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Abstract

Background: Selecting the most effective diagnostic method is essential for patient management and public health
interventions. This requires evidence of the relative performance of alternative tests or diagnostic algorithms.
Consequently, there is a need for diagnostic test accuracy meta-analyses allowing the comparison of the accuracy of
two or more competing tests. The meta-analyses are however complicated by the paucity of studies that directly
compare the performance of diagnostic tests. A second complication is that the diagnostic accuracy of the tests is
usually determined through the comparison of the index test results with those of a reference standard. These
reference standards are presumed to be perfect, i.e. allowing the classification of diseased and non-diseased subjects
without error. In practice, this assumption is however rarely valid and most reference standards show false positive or
false negative results. When an imperfect reference standard is used, the estimated accuracy of the tests of interest
may be biased, as well as the comparisons between these tests.

Methods: We propose a model that allows for the comparison of the accuracy of two diagnostic tests using direct
(head-to-head) comparisons as well as indirect comparisons through a third test. In addition, the model allows and
corrects for imperfect reference tests. The model is inspired by mixed-treatment comparison meta-analyses that have
been developed for the meta-analysis of randomized controlled trials. As the model is estimated using Bayesian
methods, it can incorporate prior knowledge on the diagnostic accuracy of the reference tests used.

Results: We show the bias that can result from using inappropriate methods in the meta-analysis of diagnostic tests
and how our method provides more correct estimates of the difference in diagnostic accuracy between two tests. As
an illustration, we apply this model to a dataset on visceral leishmaniasis diagnostic tests, comparing the accuracy of
the RK39 dipstick with that of the direct agglutination test.

Conclusions: Our proposed meta-analytic model can improve the comparison of the diagnostic accuracy of
competing tests in a systematic review. This is however only true if the studies and especially information on the
reference tests used are sufficiently detailed. More specifically, the type and exact procedures used as reference tests
are needed, including any cut-offs used and the number of subjects excluded from full reference test assessment. If
this information is lacking, it may be better to limit the meta-analysis to direct comparisons.
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Background
There is a growing interest in diagnostic test accuracy
(DTA) reviews to select the best diagnostic test procedure
[1] for a given setting. Most meta-analyses of diagnostic
tests, however, estimate the diagnostic accuracy of a sin-
gle test [2, 3]. Selection of the best test is usually done
by undertaking separate meta-analyses for each test and
then comparing the results [3]. Even when formally com-
paring diagnostic tests in a single systematic review, the
analysis may ignore study effects. Such an approach can
lead to biased comparisons due to confounding by study
effects, as shown in a recent review [3]. Takwoingi and
colleagues showed that results from comparative studies,
where two tests were directly compared and which pro-
vide the most robust comparisons, differed from those
of non-comparative studies. However, only 31 % of avail-
able studies were comparative. This indicates that there
is a need for meta-analytical methods via direct and indi-
rect comparisons. Data from direct comparisons may be
inconclusive while a combined analysis of direct and indi-
rect comparisons may be conclusive and can result in
more accurate estimates [4, 5].
A particular aspect of comparisons between diagnostic

tests is that the diagnostic performance of the index test
is nearly always determined by comparison with a sec-
ond test, the reference standard. Such a reference standard
is presumed to 100 % correctly classify subjects as dis-
eased or not. However, for many diseases it is impossible
to determine the true disease status with certainty [6] and
reference standards are imperfect. It is well known that the
use of imperfect reference standards may bias estimates of
the accuracy of the index test [7]. This consideration leads
to a second requirement for comparative meta-analyses
of diagnostic studies: the meta-analytic methods should
adjust for the use of imperfect reference standards.
The aim of this manuscript is to develop a model that

can be used for the comparative meta-analysis of two
diagnostic tests that conforms to the two requirements
sketched above. First, we assess possible biases in the esti-
mation of the relative accuracy of two index tests due
to the use of imperfect reference tests. We describe the
different parameters that can be used to estimate the rel-
ative accuracy of two tests and assess the bias resulting
from the use of imperfect reference standards. This allows
us to select the most appropriate summary measure to
use in the comparative meta-analysis of two diagnostic
tests. Subsequently, we describe and develop models that
can be used in the meta-analysis of diagnostic studies
to compare the relative accuracy of two tests. We start
with models that presume a perfect reference test is used
in each primary study and extend these models allowing
for imperfect reference tests. We estimate these models
using Bayesian methods, specifically using Markov-Chain
Monte-Carlo (MCMC) methods through Gibbs sampling

[8]. For each model we provide the model specification
and offer suggestions for appropriate informative or vague
priors. In addition, we assess in a simulation study the
value of these newly developed models but also the bias
induced by the use of incorrect methods. Finally, we
apply the methods to a real data example in the field of
leishmaniasis.

