progressively com-
plex due to advances in biotechnologies available for the
measurement of these biomarkers, including multiplex
technologies. Although the availability of numerous bio-
markers to study disease outcomes is highly promising,
high dimensional biomarker data present statistical chal-
lenges. The Least Absolute Shrinkage and Selection
Operator (LASSO) [1] is a popular high dimensional
data analysis method that may be utilized for these
biomarker data because it can simultaneously perform
regularization and variable selection, which can improve
both prediction accuracy and interpretation. This
method, originally proposed for the linear regression
model, minimizes the residual sum of squares, subject to
the sum of the absolute value of the coefficients being
less than a tuning parameter [1]. For the binary logistic
regression model, the residual sum of squares is replaced
by the negative log-likelihood [2]. If this tuning parameter
is large, there is no effect on the estimated regression pa-
rameters. However, as the tuning parameter gets smaller,
this may cause some coefficients to be shrunk towards
zero or set to be zero. Still, there has been extensive and
ongoing research towards the improvement of this
method in obtaining a more sparse and consistent solu-
tion. Therefore, the key aim of this study was to evaluate
five extensions that have been proposed to improve the
sparsity and consistency of the original LASSO method. A
simulation study was performed to compare variable se-
lection properties of the original LASSO method with the
Adaptive LASSO (AL), Elastic Net (EN), Iterated LASSO
(IL), Bootstrap-Enhanced LASSO (BL), and Weighted Fu-
sion (WF) for the binary logistic regression model.

LASSO
Details on penalized binomial logistic regression have
been previously described [2]. Let xi = (xi1,…, xip)

⊺ for
i =1,…,N denote p-predictors for N observations.
Assume that responses for the binary logistic regres-
sion model can take values G = 1,2. Then,

Pr G ¼ 1jxð Þ ¼ 1

1þ e− β0þxi⊺βð Þ ; Pr G ¼ 2jxð Þ

¼ 1

1þ e β0þxi⊺βð Þ ;

where β0 is the intercept and β = (β1, β2,…, βp)
⊺ is a p-

vector of regression parameters. This implies

log
Pr G ¼ 1jxð Þ
Pr G ¼ 2jxð Þ ¼ β0 þ xi

⊺β:

The LASSO method then finds parameter values to
minimize
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where

λ ⋅
Xp

j¼1

βj

���
���

is the penalty function for the LASSO.

Adaptive LASSO
The LASSO method has shown to not always provide
consistent variable selection. The LASSO penalizes all
coefficients equally, even when the coefficients are large.
In contrast, the AL uses adaptive weights to penalize co-
efficients differently [3]. AL uses a weighted penalty,

λ ⋅
Xp

j¼1

wj⋅ βj
���

���;

where wj ¼ 1
β̂ jj jv ; β̂ j

���
��� is the maximum likelihood esti-

mate and v > 0. The weighted penalty will allow variables
with larger coefficients to receive smaller penalties and
thus might provide a more consistent solution.

Elastic net
Zou and Hastie proposed the EN to address three issues
related to the LASSO [4]. The first two issues relate to
highly correlated variables in the n > p situation. For
highly correlated variables, the LASSO tends to choose
one variable and not the others. Also, predictive per-
formance for ridge regression was empirically observed
to be better than LASSO [4]. The third issue relates to
the p > n situation in which the LASSO can at most se-
lect n variables. The penalty term for EN incorporates
both the ridge penalty [5] λ ⋅ ∑j = 1

p βj
2 and LASSO penalty

λ ⋅ ∑j = 1
p |βj|:

λ⋅
Xp

j¼1

1
2
⋅ 1−αð Þ⋅βj2 þ α⋅ βj

���
���

� �
;

where α is a value between 0 and 1. The EN penalty is
equal to the LASSO penalty when α = 1 and to the ridge
penalty when α = 0. The EN selects groups of correlated
variables together, shares nice properties of both the
LASSO and ridge regression, and can be considered for
situations with p > n.

Iterated LASSO
The purpose of the IL is to consider the AL where the
weights are based on LASSO estimates of the coefficients
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rather than maximum likelihood estimates [6]. An initial
estimator is obtained by the IL to reduce the dimension of
the model. The IL uses the LASSO to obtain an initial es-
timator and reduce the dimension of the model. The
LASSO estimates are then used for the weighted penalty.

Bootstrap-enhanced LASSO
The bootstrap sample x* = (x1*, x2*, …, xn*) is obtained
by randomly sampling the initial data points x1, x2, …,
xn with replacement. The BL takes several bootstrapped
replications of a sample and then considers the intersec-
tion of these estimates [7]. The motivation behind the
BL is that if there existed several data sets from the same
distribution, relevant variables would appear in all data
sets and by running the LASSO for several bootstrapped
replications would lead to a consistent model. As the BL
may be too strict in intersecting models, it has been rec-
ommended to use a softened version of the BL (BL-S)
[8]. In particular, a BL-S that considered variables that
appeared in at least 90% of the bootstrap samples was
shown to have better performance than the BL [8]. Simi-
larly, for this study rather than considering a strict inter-
section, we a priori considered variables that appeared in
at least 75% of the bootstrap samples (BL-75), consistent
with other application studies [9, 10].

Weighted fusion
The motivation behind WF is to improve the EN by
utilizing additional information from the correlation
structure. In particular, the WF utilizes information from
correlated variables by using correlation driven weights
to penalize for the pairwise differences of these coeffi-
cients [11]. The penalty term is defined as

λ1⋅
Xp

j¼1

βj

���
���þ λ2⋅J βð Þ;

where tuning parameters λ1 ≥ 0, λ2 ≥ 0, and J is a cor-
relation driven penalty function,

J βð Þ ¼ 1
p
⋅
X

i<j

wij⋅ βi−sijβj
� �2

where wij ¼ ρijj jγ
1− ρijj j are the nonnegative weights non-

decreasing in |ρij|, ρij = xi
⊺xj is the sample correlation be-

tween predictors, γ > 0 is a tuning parameter, and sij is
the sign of ρij. The correlation driven weights encourage
correlated variables to be considered together.

Current study
The simulation study utilized the data structure of the
population-based Tucson Epidemiological Study of
Airway Obstructive Disease (TESAOD). This real dataset
presents data scenarios that are likely to be encountered
in serum biomarker research. Examples of such scenar-
ios may include high correlation between biomarkers,
weak to moderate associations with the outcome, and
sparse number of true signals. The current study seeks
to compare the LASSO and LASSO-type methods for
scenarios similar to the TESAOD data with the intent
that findings may be useful for similar biomarker studies.
In the application study, a comparison of methods in-
cluding the application of each LASSO and LASSO-type
method to the TESAOD data was performed for the
identification of serum biomarkers of overweight and
obesity.

Methods
Simulation study
A simulation study was performed to compare the per-
formance of the LASSO, AL, EN, IL, BL-75, and WF
methods for the binary logistic regression model. A total
of five scenarios were considered for the overweight and
obese outcomes as shown in Table 1. Biomarkers for the
simulation study were generated from the multivariate
normal distribution using the R package ‘mnormt’ (ver-
sion 1.5-3) [12] and the outcomes were generated from
the binomial distribution using R package ‘stats’ (version
3.1.0) [13]. Tuning parameters were estimated by using
10-fold cross validation with deviance loss. For EN, the
alpha parameters were also chosen by cross validation

Table 1 Scenarios applied to each LASSO method

Scenario # Non-zero
coefficients

Correlation
among
predictors

Non-zero coefficients in binary logistic regression models

Overweight Obese

1 5 0.2 0.05, -0.05, 0.1, 0.15, 0.2 0.2, 0.4, 0.6, -0.6, 0.8

2 5 0.8 0.05, -0.05, 0.1, 0.15, 0.2 0.2, 0.4, 0.6, -0.6, 0.8

3 5 0.2 0.2, 0.4, 0.6, -0.6, 0.8 1, -1, 1.25, 1.5, 1.75

4 5 0.8 0.2, 0.4, 0.6, -0.6, 0.8 1, -1, 1.25, 1.5, 1.75

5 20 0.5 0.01,0.2 from uniform distribution 0.1,0.99 from uniform distribution
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using the sequence alpha = 0 through alpha = 1 with step
size 0.1. For WF, the gamma parameter was chosen from
the sequence: 0.5, 1, 2.5, 5, and 25 [11].
The data structure of TESAOD was utilized in the simu-

lation study design. A total of 879 subjects had 86 mea-
sured serum biomarkers, thus the choice of N = 1000 with
100 biomarkers was made. Simulations for N = 500 were
also completed as in the case of stratified analyses or a
smaller study population. The first four scenarios consid-
ered five biomarkers with non-zero association with the
outcome (or true signals) out of the 100 biomarkers, while
the fifth scenario considered 20 biomarkers truly associated
with the outcome. Correlation of serum biomarkers ranged
from <0.01 to 0.70 for TESAOD, thus the correlation levels
of 0.20, 0.50, and 0.80 were chosen. In the TESAOD data-
set, 40% of subjects were overweight and 12% were obese.
Thus in the simulation study the proportion of overweight
was set at 40% and that of obesity at 12%. For each scenario
a total of 1000 simulated datasets were generated. Overall,
five scenarios, two outcomes, and two sample sizes were
considered for a total of 20 simulation studies.
To evaluate the variable selection properties of each

method, we first assessed if the solution provided by each
method was sparse. Second, we evaluated how well each
method identified the predictors with correct non-zero
and zero coefficients. In addition, we also evaluated the
area under the Receiver Operating Characteristic curve
(AUC) on an independent validation data set to evaluate
the discriminatory predictive performance of each method.
The independent validation data sets were generated for
each of the 1000 simulations and for each scenario with
similar data structure as the training data set. Depending
on the scenario, the validation data sets had sample size of
either 1000 or 500 per validation data set.