Methods
Our aim is to estimate and test the difference in diagnos-
tic accuracy of two or more index tests in a meta-analysis,
combining data across all available studies. The studies
included in a DTA review typically test each subject with
one or more index tests and with one reference test. This
reference test may differ between studies. To set the scene,
data from a hypothetical meta-analysis are presented in
Table 1. In this example, there are three index tests (T1,T2,
T3) and two possible reference tests (T4, T5). For exam-
ple, in Study 1 index tests T1 and T2 are performed on all
subjects as well as reference test T4. There are 30 subjects
with positive results on all three tests, one subject shows
positive results on T1 and T2 and a negative result on T4,
etc. Studies 1 and 2 allow direct estimation of the relative
accuracy of T1 and T2. Studies 3, 4 and 5 allow the esti-
mation of the accuracy of T1 (studies 3 and 4) or T2 (study
5), but allow no direct comparison of T1 and T2. For these
studies, the relative accuracy of T1 and T2 can only be
estimated by estimating the diagnostic accuracy of each
test separately and then comparing these estimates. This
is complicated by the fact that the reference test is not the
same for each study. Studies 6 and 7 do not allow direct
comparison of the accuracy T1 and T2, but offer the pos-
sibility of an indirect comparison through the third index
test T3. The information from this third test may help to
eliminate differences among the studies.
As a first step in a comparative DTA meta-analysis, we

have to select an appropriate statistic to compare the two
tests. The best statistic would be one which is readily
interpretable by users of the meta-analysis and which is
least prone to bias.We describe the possible choices below
together with the results from a small simulation study.
Subsequently, we need to develop a model which allows
the incorporation of all available data while ensuring that
results are valid and are not biased by differences in study
characteristic, such as the selection of the reference stan-
dard used. Some possible models are described below. We
assessed the value of these models in a simulation study
and in a practical application.

Measures of relative value of diagnostic tests
Diagnostic accuracy is characterised by sensitivity S and
specificity C. These two quantities are related and com-
parisons between tests need to take both S and C
into account. Comparisons between two tests can be
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Table 1 Tabulation of an hypothetical diagnostic test accuracy meta-analysis. Columns T1, T2, T3 indicate results for the 3 possible
index tests. Columns T4, T5 indicate results for the 2 possible reference tests. + indicates a positive test result, - a negative test result. NA
indicates that the test was not performed in that particular study. The observed frequency column report the number of subjects with
a specific test result pattern in each study

Study Index tests Reference Observed

Nr. T1 T2 T3 T4 T5 Frequency

1 + + NA + NA 30

1 + + NA - NA 1

1 + - NA + NA 3

1 + - NA - NA 6

1 - + NA + NA 0

1 - + NA - NA 3

1 - - NA + NA 8

1 - - NA - NA 160

2 + + + NA + 49

. . . . . . . . . . . . . . . . . . . . .

2 - - - NA - 99

3 + NA NA + NA 115

. . . . . . . . . . . . . . . . . . . . .

3 - NA NA - NA 244

4 + NA NA NA + 11

. . . . . . . . . . . . . . . . . . . . .

4 - NA NA NA - 19

5 NA + NA + NA 66

. . . . . . . . . . . . . . . . . . . . .

5 NA - NA - NA 29

6 + NA + NA + 27

. . . . . . . . . . . . . . . . . . . . .

6 - NA - NA - 56

7 NA + + NA + 77

. . . . . . . . . . . . . . . . . . . . .

7 NA - - NA - 13

8 + + + NA NA 143

. . . . . . . . . . . . . . . . . . . . .

8 - - - NA NA 85

summarized using the difference or relative risk in S andC
for the two tests. An alternative parameterization uses the
diagnostic odds ratio DOR = (S×C)/[ (1− S) × (1−C)]
which summarizes the accuracy of a test in a single num-
ber [9]. This parameter could be used as a summary in a
meta-analysis, for example by calculating the relative DOR
of two tests [3]. However, the use of imperfect reference
standards can bias all above measures of relative accuracy
of two index tests. We assessed the direction and magni-
tude of bias on these measures in a small simulation study.
A description of the simulation study setup is given in
Additional file 1.

Models for the comparative meta-analysis of diagnostic
tests
In this section we develop models to compare J tests, by
combining data across I studies in a comparative meta-
analysis. All these models are hierarchical in nature. At
the first level of the hierarchy, the models describe the
observed data of the individual studies. The observed test
outcomes depend on the disease prevalence and the accu-
racy of the tests in each study, and possible covariation
among the test results. We describe the accuracy of the
tests in terms of the study-specific sensitivity Sij and speci-
ficity Cij of test j in study i. At the second level, we specify
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a model for these study-specific sensitivity-specificity pair{
Sij,Cij

}
. Five possible models are described; they are

listed in Table 2.

Meta-analytic models when a perfect reference standard is
available
If a perfect reference test is available, the number of dis-
eased NDi and non-diseased NNDi subjects in study i is
known, as are the numbers of true positives NTPij and
true negatives NTNij for each test j. In the standard bivari-
ate model for the meta-analysis of a diagnostic test [9],
the observed numbers of true positives and true negatives
for each index test are assumed to be drawn from two
independent binomial distributions NTPij ∼ Bin(NDi, Sij)
and NTNij ∼ Bin(NNDi,Cij). The transformed values g(Sij)
= θSij and g(Cij) = θCij are modeled at the next level,
where g(.) is a link function to allow the use of the nor-
mal distribution. Common choices for g(.) are the logit,
complementary log-log or probit functions. Several mod-
els are possible to incorporate comparisons of the diag-
nostic accuracy of different tests in this framework. We
discuss three models below. These models can be fur-
ther expanded to allow for covariates, other dependence
structures or alternative parameterizations.

Model 1: Standard bivariate model for the meta-
analysis of diagnostic tests A basic approach is to esti-
mate the average diagnostic accuracy of each test sepa-
rately and subsequently compare the estimates of the aver-
age Sj and Cj across the different studies. In this approach,
the standard bivariate model for the meta-analysis of diag-
nostic tests [2] can be used for each test separately. All
g(Sij) = θSij and g(Cij) = θCij pairs are assumed to follow
independent bivariate normal distributions:(

θSij

θCij

)
∼ N

([
μSj

μCj

]
,�j

)
,

with �j =
⎛
⎝ σ 2

Sj σSjCj

σSjCj σ 2
Cj

⎞
⎠ , (1)

where ρSjCj = σSjCj/(σSj × σCj) is the correlation between
θSij and θCij . Estimates of the relative accuracy of the tests
are obtained from the estimated g−1(μSj) and g−1(μCj).

For example, the average difference in S between T1 and
T2 is estimated as ŜD21 = g−1(μ̂S2) − g−1(μ̂S1). The
advantage of the standard bivariate model is that it is
relatively easy to fit using both Bayesian or frequentist
techniques, with SAS [9] and WinBUGS [10, 11] exam-
ple code available. However, as this model is not based
on the comparisons between the index tests, but on the
pooling of results for each test across all available stud-
ies, the results may be biased by study characteristics. This
is equivalent to pooling findings from the active treat-
ment arms of RCTs and comparing these estimates, an
approach which is considered not to be appropriate for the
meta-analysis of RCTs [12].

Model 2: Meta-Analysis Based on Direct Comparisons
To take study effects into account, the overall proba-
bility of testing positive in diseased subjects μSi or in
non-diseased subjects μCi for each study i could be mod-
eled and Sij and Cij of the individual tests described as
contrasts from this overall probability.
If we limit the data to studies which compare the two

tests directly, we can write the study specific, transformed
sensitivities g(Sij) = θSij and specificities g(Cij) = θCij as
follows:

θSi1 = μSi + δSi/2,
θSi2 = μSi − δSi/2,

θCi1 = μCi − δCi/2,
θCi2 = μCi + δCi/2.

(2)

In case g is the logit function, δSi = log(SOR12) and δCi =
log(COR12), i.e. the log of the ORs of testing positive in
diseased subjects for T1 compared to T2 and the log of the
ORs of testing negative in non-diseased subjects in study i,
respectively. To obtain average estimates of the difference
in diagnostic accuracy between the two tests, δSi and δCi
are modeled using a bivariate normal distribution:(

δSi

δCi

)
∼ N

([
νδS

νδC

]
,�

)

with � =
(

σ 2
δS

σδSδC

σδSδC σ 2
δC

)
. (3)

Table 2 Description of the different models. Example code for the models is given in Additional file 2. Sij and Cij represent the
sensitivity and specificity of test j in study i

Model Reference standard Model estimation

1 Assumed to be perfect Independent estimation of Sij and Cij

2 Assumed to be perfect Direct comparisons only

3 Assumed to be perfect Direct and indirect comparisons

4 Allowing for imperfect reference standards Hierarchical latent class model

5 Allowing for imperfect reference standards Network-based latent class model
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The νδS and νδC are the average log OR of the S
and C between tests T1 and T2, respectively. The μSi
and μCi account for the dependence of test results
obtained from the same study and can be estimated
as fixed effects of in their turn modeled using bivari-
ate normal distributions. This model is equivalent to the
Smith−Spiegelhalter−Thomas model for two-treatment
comparisons of RCTs [13, 14]. A similar model, but
assuming a fixed, rather than random, relative accu-
racy between the different index tests is described in
the Cochrane Handbook for Systematic Reviews of DTA
studies [9].

Model 3: Meta-Analysis Based on Direct and Indi-
rect Comparisons As shown in Lu et al. [14] in the
case of meta-analysis of RCTs, the Smith−Spiegelhalter−
Thomas model can be expanded to a mixed treatment-
comparison meta-analysis of more than two treatments.
Similarly, we can expand Model 2 to J diagnostic tests. By
taking diagnostic test TJ as baseline, we can rewrite eqs. 2
and 3 as:

θSi1 = μSi + ( J − 1) × δSi1/J − δSi2/J − . . . − δSi( J−1)/J ,
θSi2 = μSi − δSi1/J + ( J − 1) × δSi2/J − . . . − δSi( J−1)/J ,

...
θSiJ = μSi − δSi1/J − δSi2/J − . . . − δSi( J−1)/J ,

θCi1 = μCi + ( J − 1) × δCi1/J − δCi2/J − . . . − δCi( J−1)/J ,
θCi2 = μCi − δCi1/J + ( J − 1) × δCi2/J − . . . − δCi( J−1)/J ,

...
θCiJ = μCi − δCi1/J − δCi2/J − . . . − δCi( J−1)/J ,

with(
δSi1, δSi2, . . . , δSi(J−1), δCi1, δCi2, . . . , δCi( J−1)

) ∼N(νδ ,�).
(4)

and νδ = (νδS1 , . . . , νδS( J−1) , νδC1 , . . . , νδC( J−1) ) represents
the average log ORs for S and C of the J − 1 tests
compared to the baseline test TJ . The differences in S
and C between T1 and T2 on the logit scale are esti-
mated by νδS1 − νδS2 and νδC1 − νδC2 , respectively. This
method allows indirect comparisons of T1 and T2 through
comparison with a third test, similar to mixed treat-
ment comparisons meta-analysis of RCTs. One compli-
cation of this model, is the specification and estimation
of the variance-covariance matrix �. Specifying a struc-
tured variance-covariance matrix is in general complex
and difficult to handle in MCMC estimation since each
sampled variance-covariance matrix should be positive-
definite [15]. In addition, model identification of the
model with a general variance-covariance matrix will be
difficult, especially when number of tests of interest is

large. As an initial exploration of this model we can use
a simplified variance-covariance structure, for example
a diagonal or block diagonal matrix, and subsequently
assess the effects of relaxing the simplifying assumptions.
We describe some possible simplified variance-covariance
structures in Additional file 2: Section 2.6.