Application study
Study population
TESAOD is a population-based prospective cohort study
initiated in 1972 in Tucson, Arizona [14]. At study initi-
ation, 3805 participants from a stratified cluster of 1655
white Tucson households between the ages of 6 to 95 were
enrolled. At study baseline, participants completed a stan-
dardized questionnaire, had height and weight measured
by a study nurse, and had a sample of their blood col-
lected. For the current study, serum biomarkers were
measured on 879 non-Hispanic white subjects who were
between the ages of 21 to 70 years at the 1972 baseline
survey and for whom a baseline serum sample with suffi-
cient volume was available. The University of Arizona
Institutional Review Board approved the TESAOD study.

Biomarkers
Cryopreserved serum samples were analyzed at the
Myriad-Rules Based Medicine (RBM) facilities (Austin,

TX) using the Human Multi-Analyte Profile panel ver-
sion 1.6, a bead based suspension multiplex assay based
on Luminex immunoassay technology [15]. A total of 87
serum biomarkers were measured for 879 subjects
(Table 8 in the Appendix). Additionally, five serum bio-
markers were analyzed locally at the Arizona Respiratory
Center (ARC) laboratory, namely Soluble CD14 (R&D
Systems Inc., Minneapolis, MN), Club Cell Secretory
Protein (CC16) (BioVendor, Asheville, NC), Surfactant
Protein D (SPD) (Hycult Biotech Inc., Plymouth
Meeting, PA), and YKL-40 (Quantikine Human CHI3L1
immunoassay by R&D, Inc., Minneapolis, MN, USA, and
Abingdon, UK) using commercially available enzyme-
linked immunosorbent assays and C-Reactive Protein
(CRP) (Immulite 2000, Siemens Diagnostics, Tarrytown,
NY) using the commercially available enzymatic solid-
phase chemiluminescent immunometric assay.
A total of 86 biomarkers were considered for the ap-

plication study, of which 81 were measured by Myriad-
RBM and five were measured locally at the ARC. Of the
87 biomarkers measured by Myriad-RBM, six were not
considered. Factor VII, Insulin, and Prostate Specific
Antigen, Free were dropped as we only had measure-
ments for 322 of the 879 subjects. Biomarkers that had
greater than 90% undetectable values (i.e., Interleukin-2,
Interleukin-12p70, and Lymphotactin) were also not
considered. Missing data were present for Alpha-2 Mac-
roglobulin (3 subjects), CC16 (2 subjects), YKL-40 (4
subjects), Eotaxin (1 subject), and SPD (3 subjects).
Missing values were replaced with the median value for
the given biomarker. Biomarker measurements fell into
one of the following categories: undetectable values, nor-
mal values, and high values (Table 10 in the Appendix).
Biomarkers that had less than 15% of undetectable
values were considered as continuous. These biomarkers
were evaluated for normality and were log transformed
to obtain approximate normality when appropriate.
Their concentrations were analyzed in statistical analyses
as standardized values. Samples used to measure the
biomarker concentrations were run using different
batches in the laboratory. Variability in measurement may
be introduced by not running samples in one batch. To
adjust for any batch effects, the ComBat function as part
of the R package ‘sva’ (version 3.10.0) was used [16, 17].
Biomarkers that had between 15 and 50% undetectable
values were categorized at their median value. Biomarkers
that had between 50 and 90% undetectable values were
categorized at their detection limit.

Statistical analysis
For the TESAOD study data with the panel of 86
biomarkers, each LASSO and LASSO-type method was
applied to two separate binary logistic regression models,
one comparing the 306 overweight subjects with the 463
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normal-weight subjects, and the other comparing the 66
obese subjects with the 463 normal-weight subjects. Fur-
thermore, we additionally applied each LASSO-type
method to a binary logistic regression model comparing
the 372 overweight or obese subjects to the 463 normal
weight subjects. In addition, separate univariable binary
logistic regression models were performed to verify that
each biomarker was independently associated with each
outcome. For the BL-75, we report the median values
for the variables that appeared in at least 75% of the
bootstrap samples.
The analyses of simulated and real data were per-

formed using R versions 2.15.1 and 3.0.2 and Stata
version 12.0 (Statacorp LP, College Station, TX, USA).
The R packages glmnet (version 1.9-8) [2, 18], lqa
(version 1.0-3) [19], and ROCR (version 1.0-5) [20, 21]
were used.

Results
Simulation results
Table 2 shows sparsity of results for all methods in each
of the five scenarios. The only method that did not pro-
vide the most sparse solution for either the overweight
or obese outcome across all scenarios was the EN. When
considering scenarios with weak associations of bio-
markers with the outcome (scenarios 1 and 2) and sce-
narios with highly correlated variables (scenarios 2 and
4), the IL provided the most sparse solution for the over-
weight outcome and for the obese outcome, the LASSO,
IL, BL-75, and WF methods provided the most sparse
solution given a particular scenario. For scenario 5 that

considers a moderate number of true signals with mod-
erate correlation, the IL provided the most sparse solu-
tion for the overweight outcome and the BL-75 provided
the most sparse solution for the obese outcome.
Tables 3 and 4 show each method’s ability to correctly

identify the non-zero and zero coefficients for each of
the five scenarios. Considering N = 1000 with 100 bio-
markers (Table 3), for the overweight outcome, the WF
outperformed the other methods in identifying the non-
zero coefficients, but performed the worst in identifying
the zero-coefficients. The IL identified more of the zero-
coefficients correctly. For the obese outcome, one
method did not clearly outperform the other methods.
Results for simulations with N = 500 with 100 bio-
markers are shown in Table 4. For the overweight out-
come, the WF tended to choose more of the non-zero
coefficients correctly and the IL tended to identify more
of the zero-coefficients correctly. For the obese outcome,
the WF outperformed the others at identifying the
correct non-zero coefficients, but tended to incorrectly
include more noise variables.
Table 5 shows median and range of AUC results.

Discriminatory predictive performance increased as the
association with the outcome increased and also with
larger sample size. In general, when considering scenar-
ios with either weak associations of biomarkers with the
outcome (scenarios 1 and 2) or scenarios with highly
correlated variables (scenarios 2 and 4), the LASSO
method showed good predictive ability over the other
methods. The LASSO, EN, and WF performed compar-
ably and outperformed the other methods. The BL-75

Table 2 Median (minimum, maximum) number of selected non-zero coefficients from 1000 simulated data sets

N = 1000 N = 500

Scenario 1 2 3 4 5 1 2 3 4 5

True number 5 5 5 5 20 5 5 5 5 20

Overweight

LASSO 7 (0,38) 5.5 (1,41) 19 (4,61) 9 (2,56) 19 (9,56) 4 (0,37) 5 (0,43) 18 (4,50) 8 (2,49) 16 (5,47)

Adaptive LASSO 16 (1,45) 14 (1,48) 18 (4,49) 19 (2,51) 21 (4,52) 16 (0,46) 12 (1,43) 18 (3,45) 18 (1,45) 19.5 (3,45)

Elastic Net 12 (0,100) 10 (1,100) 23 (4,62) 13 (2,65) 28 (10,100) 12 (0,100) 12 (0,100) 22 (4,84) 11 (2,62) 27 (7,100)

Iterated LASSO 7 (0,41) 5 (1,34) 18 (4,46) 9 (2,43) 16 (5,41) 4 (0,32) 4 (0,35) 16 (2,38) 7 (1,39) 13 (3,37)

Bootstrap-Enhanced LASSO-75 12 (1,28) 10 (1,26) 18 (7,38) 17 (4,40) 20 (10,40) 10 (0,29) 9 (0,28) 16 (5,37) 13 (3,34) 16 (5,35)

Weighted Fusion 27 (0,99) 27 (1,100) 23 (10,76) 21 (10,74) 34 (18,100) 13 (0,100) 13 (0,100) 11 (5,66) 9 (4,100) 56 (9,100)

Obese

LASSO 17 (4,51) 7 (2,59) 26 (8,56) 16 (3,58) 37 (20,59) 15 (2,45) 7 (1,40) 22.5 (5,54) 14 (3,50) 28 (14,52)

Adaptive LASSO 17 (3,50) 17 (1,47) 18 (5,57) 19 (3,47) 35 (14,57) 19 (1,51) 15 (1,48) 19 (4,48) 17 (2,48) 28 (6,48)

Elastic Net 21 (5,74) 11 (2,75) 29 (6,76) 19 (4,77) 47 (22,100) 20 (2,100) 11 (1,100) 26 (5,74) 19 (3,87) 42 (14,100)

Iterated LASSO 16 (4,40) 7 (1,44) 20 (5,40) 13 (3,38) 24 (12,40) 14 (1,39) 6 (1,34) 16 (4,36) 11 (2,40) 17 (7,34)

Bootstrap-Enhanced LASSO-75 17 (5,37) 14 (2,34) 20 (7,39) 16 (5,34) 22 (12,34) 14.5 (5,36) 11 (1,27) 13 (5,24) 10 (3,20) 16 (8,25)

Weighted Fusion 12 (5,68) 10 (2,99) 43 (5,61) 36 (3,53) 39 (22,99) 38 (1,100) 4 (1,100) 26 (12,87) 22 (4,70) 47 (14,100)
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generally outperformed the AL. When considering
scenario 5 with a moderate number of true signals with
moderate correlation, the BL-75 showed the best
predictive ability for the overweight outcome. In most
scenarios, the IL performed poorly.