Meta-analytic models when no perfect reference standard is
available
Introduction The models described above presume that
the disease status of all subjects in all studies is known, and
consequently that the NDi, NNDi, NTPij and NTNij for each
study i and test j is available. However, if only imperfect
reference standards are available, the reported estimates
of these quantities may be biased. The models described
above can be expanded through latent class analysis (LCA)
[16] to allow for the use of imperfect reference stan-
dards. In LCA, the true disease status of the participants
of the basic studies is an unobserved, or latent, variable
with two mutually exclusive categories, “diseased” and
“non-diseased”. This unobserved variable determines the
probability to test positive or negative to a number of
diagnostic tests which may include one or more imper-
fect reference tests. LCAmodels have been described for a
variety of situations ranging from when a single imperfect
test is observed in each study to more complex designs
involving multiple tests. Whenmultiple tests are involved,
theymay be treated as independent conditional on the dis-
ease status or the conditional dependence between them
may bemodeled using a variety of approaches [17–20]. An
important underlying assumption of the latent classmodel
is that the tests included in themodel all correspond to the
same underlying disease state [21]. Especially in a meta-
analysis, where each study may use a different set of tests,
this assumption is critical. If this assumption is not met,
the underlying latent variable may differ among studies.

Description of the conditional independence latent
class model In this section, we describe the basic latent
class model at the level of the individual study i in the
meta-analysis. To simplify notation, we temporarily sup-
press the i-subscript for the study level. For latent class
analysis, the basic data is not the number of true positives
and true negatives for each test j, but rather the num-
ber of subjects that show a certain pattern of outcomes
across the J tests performed in a study. The number of
subjects with pattern y = (y1, y2, . . . , yj) can be denoted
as Ny and is assumed to follow a multinomial distribution
Ny ∼ Mult

[
N ,P(y)

]
, with yj the observed binary outcome

(0 = negative, 1 = positive) for test Tj, N the total sample
size and P(y) the probability that y occurs.
Denoting the unobserved disease status as D (not

diseased D = 0, diseased D = 1) and under the
conditional independence assumption P(y|D = k) =
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∏J
j=1 P

(
yj|D = k

)
, the class probabilities P(y) can be

described in terms of the Sj and Cj of the J tests. That is:

P (y) =
1∑

k=0
P (D = k)P (y|D = k) =

π

J∏
j=1

Syjj
(
1 − Sj

)(1−yj)+(1 − π)

J∏
j=1

C(1−yj)
j

(
1−Cj

)yj , (5)
with π the disease prevalence.
Thus LCA provides estimates for the study specific

prevalence of disease πi and the Sij and Cij of the Ji tests
used in study i, which is a subset of the J different tests
used across the I studies of the meta-analysis.

Model 4: Hierarchical Latent Class Model In essence,
the most basic hierarchical latent class model (Model 4)
is constructed through a combination of equations 1 and
5. While previously the reference test was presumed to
be 100 % sensitive and specific, in Model 4 all Sij and Cij,
including those of the reference tests, are modeled using
separate bivariate normal distributions as in Equation 1.
The observed data is assumed to come from the multi-
nomial distribution described in Equation 5. Again, like
Model 1, this model ignores the correlation among test
results from the same study. The prevalences πi can be
assumed to be different for each study or to have a com-
mon normal distribution, πi ∼ N

(
μπ , σ 2

π

)
.

Model 5: Network-based Hierarchical Latent Class
Model By rewriting the θSij and θCij in terms of μSi, μCi,
δSij, and δCij as in Eq 4, we can again take into account
study level effects. The hierarchical modeling is equal
to Model 3, the only difference is at the study level as
described in Eq 5. This model thus adjusts the meta-
analysis for the use of imperfect reference tests. By using
the expanded Smith−Spiegelhalter− Thomas model of
Lu et al. [14] at the second level of the hierarchy, study
level effects are eliminated without the need to limit the
analysis to direct comparisons only.

Model estimation and prior specification
Models are estimated in a Bayesian framework using
Markov Chain Monte Carlo (MCMC) methods with
OpenBUGS 3.0.3 called from within R 3.0.1 using the
BRugs library. The Bayesian approach allows the estima-
tion of complex, joint models and the combination of
prior information, e.g. on the value of the reference test
used, in the meta-analysis of new diagnostic tests. To
complete the Bayesian model, priors need to be provided
for all model parameters. OpenBUGS code for the mod-
els and full specifications of the priors are in Additional
file 2. Convergence was checked using visual inspection of

trace plots of the Markov chains and the Gelman-Rubin
diagnostic statistic [22].
For parameters related to the index tests of interest, we

consider it generally most appropriate to use uninforma-
tive priors. Specifically, we used normal priors with mean
μ equal to zero and standard deviation σ equal to 1.69
for logit-transformed probabilities. This prior matches
a uniform prior over the interval [0,1] in the first two
moments on the probability scale [23]. When appropriate,
these priors were bounded to avoid label switching [20].
Label switching is a problem arising in MCMC estima-
tion of latent class models when two equivalent solutions
are possible which give rise to identical observed data
[24, 25]. The problem can be avoided by constraining S
or C of one or more test to be ≥ 0.5. For the contrast
in S and C, expressed as log ORs, normal priors with
μ = 0 and a large standard deviation, e.g. σ = 10 can be
used. For the variance-covariance matrices, we construct
non-informative priors using uniform priors for standard
deviations and correlations.
The model was specified using a logit link function and