Application results
A total of 86 biomarkers were considered for the applica-
tion study. We identified the biomarkers that were con-
sistently chosen across the six LASSO and LASSO-type
methods and had a significant univariable association with

Table 3 Median (minimum, maximum) number of correctly identified non-zero and zero coefficients, N = 1000, 1000 simulated datasets

Scenario 1 2 3 4 5

Type Non-Zero Zero Non-Zero Zero Non-Zero Zero Non-Zero Zero Non-Zero Zero

Truth 5 95 5 95 5 95 5 95 20 80

Overweight

LASSO 3 (0,5) 91 (61,95) 3 (1,5) 92 (56,95) 5 (4,5) 81 (39,95) 4 (2,5) 89 (43,95) 13 (8,18) 74.5 (39,80)

Adaptive LASSO 3 (0,5) 82 (54,95) 2 (1,5) 83 (50,95) 5 (4,5) 82 (51,95) 4 (2,5) 81 (48,95) 9 (4,15) 68 (41,80)

Elastic Net 3 (0,5) 86 (0,95) 3 (1,5) 88 (0,95) 5 (4,5) 77 (38,95) 4 (2,5) 86 (34,95) 16 (9,20) 67 (0,80)

Iterated LASSO 2 (0,5) 91 (57,95) 2 (1,5) 93 (64,95) 5 (4,5) 82 (54,95) 3 (2,5) 90 (57,95) 11 (5,16) 76 (50,80)

Bootstrap-Enhanced
LASSO-75

3 (0,5) 86 (70,95) 2 (0,4) 86 (72,95) 5 (4,5) 82 (62,93) 4 (2,5) 81 (60,94) 12 (7,16) 72 (54,80)

Weighted Fusion 4 (0,5) 72 (1,95) 5 (1,5) 72 (0,95) 5 (4,5) 77 (24,90) 4 (2,5) 77 (26,89) 20 (9,20) 65 (0,74)

Obese

LASSO 5 (3,5) 82 (49,95) 3 (2,5) 91 (41,95) 5 (5,5) 74 (44,92) 4 (3,5) 83 (42,95) 19 (14,20) 61 (37,78)

Adaptive LASSO 5 (3,5) 82.5 (50,95) 4 (1,5) 82 (53,95) 5 (5,5) 82 (43,95) 5 (3,5) 81 (53,95) 15 (10,20) 60 (38,79)

Elastic Net 5 (4,5) 79 (26,94) 4 (2,5) 88 (25,95) 5 (5,5) 71 (24,94) 4 (3,5) 80 (23,95) 19 (15,20) 52 (0,75)

Iterated LASSO 5 (3,5) 84 (60,95) 3 (1,5) 91 (56,95) 5 (5,5) 80 (60,95) 4 (3,5) 86 (62,95) 16 (12,20) 72 (56,80)

Bootstrap-Enhanced
LASSO-75

5 (3,5) 83 (63,95) 3 (1,5) 84 (64,95) 5 (5,5) 80 (61,93) 4 (2,5) 83 (66,94) 16 (10,20) 73 (62,80)

Weighted Fusion 5 (3,5) 88 (32,94) 3 (2,5) 89 (1,95) 5 (5,5) 57 (39,95) 4 (3,5) 64 (46,95) 20 (14,20) 61 (1,76)

Table 4 Median (minimum, maximum) number of correctly identified non-zero and zero coefficients, N = 500, 1000 simulated datasets

Scenario 1 2 3 4 5

Type Non-Zero Zero Non-Zero Zero Non-Zero Zero Non-Zero Zero Non-Zero Zero

Truth 5 95 5 95 5 95 5 95 20 80

Overweight

LASSO 1 (0,5) 93 (59,95) 2 (0,5) 92 (54,95) 5 (2,5) 82 (50,95) 3 (2,5) 90 (50,95) 11 (5,16) 75 (46,80)

Adaptive LASSO 2 (0,5) 81 (51,95) 2 (0,4) 84 (55,95) 5 (3,5) 81 (55,95) 4 (1,5) 81 (54,95) 7 (3,14) 68 (45,80)

Elastic Net 2 (0,5) 85 (0,95) 3 (0,5) 86 (0,95) 5 (3,5) 78 (16,95) 4 (2,5) 87 (36,95) 14 (6,20) 66.5 (0,80)

Iterated LASSO 1 (0,5) 93 (66,95) 2 (0,5) 92 (62,95) 5 (2,5) 84 (62,95) 3 (1,5) 91 (60,95) 8 (3,14) 76 (52,80)

Bootstrap-Enhanced
LASSO-75

2 (0,5) 87 (69,95) 1 (0,3) 87 (68,95) 5 (3,5) 84 (62,94) 3 (1,5) 85 (65,95) 8 (4,13) 72 (54,80)

Weighted Fusion 3 (0,5) 85 (0,95) 5 (0,5) 85 (0,95) 5 (3,5) 89 (34,94) 3 (2,5) 89 (0,94) 20 (6,20) 43 (0,80)

Obese

LASSO 4 (1,5) 84 (55,95) 3 (1,5) 91 (57,95) 5 (4,5) 77.5 (46,94) 4 (3,5) 85 (49,95) 16 (10,20) 67 (42,80)

Adaptive LASSO 4 (1,5) 80 (48,95) 3 (1,5) 83 (50,95) 5 (4,5) 81 (52,95) 4 (2,5) 82 (50,95) 11 (6,16) 63 (42,80)

Elastic Net 5 (1,5) 80 (0,95) 3 (1,5) 87 (0,95) 5 (4,5) 74 (26,95) 4 (3,5) 79 (13,95) 17 (10,20) 55 (0,78)

Iterated LASSO 4 (1,5) 86 (60,95) 3 (1,5) 91 (64,95) 5 (4,5) 84 (64,95) 4 (2,5) 88 (59,95) 12 (6,17) 75 (59,80)

Bootstrap-Enhanced
LASSO-75

4 (2,5) 85 (64,94) 2 (1,5) 87 (72,95) 5 (4,5) 87 (76,95) 4 (2,5) 89 (79,95) 12 (7,17) 76 (70,80)

Weighted Fusion 5 (1,5) 62 (0,95) 3 (1,5) 94 (0,95) 5 (4,5) 74 (13,88) 4 (3,5) 77 (30,95) 20 (10,20) 51 (0,80)
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the outcome. For the overweight outcome these were
Adiponectin, Apolipoprotein H (ApoH), Calcitonin, sol-
uble CD14 (sCD14), Complement 3 (C3), CRP, Ferritin,
Growth Hormone (GH), Immunoglobulin M (IgM),
Leptin, Myoglobin, Sex Hormone Binding Globulin
(SHBG), and SPD and for the obese outcome were CRP,
Interleukin-18 (IL-18), Leptin, Monocyte Chemotactic
Protein-1 (MCP-1), SHBG, SPD, von Willebrand Factor
(vWF), and YKL-40 (Table 6).
The combination of both outcomes was also consid-

ered and 16 biomarkers were identified, namely Adipo-
nectin, ApoH, Calcitonin, sCD14, C3, CRP, Ferritin, GH,
IgM, IL-18, Leptin, MCP-1, Myoglobin, SHBG, SPD, and
YKL-40 (Table 7).
Results for all biomarkers, not limited to those chosen

across all 6 LASSO and LASSO-type methods, can be
found in Tables 11–13 in the Appendix.

Discussion
In the simulation study, we compared the variable selec-
tion properties of the LASSO and five LASSO-type
methods for the binary logistic regression model and did
find certain situations in which one method outper-
formed the others. In general, when we considered

scenarios with weak associations of biomarkers with the
outcome and scenarios with high correlation between
biomarkers, the IL tended to provide the most sparse
solution, but had poor discriminatory predictive per-
formance. The WF tended to correctly identify more of
the true signals, but also incorrectly included more noise
variables. Still, we were not able to identify one method
that had an overall superior performance over the
others. In general, our simulation set-up considered
much smaller effects compared to those studied in the
original methodological papers that proposed the
LASSO [1], AL [3], EN [4], IL [6], BL [7], and WF [11]
methods. This more realistic setting for biomarker re-
search may contribute to why we did not see clear
improvements of one method over the other.
Similar to our results, when comparing AL results to

the LASSO, and considering both large and small effect
sizes, Zou found that there was not one single method
that consistently outperformed the others [3]. They
found that in low sample size scenarios the LASSO per-
formed the best with a low signal to noise ratio (SNR),
while the AL outperformed the LASSO when high SNR
was present [3]. In general, the LASSO was able to iden-
tify more of the non-zero coefficients as compared to

Table 5 Median (minimum, maximum) estimated AUC from 1000 simulated data sets

N = 1000 N = 500

Scenario 1 2 3 4 5 1 2 3 4 5

Overweight

LASSO 0.57
(0.47,0.63)

0.61
(0.54,0.67)

0.77
(0.73,0.82)

0.79
(0.73,0.83)

0.77
(0.72,0.82)

0.54
(0.43,0.65)

0.60
(0.48,0.68)

0.77
(0.69,0.83)

0.78
(0.71,0.85)

0.77
(0.68,0.83)

Adaptive LASSO 0.55
(0.47,0.62)

0.58
(0.50,0.66)

0.72
(0.60,0.81)

0.73
(0.57,0.82)

0.76
(0.70,0.82)

0.54
(0.43,0.65)

0.57
(0.47,0.66)

0.72
(0.57,0.82)

0.73
(0.55,0.84)

0.75
(0.66,0.82)

Elastic Net 0.56
(0.47,0.63)

0.60
(0.54,0.67)

0.77
(0.73,0.82)

0.79
(0.73,0.83)

0.77
(0.73,0.82)

0.55
(0.43,0.65)

0.59
(0.49,0.68)

0.76
(0.69,0.83)

0.78
(0.71,0.85)

0.77
(0.68,0.83)

Iterated LASSO 0.52
(0.45,0.63)

0.54
(0.45,0.67)

0.54
(0.46,0.79)

0.57
(0.47,0.83)

0.70
(0.51,0.81)

0.52
(0.40,0.66)

0.54
(0.43,0.67)

0.55
(0.44,0.77)

0.58
(0.45,0.85)

0.70
(0.49,0.82)

Bootstrap-Enhanced
LASSO-75

0.55
(0.48,0.62)

0.58
(0.48,0.65)

0.76
(0.71,0.82)

0.77
(0.71,0.82)

0.84
(0.79,0.88)

0.53
(0.42,0.65)

0.56
(0.44,0.66)

0.74
(0.64,0.82)

0.75
(0.65,0.83)

0.82
(0.73,0.88)

Weighted Fusion 0.56
(0.48,0.62)

0.60
(0.54,0.67)

0.77
(0.72,0.82)

0.78
(0.74,0.83)

0.78
(0.73,0.82)

0.55
(0.44,0.65)

0.59
(0.47,0.68)

0.77
(0.67,0.84)

0.78
(0.71,0.85)

0.77
(0.68,0.84)

Obese

LASSO 0.78
(0.71,0.86)

0.80
(0.71,0.86)

0.94
(0.90,0.96)

0.96
(0.94,0.98)

0.99
(0.98,1.00)

0.76
(0.63,0.86)

0.79
(0.67,0.87)

0.93
(0.85,0.97)

0.96
(0.90,0.99)

0.98
(0.94,0.99)

Adaptive LASSO 0.73
(0.59,0.84)

0.74
(0.58,0.86)

0.88
(0.68,0.96)

0.92
(0.72,0.98)

0.98
(0.92,0.99)

0.72
(0.55,0.84)

0.73
(0.49,0.87)

0.89
(0.66,0.97)

0.93
(0.57,0.98)

0.96
(0.89,0.99)

Elastic Net 0.78
(0.71,0.86)

0.80
(0.71,0.86)

0.94 (0.90,
0.96)

0.96
(0.93,0.98)

0.99
(0.97,1.00)

0.76
(0.60,0.86)

0.79
(0.67,0.87)

0.93
(0.85,0.97)

0.96
(0.89,0.99)

0.98
(0.94,0.99)

Iterated LASSO 0.55
(0.45,0.79)

0.58
(0.43,0.85)

0.63
(0.46,0.96)

0.65
(0.33,0.98)

0.98
(0.76,1.00)

0.57
(0.42,0.80)

0.59
(0.42,0.87)

0.68
(0.44,0.95)

0.71
(0.34,0.98)

0.96
(0.64,0.99)

Bootstrap-Enhanced
LASSO-75

0.76 (0.68,
0.82)

0.77
(0.68,0.85)

0.93
(0.88,0.97)

0.95
(0.91,0.98)

0.99
(0.82,1.00)

0.73
(0.57,0.85)

0.75
(0.62,0.85)

0.92
(0.83,0.97)

0.95
(0.88,0.98)

0.97
(0.79,0.99)

Weighted Fusion 0.78
(0.70,0.86)

0.80
(0.70,0.86)

0.94 (0.90,
0.96)

0.96
(0.64,0.98)

0.99
(0.97,1.00)

0.74
(0.60,0.86)

0.79
(0.66,0.87)

0.93
(0.86,0.97)

0.96
(0.88,0.98)

0.98
(0.96,1.00)
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Table 6 TESAOD analysis, coefficients refer to associations of standardized biomarker values with overweight and obese separately

Overweight Obese

(N = 463 normal-weight, N = 306 overweight) (N = 463 normal-weight, N = 66 obese)

LASSO Adaptive
LASSO

Elastic
Net

Iterated
LASSO

Bootstrap-Enhanced
LASSO-75

Weighted
Fusion

p^ LASSO Adaptive
LASSO

Elastic
Net

Iterated
LASSO

Bootstrap-Enhanced
LASSO-75

Weighted
Fusion

p^

Adiponectin −0.2511 −0.3500 −0.2498 −0.3297 −0.3226 −0.2440 ** −0.0101 0 −0.0006 0 0 −0.0853 *

Apolipoprotein H 0.0571 0.0838 0.0762 0.1479 0.1309 0.0512 ** 0.0881 0.1642 0.0346 0 0.2160 0.1277 **

Calcitonina 0.0469 0.0765 0.0668 0.1681 0.0895 0.0352 * 0 0 0 0 0 0.0624

Soluble CD14 −0.1133 −0.1679 −0.1296 −0.2492 −0.1923 −0.0994 * −0.1020 −0.1706 −0.0488 0 −0.2272 −0.0965

Complement 3 0.0847 0.1238 0.1183 0.2080 0.1483 0.0767 ** 0.0899 0 0.0761 0 0 0.1306 **

C-Reactive Protein 0.2105 0.3150 0.2188 0.3791 0.2901 0.1923 ** 0.5213 0.7636 0.4765 0.6802 0.6052 0.2526 **

Ferritin 0.1131 0.0969 0.1120 0.1431 0.1055 0.1115 ** 0.0753 0 0.0469 0 0 0.0671 *

Growth Hormone −0.1163 −0.1238 −0.1259 −0.1737 −0.1566 −0.1144 ** 0 0 0 0 0 −0.0888 *

Immunoglobulin M −0.0410 −0.0288 −0.0569 −0.1228 −0.0949 −0.0320 * −0.1014 0 −0.0450 0 0 −0.1120

Interleukin-18 0.0073 0.0047 0.0348 0.1515 0 0 ** 0.1214 0.0653 0.0804 0.0774 0.2373 0.0870 *

Leptin 0.2057 0.3263 0.2102 0.3690 0.3177 0.1829 ** 0.9186 1.1286 0.8548 1.2502 1.1551 0.3792 **

Monocyte Chemotactic
Protein-1

0 0 0 0 0 0 0.1628 0.1471 0.1269 0.1792 0.2546 0.1275 **

Myoglobin 0.2323 0.3468 0.2300 0.3341 0.2856 0.2162 ** 0.0391 0 0.0316 0 0 0.0829 *

Sex Hormone Binding
Globulin

−0.2130 −0.2033 −0.1979 −0.2220 −0.2046 −0.2009 ** −0.4768 −0.6470 −0.4499 −0.7274 −0.4767 −0.2334 **

Surfactant Protein D −0.1053 −0.1518 −0.1250 −0.2361 −0.2089 −0.0924 * −0.3136 −0.4086 −0.2351 −0.3848 −0.4663 −0.2820 **

von Willebrand Factor 0 0 0 0 0 0 0.1980 0.0683 0.1737 0.2571 0.2694 0.1364 **

YKL-40 0 0 0.0108 0 0 0 0.1095 0.0847 0.0733 0.0314 0.1979 0.1151 **
aCategorized at median; ^: p-value for univariate association from binary logistic regression; *: p < 0.05; **: p < 0.01
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the AL. In identifying the correct zero coefficients, both
methods performed comparably with the exception of
scenario 5 in which the LASSO outperformed the AL.
Both the LASSO and AL methods have been shown to
have good prediction accuracy [3], however the LASSO
did show better discrimination than the AL in our simu-
lation study. The EN has been shown to outperform the
LASSO when collinearity is present. However, the EN
typically chooses more variables than the LASSO, creat-
ing a less sparse solution [4]. For scenarios with high
correlation (scenarios 2, 4, and 5), our results show that
the EN correctly identified the true signals either com-
parably or better than the LASSO (Tables 3 and 4). As
expected, the EN included more noise variables for all
scenarios. Similarly, in our simulation study the LASSO
provided a more sparse solution as compared to the EN
(Table 2). The IL has been shown to provide a more
sparse solution than the LASSO [6]. We confirmed in
our simulation study that the IL tended to provide the
most sparse solution as compared to the others, but it
also demonstrated poor predictive ability. With sparse
data-generating models, the BL has been shown to out-
perform the LASSO [8]. However, the BL has also been
shown to be too stringent [8]. In the present study, in
order to minimize the exclusion of any potentially im-
portant biomarkers, we a priori considered the BL-75.
We found that when considering a moderate number of
true signals with moderate correlation, the BL-75
showed the best predictive ability. WF has been shown

to outperform the LASSO and EN [11]. Similar to the
EN, WF also tends to over select variables and thus cre-
ates a less sparse solution. In our simulation study, we
found that the WF correctly identified more true signals,
but incorrectly included more noise variables.
Given these biomarker data, choice of optimal LASSO-

type method was dependent on the characteristics of how
the data were generated and should be guided by the re-
search objectives. For objectives that aim to identify the
maximal number of true signals, the WF was most opti-
mal and the IL and AL the least. While identifying the
greatest number of true signals, the WF also included
more noise variables. The LASSO and EN performed well
in the identification of many true signals and exclusion of
more noise variables. For objectives that aim to maximize
prediction, the LASSO, EN, and WF would also be opti-
mal. While we found that no method had a clear overall
advantage over the others, the IL was outperformed by
the other methods in both variable selection and predic-
tion. Additionally, while the BL showed the best predictive
ability when considering a moderate number of true sig-
nals with moderate correlation, it was outperformed in
variable selection. Given that the original LASSO method
was not outperformed by the other methods, this method
would be the most ideal method since it is the most direct
and efficient method to implement. However, in general
we recommend that the choice of optimal LASSO-type
method should be guided by the underlying scientific
question and by the research objectives.