results are estimated on the log-odds scale. The MCMC
approach as implemented in OpenBUGS allows to obtain
posterior distributions of all functions of the estimated
parameters, as the average S and C of the index tests and
differences between S and C of the different tests. We
illustrate this in the OpenBUGS code in Additional file 2.
We used the 2.5 and 97.5 th percentiles of the sampled
posterior distribution of the statistics of interest as bounds
for the 95 % credible intervals.
If we want to use information from previous phases of

the research, we can use informative priors. It may for
example be appropriate to use information obtained from
a previousmeta-analysis of case-control studies when per-
forming a meta-analysis of phase IV studies, i.e. studies
recruiting clinically suspect patients consecutively in a
representative clinical setting [7]. However, given that the
phase IV design ensures the most realistic assessment of
the performance of a test when used as a diagnostic tool
in the target population [6], we may want to reduce the
influence from these prior phases by using a prior which is
more diffuse than the actual results from the prior meta-
analysis. In the latent class model Model 4, we can use
informative priors for the diagnostic accuracy of the refer-
ence test. It is likely that some information on the accuracy
of the reference tests is available. In fact, standard anal-
ysis assumes S and C of the reference test to be 100 %,
which can be considered to be very strong deterministic
prior from a Bayesian viewpoint [26]. Priors for the accu-
racy of reference test can be obtained from the literature
or expert opinion [10].

Simulation study
To assess the performance of the different models and to
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uncover possible bias of combining data without proper
control for study specific effect or adjustment for the
use of imperfect reference standards, we performed a
simulation study using two different scenarios. For each
scenario, we generated 250 sets of 20 diagnostic studies.
We analyzed each simulated data set using the models
described above using the logit for the link function g(.).
We evaluated the models using coverage probabilities (the
proportion of replications in which the 95 % credible
interval contained the true value) and power (the pro-
portion of replications in which a difference in S and C
between the two tests of interest was detected). In Sce-
nario 1, we simulated a setting without systematic bias but
where a common imperfect reference test is used to assess
the diagnostic accuracy of the index tests in all primary
studies. In Scenario 2, we simulated the situation of two
index tests which are assessed in primary studies that tend
to use different reference standards. This situation may
rarely occur in practice, but was selected to assess how the
model performed in an extreme situation with systematic
bias due to imperfect reference tests. A full description of
the simulation study setup is in Additional file 3.

Real data example
We applied the models to data obtained in a meta-analysis
of rapid diagnostic tests for visceral leishmaniasis, which
we described earlier [10, 27]. In the published meta-
analysis, the focus was on estimating the diagnostic accu-
racy of individual tests. We extracted the data relevant
for the comparison of one rapid diagnostic test, the RK39
dipstick, with that of the direct agglutination test (DAT)
as a test case for the application of the methods devel-
oped in the current paper. We limited the data for this test

case to primary studies that included the RK39 dipstick
or DAT with at least one other index test and microscop-
ical examination as a reference test for which full data
was available in the published primary study. We selected
all index tests which were used in more than one study.
In total, we included 10 primary studies, four index tests
(DAT, RK39-dipstick, IFAT, KAtex) and two reference
tests (parasitology including spleen aspirate, parasitology
not including spleen aspirate) (Table 3). All tests are spe-
cific to VL and consequently can be expected to related to
the same underlying latent variable. The data are shown in
Fig. 1 and Appendix 4. Note that the current study is used
as “proof-of-concept” of the statistical modeling approach
and not as a complete meta-analytic comparison of the
two tests which would require a more extended search
strategy.
The aim of this modeling exercise was to estimate the

differences in S and C between the RK39-dipstick and
DAT. A previous meta-analysis indicated that the diag-
nostic accuracy of the RK39, and possibly also of the
DAT, may be lower in East-Africa compared to other geo-
graphic regions [28]. To correct for these differences, we
included a fixed region effect (East-Africa vs. rest of the
world) for S. We fitted the five models listed in Table 2.
In the previous study [10], we obtained expert opinion on
the diagnostic accuracy of the two reference tests. Expert
opinion on the diagnostic accuracy of parasitology includ-
ing spleen aspirate varied between 88 and 95 % for S and
between 95 and 100 % for C. For parasitology without
spleen aspirate, expert opinion varied for S between 70
and 80 % and between 95 and 100 % for C. We used this
information to determine the priors in estimation of the
models allowing for imperfect reference standards.