Table 7 TESAOD analysis, coefficients refer to associations of standardized biomarker values with overweight and obese combined

Overweight and Obese
(N = 463 normal-weight, N = 372 overweight and obese)

Lasso Adaptive LASSO Elastic Net Iterated LASSO Bootstrap-Enhanced LASSO-75 Weighted Fusion p^

Adiponectin −0.2143 −0.2770 −0.2210 −0.2827 −0.2334 −0.1985 **

Apolipoprotein H 0.0759 0.1047 0.0965 0.1028 0.1201 0.0628 **

Calcitonina 0.0461 0.0647 0.0657 0.0782 0.1076 0.0236 *

Soluble CD14 −0.1439 −0.2052 −0.1598 −0.2411 −0.1681 −0.1143 *

Complement 3 0.1094 0.1174 0.1313 0.1307 0.1337 0.0923 **

C-Reactive Protein 0.2968 0.4064 0.3015 0.4235 0.3485 0.2630 **

Ferritin 0.1036 0.0834 0.1068 0.1397 0.0701 0.0988 **

Growth Hormone −0.1155 −0.0898 −0.1181 −0.1430 −0.1529 −0.1158 **

Immunoglobulin M −0.0883 −0.1068 −0.0940 −0.1568 −0.0982 −0.0715 *

Interleukin-18 0.0404 0.0379 0.0588 0.0677 0.0798 0.0223 **

Leptin 0.3312 0.4337 0.3499 0.4554 0.4052 0.2861 **

Monocyte Chemotactic Protein-1 0.0283 0.0829 0.0451 0.0572 0.0927 0.0030 *

Myoglobin 0.2267 0.3195 0.2286 0.2983 0.2587 0.2115 **

Sex Hormone Binding Globulin −0.2827 −0.3609 −0.2739 −0.3612 −0.2703 −0.2593 **

Surfactant Protein D −0.1612 −0.2086 −0.1794 −0.2439 −0.2401 −0.1328 **

YKL-40 0.0284 0.0278 0.0434 0.0222 0.0654 0.0152 *
aCategorized at median ^: p-value for univariate association from binary logistic regression; *: p < 0.05; **: p < 0.01
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When applying the methods to the TESAOD dataset,
we considered three different outcomes, namely over-
weight, obese, and overweight or obese. We had ex-
pected similar biomarkers for both conditions and
possibly stronger associations with obesity. We chose to
combine overweight and obesity in a separate analysis as
this would provide the highest power for most bio-
markers as well as provide a summary measure. Consid-
ering overweight and obesity in separate models would
allow us to estimate biomarker association levels specific
to each condition. Not all biomarkers were chosen
consistently across all methods when considering the
overweight and obese outcomes separately. ApoH and
sCD14 were consistently chosen across all methods for
the overweight outcome and across all methods except
for the IL for the obese outcome. Similarly, Adiponectin,
C3, Ferritin, IgM and Myoglobin were consistently
chosen across all methods for the overweight outcome
and across all methods for the obese outcome except for
AL, IL, and BL-75. Results from the simulation study
suggest that the IL might not always choose the true sig-
nal and that the LASSO, EN, and WF might be more
likely to identify the true signal as compared to AL and
BL-75. Other biomarkers such as Calcitonin and GH
were consistently chosen for the overweight outcome,
but never chosen for the obese outcome. In contrast,
MCP-1 and vWF were never chosen for the overweight
outcome, but always chosen for the obese outcome.
These differences may in part be due to the method-
ology and different sample sizes in the overweight and
obese categories, but they also might be due to biological
differences between the two outcomes.
Overall, in addition to the well-known effects of

Adiponectin, CRP, and Leptin, the LASSO methods
identified multiple biomarkers that have been reported
to be associated with obesity and/or obesity related con-
ditions [22–45] and that were largely classified into ei-
ther a group of hormones or hormone related proteins
(Adiponectin, Calcitonin, GH, Leptin, SHBG), or into a
group of positive acute phase reactants and other bio-
markers of inflammation (C3, CRP, Ferritin, IL-18,
MCP-1, vWF, and YKL-40). The LASSO-type methods
shrink coefficients and set other coefficients to 0, thus
producing biased estimates. Of note, Tables 6 and 7
show biased estimates and the magnitude of the estima-
tion differences could be noted. The tuning parameter
chosen by cross validation affects the amount of shrink-
age and this tuning parameter may differ between
LASSO-type methods.

Strengths and limitations
A strength of this study is that real-world data were used
in the development of the simulation study parameters. In
particular, the scenarios that were considered represent a

more realistic setting that might be present in high dimen-
sional serum biomarker research such as sparse number
of true signals, weak to moderate association of the bio-
markers with the outcomes, and high correlation between
biomarkers. In the application study we confirmed poten-
tially important biomarkers of overweight and obesity
using results that were consistent across six LASSO and
LASSO-type methods.
A limitation to this study is that although we found that

in general the IL tended to provide the most sparse solu-
tion and the WF tended to correctly identify the most
number of true signals, the choice of optimal LASSO
method is data structure dependent and results from this
study may not be generalizable to other biomarker studies.
Furthermore, for the BL method, rather than consider a
strict intersection, we considered the BL-75. We acknow-
ledge that this may not fully optimize results and a differ-
ent frequency threshold may outperform the BL-75. In
addition, the primary goal of this research was to study
the binary logistic regression model. Particularly, we were
interested in how the LASSO-type models would compare
when considering a common (40% overweight) or less
common (12% obese) outcome. Considering both out-
comes together as a single ordinal or as a multinomial re-
sponse might have been more efficient than to consider
them as separate binary responses and performance of
LASSO-type approaches for such outcome measures will
be a future research topic.
In this paper we focus on situations where the number

of variables p is smaller than the sample size N. As
shown in Fan and Fan [46], Fan and Liv [47], and Fan,
Samworth, and Wu [48], when p > N, performance of
the LASSO-type methods is inferior to that of certain
two-stage methods, which first apply a screening proced-
ure to reduce the number of important variables below
the sample size, then apply methods like LASSO to the
selected subset of variables. Comparison of such two-
stage methods for the p > N situation is beyond the
scope of this paper and will be the topic of future
investigation.

Conclusions
For the data scenarios examined, the LASSO method was
overall not outperformed by any of the other methods.
Choice of optimal LASSO-type method was dependent on
characteristics of how the data were generated. In general,
these characteristics are unknown and can only to some
extent be estimated. Nevertheless, choice of optimal
LASSO-type method should be guided by knowledge of
the underlying scientific question and by the research ob-
jectives. The LASSO-type methods were able to identify
biomarkers that were known to be associated with obesity
and obesity related conditions, demonstrating the promise
of such methods in future investigations.
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Appendix

Table 8 HumanMAP version 1.6 biomarkers

Adiponectin Granulocyte-Macrophage
Colony-Stimulating Factor

Macrophage-Derived Chemokine

Alpha-1-Antitrypsin Growth Hormone Macrophage Inflammatory Protein 1-alpha

Alpha-Fetoprotein Haptoglobin Macrophage Inflammatory Protein-1 beta

Alpha-2-Macroglobulin Immunoglobulin A Matrix Metalloproteinase-2

Apolipoprotein A-1 Immunoglobulin E Matrix Metalloproteinase-3

Apolipoprotein C-III Immunoglobulin M Matrix Metalloproteinase-9

Apolipoprotein H Insulin Monocyte Chemotactic Protein 1

Beta-2 Microglobulin Intercellular Adhesion Molecule-1 Myeloperoxidase

Brain Derived Neurotrophic Factor Interferon-gamma Myoglobin

Calcitonin Interleukin-1 alpha Plasminogen Activator Inhibitor 1

Cancer Antigen 19-9 Interleukin-1 beta Pregnancy-Associated Plasma Protein a

Cancer Antigen 125 Interleukin-1 Receptor Antagonist Prostate Specific Antigen, Free

Carcinoembryonic Antigen Interleukin-2 Prostatic Acid Phosphatase

CD40 Interleukin-3 T-Cell Specific Protein, Regulated upon
Activation Normal T-cell Expressed, and
presumably Secreted

CD40 Ligand Interleukin-4 Serum Amyloid P

Complement 3 Interleukin-5 Serum Glutamic Oxaloacetic Transminase

Creatine Kinase-MB Interleukin-6 Sex Hormone Binding Globulin

Endothelin-1 Interleukin-7 Stem Cell Factor

Eotaxin Interleukin-8 Thrombopoietin

Epidermal Growth Factor Interleukin-10 Thyroxine Binding Globulin

Epithelial-Derived Neutrophil-Activating Protein-78 Interleukin-12 subunit p40 Thyroid Stimulating Hormone

Erythropoietin Interleukin-12 subunit p70 Tissue Factor

Extracellular Newly Identified RAGE-binding protein Interleukin-13 Tissue Inhibitor of Metalloproteinase 1

Factor VII Interleukin-15 Tumor Necrosis Factor-alpha

Fatty Acid Binding Protein Interleukin-16 Tumor Necrosis Factor-beta

Ferritin Interleukin-18 Tumor Necrosis Factor RII

Fibrinogen Leptin Vascular Cell Adhesion Molecule-1

Fibroblast Growth Factor-Basic Lipoprotein (a) Vascular Endothelial Growth Factor

Granulocyte Colony-Stimulating Factor Lymphotactin von Willebrand Factor

Table 9 Biomarkers measured at the Arizona Respiratory Center

Soluble CD14

Club (Clara) Cell Secretory Protein

C-Reactive Protein

Surfactant Protein D

YKL-40

Table 10 Measurements of biomarker concentrations

Category
description

Reported from lab Decision on how to use data

Undetectable
values

Reflect samples below
the lowest standard

The lowest observed value for
each biomarker was identified
and all low values for that
biomarker were recorded as ½
that value (Myriad-RBM) or ½
the lowest standard (ARC)

Normal values Normal values Normal Values

High values Reflect samples above
the highest standard

Value equals twice the highest
value (Myriad-RBM) or twice
the highest standard (ARC)
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Table 11 TESAOD application, overweight subjects (N = 463 normal-weight, N = 306 overweight)

Lasso Adaptive
LASSO

Elastic
Net

Iterated
LASSO

Bootstrap-Enhanced
LASSO-75

Weighted
Fusion

Logistic Regression,
Coefficient (p-value)

Adiponectin −0.2511 −0.3500 −0.2498 −0.3297 −0.3226 −0.2440 −0.5188 (<0.001)

Alpha-1 Antitrypsin −0.0283 −0.0283 −0.0554 −0.1381 0 −0.0210 −0.1552 (0.038)

Alpha-Fetoprotein 0 0 0 0 0 0 0.1012 (0.178)

Alpha-2 Macroglobulin −0.0005 0 −0.0214 0 0 −0.0014 −0.3183 (<0.001)

Apolipoprotein A-1 0 0 0 0 0 0 −0.0502 (0.497)

Apolipoprotein C-III 0 0 0 0 0 0 0.2049 (0.006)

Apolipoprotein H 0.0571 0.0838 0.0762 0.1479 0.1309 0.0512 0.3348 (<0.001)

Beta-2 Microglobulin 0 0 0 0 0 0 0.1495 (0.044)

Brain Derived Neurotrophic Factor 0 0 0 0 0 0 0.0412 (0.576)

Calcitonina 0.0469 0.0765 0.0668 0.1681 0.0895 0.0352 0.3435 (0.020)

Cancer Antigen 19-9 0 0 0 0 0 0 −0.0007 (0.992)

Cancer Antigen 125 0 0 0 0 0 0 0.0724 (0.329)

Carcinoembryonic Antigen 0 0 0 0 0 0 0.0157 (0.831)

Soluble CD14 −0.1133 −0.1679 −0.1296 −0.2492 −0.1923 −0.0994 −0.1716 (0.023)

CD40 0 0 0 0 0 0 0.0302 (0.682)

CD40Ligand 0 0 0 0 0 0 −0.0096 (0.896)

Club Cell Secretory Protein 0 0 0 0 0 0 0.0107 (0.885)

Complement 3 0.0847 0.1238 0.1183 0.2080 0.1483 0.0767 0.3855 (<0.001)

C-Reactive Protein 0.2105 0.3150 0.2188 0.3791 0.2902 0.1923 0.3537 (<0.001)

Creatine Kinase-MB 0 0 0.0062 0 0 0 0.2130 (0.005)

Endothelin-1b 0 0 0 0 0 0 −0.0262 (0.874)

Eotaxin −0.0451 −0.0904 −0.0693 −0.1443 −0.1277 −0.0335 −0.0946 (0.206)

Epidermal Growth Factor −0.0140 −0.0591 −0.0396 −0.1180 −0.0689 −0.0041 −0.1000 (0.174)

Epithelial-Derived Neutrophil-Activating Protein-78 0 0 0 0 0 0 −0.0065 (0.930)

Erythropoietina 0 0 0 0 0 0 0.0914 (0.535)

Extracellular Newly Identified RAGE-Binding Protein 0 0 0 0 0 0 0.0347 (0.637)

Fatty Acid Binding Protein 0 0 0 0 0 0 0.2592 (0.001)

Ferritin 0.1131 0.0969 0.1120 0.1431 0.1055 0.1115 0.4215 (<0.001)

Fibrinogen 0 0 0 0 0 0 0.1263 (0.087)

Fibroblast Growth Factor-Basicb 0 0 0 0 0 0 0.1792 (0.251)

Granulocyte Colony-Stimulating Factor −0.0713 −0.1647 −0.0879 −0.2319 −0.1709 −0.0547 −0.1155 (0.117)

Granulocyte-Macrophage Colony-Stimulating Factorb 0.0255 0 0.0445 0.1224 0 0.0153 0.4067 (0.036)

Growth Hormone −0.1163 −0.1238 −0.1259 −0.1737 −0.1566 −0.1144 −0.4159 (<0.001)

Haptoglobin 0 0 0 0 0 0 0.1710 (0.023)

Immunoglobulin A 0 0 0 0 0 0 0.1227 (0.094)

Immunoglobulin E 0 0 0 0 0 0 0.1331 (0.074)

Immunoglobulin M −0.0410 −0.0288 −0.0569 −0.1228 −0.0949 −0.0320 −0.1509 (0.041)

Intercellular Adhesion Molecule-1 0 0 0 0 0 0 0.0608 (0.411)

Interferon-Gammaa 0 0 0 0 0 0 −0.0739 (0.616)

Interleukin-1alphab 0 0 −0.0097 0 0 0 −0.2350 (0.134)

Interleukin-1betaa 0 0 0 0 0 0 0.1519 (0.303)

Interleukin-1 Receptor Antagonist 0 0 0 0 0 0 0.0141 (0.849)

Interleukin-3b 0 0 0.0027 0 0.0167 0 0.0991 (0.504)
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Table 11 TESAOD application, overweight subjects (N = 463 normal-weight, N = 306 overweight) (Continued)

Interleukin-4b 0 0 −0.0022 0 0 0 −0.2057 (0.172)

Interleukin-5a 0 0 0 0 0 0 −0.0003 (0.998)

Interleukin-6a 0 0 0 0 0 0 0.1995 (0.176)

Interleukin-7b 0 0 0.0014 0 0 0 0.1563 (0.292)

Interleukin-8 0 0.0155 0.0089 0 0 0 0.0810 (0.269)

Interleukin-10b 0 0 0 0 0 0 0.1657 (0.316)

Interleukin-12p40b −0.0089 0 −0.0351 −0.1216 0 0 −0.2502 (0.146)

Interleukin-13 0 0 0 0 0 0 −0.0110 (0.881)

Interleukin-15a 0 0 0 0 0 0 −0.1304 (0.376)

Interleukin-16 0 −0.0597 0 0 0 0 0.0584 (0.433)

Interleukin-18 0.0073 0.0047 0.0348 0.1515 0 0 0.2131 (0.005)

Leptin 0.2057 0.3263 0.2102 0.3690 0.3177 0.1829 0.2062 (0.008)

Lipoprotein (a) 0 0 0 0 0 0 −0.1247 (0.094)

Macrophage-Derived Chemokine 0 0 0 0 0 0 0.0477 (0.517)

Macrophage Inflammatory Protein-1alpha 0 0 0 0 0 0 0.1057 (0.156)

Macrophage Inflammatory Protein-1beta 0.0002 0 0.0307 0 0 0 0.1679 (0.026)

Matrix Metalloproteinase-2a 0 0 0 0 0 0 0.0212 (0.886)

Matrix Metalloproteinase-3 0 0 0 0 0 0 0.1937 (0.010)

Matrix Metalloproteinase-9a 0 0 0 0 0 0 0.1040 (0.480)

Monocyte Chemotactic Protein-1 0 0 0 0 0 0 0.1189 (0.110)

Myeloperoxidase −0.0222 0 −0.0378 −0.1046 0 −0.0113 −0.0582 (0.430)

Myoglobin 0.2323 0.3468 0.2300 0.3341 0.2856 0.2162 0.4412 (<0.001)

Plasminogen Activator Inhibitor 1 0 0 0 0 0 0 0.1848 (0.014)

Pregnancy-Associated Plasma Protein a 0 0 0 0 0 0 −0.0047 (0.949)

Prostatic Acid Phosphatasea 0 0 0 0 0 0 0.2134 (0.148)

T-Cell Specific Protein RANTES 0 0 0 0 0 0 0.0804 (0.278)

Serum Amyloid P 0.1352 0 0.1196 0.0851 0.1133 0.1346 0.5442 (<0.001)

Serum Glutamic Oxaloacetic Transminase 0 0 0.0206 0 0 0 0.0672 (0.364)

Sex Hormone Binding Globulin −0.2130 −0.2033 −0.1979 −0.2220 −0.2046 −0.2009 −0.5329 (<0.001)

Stem Cell Factor 0 0 0 0 0 0 0.0395 (0.591)

Surfactant Protein D −0.1053 −0.1518 −0.1250 −0.2361 −0.2089 −0.0924 −0.1774 (0.020)

Thrombopoietin 0 0 0 0 0 0 0.0218 (0.767)

Thyroid Stimulating Hormone 0 0 −0.0080 0 0 0 −0.0191 (0.795)

Thyroxine Binding Globulin 0 0 0 0 0 0 −0.1083 (0.150)

Tissue Factorb 0 0 0 0 0 0 −0.0137 (0.945)

Tissue Inhibitor of Metalloproteinase 1 0 0 0 0 0 0 0.1395 (0.059)

Tumor Necrosis Factor-alpha 0 0 0 0 0 0 0.0616 (0.407)

Tumor Necrosis Factor-betab 0 0 0 0 0 0 −0.0666 (0.682)

Tumor Necrosis Factor RII 0 0 0 0 0 0 0.1413 (0.056)

Vascular Cell Adhesion Molecule-1 0 0 0 0 0 0 0.0698 (0.344)

Vascular Endothelial Growth Factor 0 0 0 0 0 0 0.1098 (0.138)

von Willebrand Factor 0 0 0 0 0 0 0.0579 (0.430)