Table 3 Overview of the real data example: a comparative meta-analysis of the RK39 dipstick and direct agglutination test (DAT) for
the diagnosis of visceral leishmaniasis. The total sample size (N) and availability of test results (X) is given for all 10 studies. Other tests:
IFAT=indirect fluorescent antibody test, KAtex=latex agglutination test, spleen=parasitological examination of tissue aspirates
including spleen sample, no spleen: parasitological examination of tissue aspirates not including spleen sample

Study information Index tests Reference test

Publication Country RK39 DAT KAtex IFAT Spleen No Spleen N

Boelaert-1999 Sudan X X X 59

Boelaert-2004 Nepal X X X X 309

Boelaert-2008 Nepal X X X X 158

Boelaert-2008 India X X X X 352

Boelaert-2008 Kenya X X X X 307

Boelaert-2008 Ethiopia X X X X 35

Boelaert-2008 Sudan X X X X 291

de Assis-2012 Brazil X X X X 407

Toz-2004 Turkey X X X 42

Veeken-2003 Sudan X X X 77
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Fig. 1 Forest plot for real data example. Estimated sensitivity and specificity of the RK39 dipstick (open circles) and DAT (closed squares) with 95 %
confidence interval, using parasitology as gold standard

Results
Measures of relative value of diagnostic tests
The results of our simulation study indicated that in a real-
istic setting, bias in estimating the difference in S and C
between two index tests due to the use of an imperfect
reference standard can be relatively limited (Additional
file 1). Strong bias only occurred if the errors of one
index test were strongly correlated with those of the ref-
erence test while the errors of the second index test
were uncorrelated with those of the reference test. Similar
observations can be made for the relative S and C. When
the comparisons were expressed as odds-ratios or when
using the relative Diagnostic Odds Ratio as a summary
statistics, bias was more substantial and occurred even
with uncorrelated errors. This corresponds to the findings
fromZhang et al. who report that also in themeta-analysis
of RCTs the odds-ratio is not always a suitable summary
statistic [5].

Model performance: simulation study
Results of the simulation study of the model performance
are described in detail in Additional file 3. The bias in
estimating the contrasts in S and C between T1 and T2,
expressed as a difference, relative risk or odds-ratio is
summarized in Fig. 2.

In Scenario 1, where a common imperfect reference
standard with moderate S and high C was used, a naive
analysis assuming the reference test was perfect (Mod-
els 1–3), resulted in bias in estimating the odds-ratios
(Fig. 2c) and to a lesser extent also the relative risks
(Fig. 2b). If the contrast of interest was expressed as a
difference (Fig. 2a), a true gold standard was available
(Fig. 2a–c, Models 1–3), or if a latent class model was used
to allow for imperfect reference tests (Fig. 2a–c, Models
4 and 5), no bias was apparent. Allowing for imperfect
reference tests resulted in a lower power compared to
the situation that a perfect reference test was available
(Additional file 3, Table 3).
In Scenario 2, the reference standard of the simulated

studies varied according to the index tests studies, which
could result in systematic bias. In the analysis of Sce-
nario 2, Models 4.i and 5.i correspond to the situation
where the researchers knew of the differences in reference
standard used across studies and that the variation in ref-
erence standard was thus a known source of bias. Models
4.ii and 5.ii correspond to the situation that researchers
are unaware of the differences in reference standards
among studies and that consequently the variation in ref-
erence standard was an unknown source of bias. This may
occur if researchers do not provide sufficient detail in
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Fig. 2 Summary of simulation results. Bias in estimates of the contrasts in diagnostic accuracy from the proposed meta-analytical models applied in
the simulation study. The boxplots present the bias in ŜD12 and ĈD12 (first row), ŜRR12 and ĈRR12 (second row), ŜOR12 and ĈOR12 (third row). The first
column presents Scenario 1 where a common imperfect reference standard with moderate S and high C was used, the second scenario 2 where
systematic bias is induced by differing reference standards. Full explanation of the model is in the text; full explanation of the simulation setup and
results in Additional file 3. Note for Scenario 1: For models 1 to 3 disease status was estimated from the results of T4. Note for Scenario 2: Models 4
and 5 were applied both assuming it is known that the reference tests differ across studies (4a and 5a) and ignoring the difference in reference tests
(4b and 5b)

the primary publications on the exact modalities of the
reference test procedures. For example, in the diagnosis
of VL microscopical examination of spleen aspirates is

the preferred reference test, while bone marrow aspirates
show a limited S. Often researchers indicate their refer-
ence test to be based on spleen aspiration. However in



Menten and Lesaffre BMCMedical ResearchMethodology  (2015) 15:70 Page 10 of 13

closer assessment of these publications, it can become
apparent that some researchers perform spleen aspiration
on nearly all subjects while others may preform spleen
aspiration on only a minority of subjects. Ignoring these
difference in reference tests may lead to bias. Incorrectly
assuming the reference test were perfect resulted in sub-
stantial bias, especially when ignore study level effects
(Fig. 2d–f, Model 1). When correcting for the use of
imperfect reference tests using LCA (Models 4.i and 5.i),
unbiased estimates for the differences in diagnostic accu-
racy between T1 and T2 were obtained (Fig. 2d–f, Models
4.i and 5.i). If the data were however analyzed ignoring
the differences between the reference tests, the differ-
ences in diagnostic accuracy between T1 and T2 were
overestimated (Fig. 2d–f, Models 4.ii and 5.ii).

Real data example: diagnostic tests for visceral
leishmaniasis
Results of modeling of the VL data are in Table 4. All mod-
els indicated that S of DAT (S2) was 8 to 11 % higher,
compared to the S of RK39 (S1), in East-Africa, but this
difference did not reach statistical significance. In the rest
of the world, estimates of S1 and S2 were similar. Differing
modeling strategies or allowing for imperfect reference
standards did not impact estimates of S or comparisons
of S between the two index tests of interest. This is as
expected as the parasitological reference tests show a
similar and high C.