YKL-40 0 0 0.0108 0 0 0 0.1184 (0.108)
aCategorized at median; bCategorized at detection limit
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Table 12 TESAOD application, obese subjects (N = 463 normal-weight, N = 66 obese)

Lasso Adaptive
LASSO

Elastic
Net

Iterated
LASSO

Bootstrap-Enhanced
LASSO-75

Weighted
Fusion

Logistic Regression,
Coefficient (p-value)

Adiponectin −0.0101 0 −0.0006 0 0 −0.0853 −0.3089 (0.018)

Alpha-1 Antitrypsin 0 0 0 0 0 −0.0320 −0.0748 (0.573)

Alpha-Fetoprotein −0.0256 0 0 0 0 −0.0730 0.0009 (0.994)

Alpha-2 Macroglobulin −0.0187 0 −0.0065 0 0 −0.1110 −0.3163 (0.022)

Apolipoprotein A-1 −0.2167 −0.3546 −0.1691 −0.3127 −0.2627 −0.1011 −0.1488 (0.260)

Apolipoprotein C-III 0 0 0 0 0 0 0.1865 (0.121)

Apolipoprotein H 0.0881 0.1642 0.0346 0 0.2160 0.1277 0.5315 (<0.001)

Beta-2 Microglobulin 0 0 0 0 0 0.0417 0.3586 (0.005)

Brain Derived Neurotrophic Factor 0 0 0 0 0 0 0.2784 (0.024)

Calcitonina 0 0 0 0 0 0.0624 0.2469 (0.349)

Cancer Antigen 19-9 −0.1216 −0.1226 −0.0633 0 −0.3059 −0.1439 −0.1357 (0.269)

Cancer Antigen 125 0 0 0 0 0 −0.0081 0.0942 (0.484)

Carcinoembryonic Antigen −0.0516 0 0 0 −0.1779 −0.1107 −0.1338 (0.301)

Soluble CD14 −0.1020 −0.1706 −0.0488 0 −0.2272 −0.0965 −0.0801 (0.544)

CD40 0 0 0 0 0 −0.0167 0.2122 (0.109)

CD40Ligand −0.0176 0 0 0 0 −0.0808 −0.0731 (0.580)

Club Cell Secretory Protein 0 0 0 0 0 −0.0705 −0.1442 (0.263)

Complement 3 0.0899 0 0.0761 0 0 0.1306 0.5991 (<0.001)

C-Reactive Protein 0.5213 0.7636 0.4765 0.6802 0.6052 0.2526 0.7864 (<0.001)

Creatine Kinase-MB 0.0818 0.1652 0.0423 0 0.1442 0.0957 0.2967 (0.045)

Endothelin-1b 0 0 0 0 0 0.0487 0.2000 (0.481)

Eotaxin −0.0965 −0.1557 −0.0581 0 −0.2893 −0.1414 −0.2317 (0.111)

Epidermal Growth Factor 0 0 0 0 0 0.0190 0.1794 (0.198)

Epithelial-Derived Neutrophil-Activating Protein-78 0 0 0 0 0 0.0353 0.2525 (0.024)

Erythropoietina 0 0 0 0 0 −0.0174 0.0736 (0.780)

Extracellular Newly Identified RAGE-Binding Protein 0 0 0 0 0 0.0092 0.0324 (0.803)

Fatty Acid Binding Protein 0 0 0 0 0 0 0.3317 (0.029)

Ferritin 0.0753 0 0.0469 0 0 0.0671 0.2900 (0.038)

Fibrinogen 0 0 0 0 0 0.0168 0.1290 (0.320)

Fibroblast Growth Factor-Basicb 0 0 0 0 0 0.0518 0.4799 (0.074)

Granulocyte Colony-Stimulating Factor 0 0 0 0 0 0.0705 0.3130 (0.027)

Granulocyte-Macrophage Colony-Stimulating Factorb 0 0 0 0 0 0.0086 0.2726 (0.430)

Growth Hormone 0 0 0 0 0 −0.0888 −0.2576 (0.049)

Haptoglobin 0 0 0 0 0 0.0107 0.2537 (0.027)

Immunoglobulin A 0 0 0 0 0 −0.0046 0.1143 (0.358)

Immunoglobulin E 0 0 0 0 0 0 −0.0469 (0.720)

Immunoglobulin M −0.1014 0 −0.0450 0 0 −0.1120 −0.1411 (0.278)

Intercellular Adhesion Molecule-1 0 0 0 0 0 0 0.1826 (0.167)

Interferon-Gammaa 0.0820 0.0300 0.0245 0 0.1199 0.1218 0.3461 (0.195)

Interleukin-1alphab 0 0 0 0 0 0.0154 0.1322 (0.624)

Interleukin-1betaa 0 0 0 0 0 0.0535 0.2558 (0.333)

Interleukin-1 Receptor Antagonist 0 −0.0844 0 0 0 −0.0275 0.1284 (0.353)

Interleukin-3b 0 0 0 0 0 −0.0185 0.1956 (0.458)
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Table 12 TESAOD application, obese subjects (N = 463 normal-weight, N = 66 obese) (Continued)

Interleukin-4b 0 0 0 0 0 0 −0.0315 (0.906)

Interleukin-5a 0 0 0 0 0 −0.0203 −0.0217 (0.934)

Interleukin-6a 0 0 0 0 0 −0.0069 0.4395 (0.098)

Interleukin-7b 0.1132 0 0.0761 0.012 0 0.1345 0.6057 (0.023)

Interleukin-8 −0.0407 0 0 0 0 −0.0765 −0.0588 (0.665)

Interleukin-10b 0 0 0 0 0 0.0124 0.4472 (0.110)

Interleukin-12p40b 0 0 0 0 0 0.0103 0.2217 (0.435)

Interleukin-13 0 0 0 0 0 −0.0653 −0.0841 (0.533)

Interleukin-15a 0 0 0 0 0 −0.0037 0.1434 (0.587)

Interleukin-16 0 0 0 0 0 0.0531 0.1822 (0.175)

Interleukin-18 0.1214 0.0653 0.0804 0.0774 0.2373 0.0870 0.3215 (0.015)

Leptin 0.9186 1.1286 0.8548 1.2502 1.1505 0.3792 1.3928 (<0.001)

Lipoprotein (a) 0 0 0 0 0 0 −0.0010 (0.994)

Macrophage-Derived Chemokine 0 0 0 0 0 0.0476 0.2533 (0.042)

Macrophage Inflammatory Protein-1alpha 0 0 0 0 0 0.0531 0.2623 (0.057)

Macrophage Inflammatory Protein-1beta 0 0 0 0 0 0.0241 0.2934 (0.022)

Matrix Metalloproteinase-2a 0.1090 0 0.0776 0.0443 0.1443 0.1242 0.6992 (0.011)

Matrix Metalloproteinase-3 0 0 0 0 0 −0.0308 −0.0218 (0.868)

Matrix Metalloproteinase-9a 0.0101 0.0832 0 0 0 0.0606 0.3084 (0.244)

Monocyte Chemotactic Protein-1 0.1628 0.1471 0.1269 0.1792 0.2546 0.1275 0.4521 (0.001)

Myeloperoxidase 0 −0.0542 0 0 0 −0.0927 −0.1054 (0.425)

Myoglobin 0.0391 0 0.0316 0 0 0.0829 0.3239 (0.011)

Plasminogen Activator Inhibitor 1 0 0 0 0 0 0.0454 0.4603 (0.001)

Pregnancy-Associated Plasma Protein a 0 0 0 0 0 −0.0995 −0.1306 (0.306)

Prostatic Acid Phosphatasea 0 0 0 0 0 −0.0477 −0.0652 (0.805)

T-Cell Specific Protein RANTES 0 0 0 0 0 0.0444 0.4370 (0.002)

Serum Amyloid P 0 0 0.0019 0 0 0.0836 0.6526 (<0.001)

Serum Glutamic Oxaloacetic Transminase 0.0340 0.0234 0 0 0 0.0851 0.0350 (0.791)

Sex Hormone Binding Globulin −0.4768 −0.6470 −0.4499 −0.7274 −0.4767 −0.2334 −0.5552 (<0.001)

Stem Cell Factor 0 0 0 0 0 0.0212 0.3146 (0.008)

Surfactant Protein D −0.3136 −0.4086 −0.2351 −0.3848 −0.4663 −0.2820 −0.4833 (0.002)

Thrombopoietin 0.0243 0 0.0147 0 0 0.0933 0.3849 (0.002)

Thyroid Stimulating Hormone −0.0264 −0.0034 0 0 0 −0.0515 −0.1010 (0.424)

Thyroxine Binding Globulin 0 0 0 0 0 0 0.0722 (0.570)

Tissue Factorb 0 0 0 0 0 0.0788 0.6627 (0.029)

Tissue Inhibitor of Metalloproteinase 1 0 0 0 0 0 −0.0023 0.2617 (0.031)

Tumor Necrosis Factor-alpha 0 0 0 0 0 0.0380 0.2958 (0.044)

Tumor Necrosis Factor-betab 0.0165 0 0 0 0 0.0848 0.2309 (0.406)

Tumor Necrosis Factor RII 0 0 0 0 0 0.0287 0.3291 (0.011)

Vascular Cell Adhesion Molecule-1 0 0.1194 0 0 0 0.0828 0.2680 (0.043)

Vascular Endothelial Growth Factor 0 0 0 0 0 0 0.3250 (0.015)

von Willebrand Factor 0.1980 0.0683 0.1737 0.2571 0.2694 0.1364 0.4185 (<0.001)

YKL-40 0.1095 0.0847 0.0733 0.0314 0.1979 0.1151 0.3671 (0.005)
aCategorized at median; bCategorized at detection limit
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Table 13 TESAOD application, overweight and obese subjects combined (N = 463 normal-weight, N = 372 overweight and obese)

Lasso Adaptive
LASSO

Elastic
Net

Iterated
LASSO

Bootstrap-Enhanced
LASSO-75

Weighted
Fusion

Logistic Regression,
Coefficient (p-value)

Adiponectin −0.2143 −0.2770 −0.2210 −0.2827 −0.2334 −0.1985 −0.4799 (<0.001)

Alpha-1 Antitrypsin −0.0311 0 −0.0464 0 0 −0.0199 −0.1415 (0.045)

Alpha-Fetoprotein 0 0 0 0 0 0 0.0833 (0.238)

Alpha-2 Macroglobulin −0.0435 0 −0.0580 −0.0276 −0.0705 −0.0348 −0.3158 (<0.001)

Apolipoprotein A-1 −0.0105 −0.0257 −0.0324 0 0 0 −0.0684 (0.328)

Apolipoprotein C-III 0 0 0 0 0 0 0.2077 (0.003)

Apolipoprotein H 0.0759 0.1047 0.0965 0.1028 0.1201 0.0628 0.3683 (<0.001)

Beta-2 Microglobulin 0 0 0 0 0 0 0.1925 (0.007)

Brain Derived Neurotrophic Factor 0 0 0 0 0 0 0.0886 (0.206)

Calcitonina 0.0461 0.0647 0.0657 0.0782 0.1076 0.0236 0.3263 (0.020)

Cancer Antigen 19-9 0 0 0 0 0 0 −0.0265 (0.703)

Cancer Antigen 125 0 0 0 0 0 0 0.0769 (0.272)

Carcinoembryonic Antigen 0 0 0 0 0 0 −0.0118 (0.866)

Soluble CD14 −0.1439 −0.2052 −0.1598 −0.2411 −0.1681 −0.1143 −0.1542 (0.030)

CD40 0 −0.0075 −0.0085 0 0 0 0.0618 (0.376)

CD40Ligand 0 0 0 0 0 0 −0.0206 (0.768)

Club Cell Secretory Protein 0 0 −0.0009 0 0 0 −0.0177 (0.799)

Complement 3 0.1094 0.1174 0.1313 0.1307 0.1337 0.0923 0.4334 (<0.001)

C-Reactive Protein 0.2968 0.4064 0.3015 0.4235 0.3485 0.2630 0.4345 (<0.001)

Creatine Kinase-MB 0.0200 0 0.0344 0 0 0.0087 0.2235 (0.002)

Endothelin-1b 0 0 0 0 0 0 0.0155 (0.921)

Eotaxin −0.1066 −0.1808 −0.1291 −0.2042 −0.1816 −0.0717 −0.1164 (0.099)

Epidermal Growth Factor 0 0 0 0 0 0 −0.0540 (0.438)

Epithelial-Derived Neutrophil-Activating Protein-78 0 0 0 0 0 0 0.0507 (0.466)

Erythropoietina 0 0 0 0 0 0 0.0883 (0.526)

Extracellular Newly Identified RAGE-Binding Protein 0 0 0 0 0 0 0.0343 (0.622)

Fatty Acid Binding Protein 0 0 0 0 0 0 0.2676 (<0.001)

Ferritin 0.1036 0.0834 0.1068 0.1397 0.0701 0.0988 0.3946 (<0.001)

Fibrinogen 0 0 0 0 0 0 0.1273 (0.069)

Fibroblast Growth Factor-Basicb 0 0 0.0100 0 0 0 0.2341 (0.111)

Granulocyte Colony-Stimulating Factor −0.0564 −0.1372 −0.0756 −0.1276 −0.1268 −0.0252 −0.0437 (0.530)

Granulocyte-Macrophage Colony-Stimulating Factorb 0.0175 0 0.0320 0 0.0604 0.0066 0.3837 (0.038)

Growth Hormone −0.1155 −0.0898 −0.1181 −0.1430 −0.1529 −0.1158 −0.3918 (<0.001)

Haptoglobin 0 0 0 0 0 0 0.1949 (0.007)

Immunoglobulin A 0 0 0 0 0 0 0.1245 (0.075)

Immunoglobulin E 0 0 0 0 0 0 0.1028 (0.142)

Immunoglobulin M −0.0883 −0.1068 −0.0940 −0.1568 −0.0982 −0.0715 −0.1486 (0.034)

Intercellular Adhesion Molecule-1 0 0 0 0 0 0 0.0842 (0.229)

Interferon-Gammaa 0 0 0 0 0 0 −0.0001 (0.999)

Interleukin-1alphab 0 0 0 0 0 0 −0.1667 (0.257)

Interleukin-1betaa 0 0 0.0022 0 0 0 0.1703 (0.222)

Interleukin-1 Receptor Antagonist −0.0026 0 −0.0219 0 0 0 0.0328 (0.638)

Interleukin-3b 0 0 0 0 0 0 0.1162 (0.406)
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Table 13 TESAOD application, overweight and obese subjects combined (N = 463 normal-weight, N = 372 overweight and obese)
(Continued)

Interleukin-4b 0 0 0 0 0 0 −0.1744 (0.219)

Interleukin-5a 0 0 0 0 0 0 −0.0041 (0.976)

Interleukin-6a 0 0 0 0 0 0 0.2417 (0.083)

Interleukin-7b 0.0157 0 0.0348 0 0 0 0.2358 (0.092)

Interleukin-8 0 0 0 0 0 0 0.0582 (0.403)

Interleukin-10b 0 0 0 0 0 0 0.2179 (0.161)

Interleukin-12p40b 0 0 −0.0170 0 0 0 −0.1583 (0.322)

Interleukin-13 −0.0057 0 −0.0236 0 0 0 −0.0239 (0.732)

Interleukin-15a 0 0 0 0 0 0 −0.0819 (0.557)

Interleukin-16 0 −0.0243 0 0 0 0 0.0790 (0.263)

Interleukin-18 0.0404 0.0379 0.0588 0.0677 0.0798 0.0223 0.2362 (0.001)

Leptin 0.3312 0.4337 0.3499 0.4554 0.4052 0.2861 0.3234 (<0.001)

Lipoprotein (a) 0 0 0 0 0 0 −0.1016 (0.147)

Macrophage-Derived Chemokine 0 0 0 0 0 0 0.0860 (0.217)

Macrophage Inflammatory Protein-1alpha 0 0 0 0 0 0 0.1323 (0.061)

Macrophage Inflammatory Protein-1beta 0 0 0.0115 0 0 0 0.1924 (0.008)

Matrix Metalloproteinase -2a 0 0 0 0 0 0 0.1380 (0.322)

Matrix Metalloproteinase-3 0 0 0 0 0 0 0.1560 (0.027)

Matrix Metalloproteinase-9a 0 0 0 0 0 0 0.1401 (0.315)

Monocyte Chemotactic Protein-1 0.0283 0.0829 0.0451 0.0572 0.0927 0.0030 0.1757 (0.013)

Myeloperoxidase −0.0543 −0.0728 −0.0713 −0.1149 −0.0469 −0.0239 −0.0670 (0.337)

Myoglobin 0.2267 0.3195 0.2286 0.2983 0.2587 0.2115 0.4299 (<0.001)

Plasminogen Activator Inhibitor 1 0 0 0 0 0 0 0.2314 (0.001)

Pregnancy-Associated Plasma Protein a 0 0 0 0 0 0 −0.0279 (0.689)

Prostatic Acid Phosphatasea 0 0 0 0 0 0 0.1638 (0.240)

T-Cell Specific Protein RANTES 0 0 0 0 0 0 0.1368 (0.052)

Serum Amyloid P 0.1028 0 0.0961 0.0668 0 0.1157 0.5657 (<0.001)

Serum Glutamic Oxaloacetic Transminase 0.0380 0 0.0561 0.0795 0 0.0122 0.0617 (0.378)

Sex Hormone Binding Globulin −0.2827 −0.3609 −0.2739 −0.3612 −0.2703 −0.2593 −0.5321 (<0.001)

Stem Cell Factor 0 0 0 0 0 0 0.0931 (0.182)

Surfactant Protein D −0.1612 −0.2086 −0.1794 −0.2439 −0.2401 −0.1328 −0.2215 (0.002)

Thrombopoietin 0 0 0 0 0 0 0.0924 (0.186)

Thyroid Stimulating Hormone −0.0207 −0.0430 −0.0379 −0.0273 0 0 −0.0352 (0.613)

Thyroxine Binding Globulin 0 0 0 0 0 0 −0.0751 (0.285)

Tissue Factorb 0 0 0 0 0 0 0.1279 (0.489)

Tissue Inhibitor of Metalloproteinase 1 0 0 0 0 0 0 0.1665 (0.018)

Tumor Necrosis Factor-alpha 0 0 0 0 0 0 0.0982 (0.162)

Tumor Necrosis Factor-betab 0 0 0 0 0 0 −0.0113 (0.941)

Tumor Necrosis Factor RII 0 0 0 0 0 0 0.1797 (0.011)

Vascular Cell Adhesion Molecule-1 0.0333 0.0473 0.0502 0.0654 0 0.0103 0.1073 (0.125)

Vascular Endothelial Growth Factor 0 0 0 0 0 0 0.1468 (0.036)

von Willebrand Factor 0 0 0.0039 0 0 0 0.1308 (0.061)

YKL-40 0.0284 0.0278 0.0434 0.0222 0.0654 0.0152 0.1619 (0.021)
aCategorized at median; bCategorized at detection limit
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