In contrast, allowing for imperfect reference tests
(models 4 and 5) resulted in considerably higher estimates
for C of both the RK39 dipstick and DAT compared to
models assuming perfect reference tests were used (mod-
els 1–3). False negative results for the reference tests may
have resulted in reduced estimates of C1 (75.5–78.6 %)
and of C2 (80.1–81.5 %). Allowing for imperfect reference
standards resulted in considerable higher estimates for C1
(90.2–91.0 %) and C2 (93.0–94.1 %).
In the analyses that used parasitology as a, presumed

perfect, reference test, a substantial difference betweenC1
and C2 (Ĉ2 − Ĉ1 = 5.3 %) was observed when limiting
the analysis to direct comparisons only (Model 2). On the
other hand, Model 1, based on independent estimation of
C1 and C2, showed a much smaller difference (Ĉ2 − Ĉ1 =
1.5 %). The model using direct and indirect comparisons
(Model 3) showed intermediate results (3.2 %). This can
be explained by the fact that the studies in which no direct
comparison was possible between the RK39 dipstick and
DAT showed contradictory results to the studies with
direct comparisons. These studies also used the least sen-
sitive reference standard which may explain that results
of Models 4 and 5, both allowing for imperfect reference
standards, were similar.

Discussion
In this paper, we developed a novel model to perform
a comparative meta-analysis of the accuracy of two or

Table 4 Results of the meta-analysis of the diagnostic tests for visceral leishmaniasis

Parasitology as Gold Standard No Gold Standard

Model 1 Model 2 Model 3 Model 4 Model 5

Parameter Estimate Estimate Estimate Estimate Estimate

S1 (R1) 94.2 95.5 94.8 95.9 94.7

S1 (R2) 85.2 84.0 86.5 84.6 88.1

S2 (R1) 95.7 97.2 96.4 96.3 96.4

S2 (R2) 94.4 93.5 95.4 96.1 96.5

C1 78.6 75.5 78.3 90.2 91.0

C2 80.1 80.9 81.5 93.0 94.1

SD12 (R1) 1.5 1.7 1.6 0.4 1.7

SD12 (R2) 9.2 9.6 8.9 11.5 8.4

CD12 1.5 5.3 3.2 2.8 3.1

SRR12 (R1) 1.02 1.02 1.02 1.00 1.02

SRR12 (R2) 1.11 1.12 1.10 1.14 1.10

CRR12 1.02 1.07 1.04 1.03 1.03

SOR12 (R1) 1.3 1.7 1.5 1.1 1.6

SOR12 (R2) 2.7 2.8 3.3 4.7 3.9

COR12 1.1 1.4 1.2 1.5 1.7

Si and Ci : sensitivity and specificity of Test i; SD12 and DD12: difference in sensitivity and specificity between Test 1 and Test 2; SRR12 and DRR12: relative sensitivity and specificity
of Test 1 compared to Test 2 as a relative risk; SOR12 and DOR12: relative sensitivity and specificity of Test 1 compared to Test 2 expressed as an odds-ratio. R1 and R2 indicate
estimates obtained for East-Africa and the rest of the world, respectively
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more diagnostic tests when a perfect reference stan-
dard is unavailable. In a first step, we assessed the bias
of comparative measures of the diagnostic accuracy of
two tests induced by the use of an imperfect refer-
ence test. We observed that the difference in S and C
may be the least subject to bias while at the same time
being easily understandable to users of the meta-analysis
results. In our modeling approach, we combined LCA
with models developed for the mixed treatment compar-
isons meta-analysis of RCTs. The modeling framework
accommodates a broad range of studies, including “Mul-
tiple Test Comparison”, “Randomized Test Comparison”,
and “Between-Study Test Comparison” studies according
to the terminology of Takwoingi et al., with the first two
designs offering the most robust comparative data [3].
In a simulation study, the resulting model showed ade-
quate performance, even if some aspects of the data gen-
erating mechanism were ignored. The simulation study
also stressed the importance of accurate and complete
extraction of the data from the primary studies when
performing a DTA review. When differences in refer-
ence tests were ignored, biased estimates of the relative
accuracy of the competing tests were unavoidable. This
highlights the importance of complete and transparent
reporting of DTA studies as promoted by the STARD ini-
tiative [29]. For a correct analysis of the data, the index
and reference tests should be accurately described. Any
cut-offs used to classify test results as positive or nega-
tive should also be reported and results for all subjects
should be given, including subjects with incomplete or
equivocal test results. The cross-classification of all test
results should be presented in a format similar to that of
the motivating example dataset in Additional file 4. The
fact that meta-analysis is possible using imperfect ref-
erence tests suggests it may be more efficient to design
future studies with multiple imperfect tests rather than
using a single “as-accurate-as-possible” reference test, as
has been shown in the analysis of epidemiological stud-
ies with imperfect measures of exposure [30, 31]. When
applied to a dataset on visceral leishmaniasis diagnostic
tests, themodel indicated thatC of the two tests of interest
may have been underestimated due to the use of imperfect
reference test. Our novel modeling approach, combining
latent class analysis with hierarchical meta-analysis mod-
eling, allowed the estimation of the difference in accuracy
of the two index tests without making strong assumptions
on the performance of the reference tests used. How-
ever, as in all meta-analyses, care should be taken that
the studies combined are in fact comparable. While our
approach corrects for bias and heterogeneity induced by
the use of imperfect reference tests, other types of bias
as publication and spectrum bias, can result in incor-
rect meta-analysis results. The approach can be combined
with meta-regression techniques to reduce heterogeneity.

As limitations of our approach the following points
can be given, which can indicate future avenues for fur-
ther progress in this field. As a first limitation, we chose
to compare diagnostic tests based on the sensitivity and
specificity, and in particular based on the difference in
these quantities among competing tests. Focusing on dif-
ferences in S and C leads to results which are easily
understandable for potential users. However, a test can be
superior to another with respect to S while inferior with
respect to C. In this case, selecting the optimal test can
be difficult. Using a single summary measure of diagnos-
tic accuracy, as the relative diagnostic odds-ratio (rDOR)
can make comparisons among tests easier [32]. Theoret-
ically, the test with the highest DOR may be preferred.
However, this may not always be the case as the potential
risk of a false positive result may be different from the risk
of a false negative result. It may be easier for users to bal-
ance an increase in S versus decreases in C. In addition,
the rDOR may be more prone to bias as we have shown
for the OR difference in S and C. In our model formu-
lation, the rDOR can be easily obtained. If the primary
parameter of interest is however the rDOR, an alterna-
tive model formulation, for example an extension of the
hierarchical summary ROC model [9, 33], may be more
appropriate.
To allow estimation of the model, we made considerable

simplifications to the variance-covariance structure of our
parameter space. Not all these simplification may be war-
ranted and a more general variance-covariance structure
may refine estimates from this model. Fitting a general
variance-covariance matrix however results in important
computational difficulties. Our simulation study indicated
that these limitations do not necessarily invalidate analy-
sis results, but further research is needed to assess when
this may no longer be the case. Modeling the variance-
covariance matrix via partial autocorrelations [15] may
allow the fitting of more complex model. We accommo-
dated study effects using contrast-based (CB) approaches.
However, in RCT arm-based approaches that correctly
incorporate correlations have been shown to be superior
to CBmethods [5]. Further development of the equivalent
models for DTA reviews, Models 1 and 4 in our setting,
incorporating the correlations induced by study levels, is
needed. Model 4 which corrects for imperfect reference
tests, but ignores study effects, performed well in our
simulation study. However, it is vulnerable to bias from
study-specific effects. the model would need extensions to
incorporate dependencies between test results from the
same study, as for example was done for the meta-analysis
of RCTs in Zhang et al. 2014 [5], before it is recommended
as a general method for the meta-analysis of DTA studies
above Model 5. However, if the accuracy of the different
index tests is not strongly correlated across studies, Model
4 may perform equally well as Model 5 and may offer
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advantages in terms of identifiability and computational
feasibility.
We showed how prior information, e.g. on the diag-

nostic accuracy of the reference test, can be used to aid
model estimation in the case of the hierarchical latent
class model. This is in line with the methods we have
earlier developed for the meta-analysis of the diagnostic
accuracy of a single test when using an imperfect ref-
erence standard [10]. In the case of the network based
latent class model, it is however much less clear how this
information can be used. The diagnostic accuracy of each
test is in this model a linear combination of an overall,
study-specific, probability of testing positive on all tests
and a number of contrasts in diagnostic accuracy among
these tests. More research is needed on how priors can
be constructed for this model, e.g. using the priors for
conditional probabilities rather than for S and C directly
[26].
DTA studies can be expected to exhibit considerable

heterogeneity and may be more prone to bias and incon-
sistency between direct and indirect comparisons com-
pared to RCTs. Applications of network meta-analytic
model to DTA studies must be performed with care and
further development of statistical methods are needed.
The literature on network-based meta-analysis of RCTs
contains many additional tools, for example to assess con-
sistency of estimates obtained from direct versus indirect
comparisons [34–36], assess heterogeneity among studies
[37], detect outlying studies [38] and correct for bias [39].
We only performed a limited application of techniques
developed in this context. Expanding these techniques
to DTA meta-analyses may be a valuable direction of
research. In particular, it is important to expand the con-
cept of consistency of comparisons across networks to the
context of DTA reviews [40, 41].
Alternative approaches to the comparative meta-

analysis of diagnostic tests are proposed. The regression
approach of Macaskill et al. [9] can be seen as a variation
of our model 2 in which the relative S and C, expressed as
an odds-ratio, between tests is constant across studies. For
the case all tests are applied to all subjects, Trikalinos at al.
[42] describe a model which fully accounts for the within-
study correlation between the tests’ subject-specific S
and C. This approach can be more efficient than the
methods proposed in the current manuscript. However,
both approaches need further empirical and simulation
studies to assess their relative merits. Different models
may be most appropriate depending on the application.
In case it is suspected that reference tests may show only
limited S or C, the analysis method should allow for the
use of imperfect reference test. If important study-level
effects are expected, proper control for confounding by
these effects is needed. If there is important uncertainty
on the value of the reference test or the presence of study

level effects, it will be preferable to fit several models and
assess the robustness of the results to the assumptions.
At this stage of research, it is not possible to provide
a general recommendation on the optimal modeling
approach for the meta-analysis of comparative DTA
reviews.

Conclusions
The models developed in this paper are promising and
can improve the comparison of the diagnostic accuracy of
competing tests in DTA systematic review. This is how-
ever only true if the studies and especially information on
the reference tests used are described in sufficient detail.
If the reporting of the studies does not provide suffi-
cient detail, it may be better to limit the meta-analysis to
direct comparisons. Further work refining the modeling
approach, especially with respect to the specification of
more general covariance structures and the use of mea-
sures of consistency of direct versus indirect comparisons,
can further improve these methods.
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