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Abstract
Background  Fractional Flow Reserve (FFR) is the gold standard for the functional evaluation of coronary arteries, 
which is effective in selecting patients for revascularization, avoiding unnecessary procedures, and reducing 
treatment costs. However, its use is limited due to invasiveness, high cost, and complexity. Therefore, the non-invasive 
estimation of FFR using artificial intelligence (AI) methods is crucial.

Objective  This study aimed to identify the AI techniques used for FFR estimation and to explore the features of the 
studies that applied AI techniques in FFR estimation.

Methods  The present systematic review was conducted by searching five databases, PubMed, Scopus, Web of 
Science, IEEE, and Science Direct, based on the search strategy of each database.

Results  Five hundred seventy-three articles were extracted, and by applying the inclusion and exclusion criteria, 
twenty-five were finally selected for review. The findings revealed that AI methods, including Machine Learning (ML) 
and Deep Learning (DL), have been used to estimate the FFR.

Conclusion  This study shows that AI methods can be used non-invasively to estimate FFR, which can help physicians 
diagnose and treat coronary artery occlusion and provide significant clinical performance for patients.
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Introduction
Cardiovascular Diseases (CVD) are the most crucial 
cause of death worldwide [1]. These diseases have been 
among the most critical concerns in the last few decades 
[2], so approximately 18.5  million people died due to 
CVDs in 2019. Expectedly, the death rate due to this dis-
ease will increase by the year 2030 to reach 23.6 million 
[3]. Coronary Artery Disease (CAD) is the most com-
mon CVD, affecting more than twenty million adults in 
the United States and accounting for approximately one-
third of deaths [4]. In this disease, plaque accumulation 
causes narrowing of the coronary arteries [5, 6], which 
can be partial or in the form of complete blockage of the 
coronary arteries and causes disruption of blood sup-
ply to the heart tissue [7]. Coronary artery narrowing or 
blockage leads to severe symptoms such as angina pecto-
ris and even myocardial ischemia [8].

Based on the evidence, the functional severity of cor-
onary artery stenosis is the leading cause of myocardial 
ischemia [9, 10]. Physiological evaluation is a determin-
ing factor for patients with CAD treatment decisions 
[11]. The Fractional Flow Reserve (FFR) method is used 
in the physiological evaluation. This method uses a pres-
sure wire passing through the stenosis to measure the 
flow and blood pressure before and after the stenosis 
after injecting an agent such as adenosine [12].

FFR is the gold standard for the functional assessment 
of coronary arteries. Many pieces of evidence show that 
revascularization should be performed based on the 
functional assessment of the vessels [13–18]. Based on 
considerable clinical evidence, using FFR helps select the 
appropriate patients and lesions for treatment, avoids 
unnecessary procedures, reduces medical costs, and 
improves clinical outcomes [12]. However, despite the 
recommendations of treatment guidelines, the use of FFR 
for diagnosing CAD is minimal due to its complexity, 
high cost, and invasiveness [19]. Therefore, non-invasive 
methods of estimating FFR are of great interest.

In the last three decades, Artificial Intelligence (AI) has 
been widely used to improve the accuracy of diagnos-
tic methods and decision-making based on CVD data-
sets [20]. As a subfield of AI, Machine Learning (ML) 
describes algorithms that analyze data logically, similar 
to how humans conclude [21]. Recently, AI techniques 
have been used to estimate FFR using Computed Tomog-
raphy Angiography (CTA), X-ray Coronary Angiogra-
phy (XCA), Optical Coherence Tomography (OCT), and 
Intravascular Ultrasound (IVUS) images. These meth-
ods have been highly regarded due to their non-invasive 
nature. To our knowledge, there has not been system-
atic studies reviewing the AI techniques in FFR estima-
tion. Knowing that the AI techniques present different 
performance depending on the type of technques, type 
of features, and validadtion approaches, we aimed to to 

obtaing a better understanding of AI techniques in FFR 
estimation through findings answers to the following 
questions:

1.	 What AI methods have been used to estimate the 
FFR?

2.	 What imaging tools have been used to estimate the 
FFR?

3.	 How do AI techniques estimate the FFR?

Methods
Review methodology
Search strategy
The Preferred Reporting Items for Systematic Reviews 
and Metanalysis (PRISMA) [22] have been followed to 
perform this systematic review. The basic search string 
was ((“Deep Learning”) OR (“Machine Learning”) OR 
(“Artificial Intelligence”) OR (“Neural Network”) AND 
((Fractional Flow Reserve)), and searches were performed 
without date constraint using IEEE Digital Library, Web 
of Science, PubMed, ScienceDirect, and Scopus data-
bases. The search string syntax was adapted depending 
on the database requirements. The search was performed 
on the title, abstract, and keywords. Previously identified 
articles were also included in the process.

Eligibility criteria
This study analyzed only original articles published in 
English designed and developed AI methods to estimate 
the FFR.

Study selection
In the screening stage, three authors reviewed the articles 
based on their titles and abstract and removed the irrel-
evant articles. In the next step, the full text of the selected 
articles was evaluated by two researchers separately 
based on inclusion/exclusion criteria. Disagreements 
were resolved with the help of the third author through 
consensus and brainstorming.

Data extraction
In the data extraction stage, the type of imaging tool, 
number of patients, number and type of lesion, AI 
method, problem type, features used, feature extraction 
method, segmentation type, and model efficiency were 
extracted. The name of the first author, year, and place of 
publication of the article were also extracted. Finally, the 
obtained results were displayed in the form of structured 
tables (Table 1).

Critical review and quality assessment
The quality of studies was examined by two authors 
F.A and R.R, and disagreements were resolved by a 
third reviewer A.H. The quality of included studies was 
assessed based on the Quality Assessment for Diagnostic 
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Refer-
ence 
(Year)

Modality Number of patients/lesions AI 
Methods

Pre-
dic-
tion 
Task

Feature 
Engineering

Segmenta-
tion
Task

Features Performance Qual-
ity as-
sess-
ment

Hatfa-
ludi et 
al. (2022)
[41]

OCT 80/102
(LAD = 57, LCX = 20, RCA = 25)

DNN Clas-
sifica-
tion

Feature learn-
ing (DNN)

A (Manually 
corrected 
by experts)

Anatomi-
cal OCT 
information

AUC = 0.763
Accuracy = 0.775
Sensitivity = 0.729
Specificity = 0.815
PPV = 0.778
NPV = 0.772

High

Xue et 
al. (2022)
[48]

CCTA
XCA

40/67(LAD = 32, D = 4, LCX = 10, 
OM = 1, RCA = 20)

BRNN Re-
gres-
sion

Feature learn-
ing (MLP)/ 
Handcrafted

M (DEEP-
VESSEL)/
A (U-Net)

Flow 
features
Radius 
features
Centerline 
Information

AUC = 0.95
Accuracy = 0.925
Sensitivity = 0.936
Specificity = 0.881
PPV = 0.8333
NPV = 1

High

Lee et al. 
(2021)
[24]

CCTA 144/200(LAD)
Synthetic

ANN, MLP
RF, 
AdaBoost, 
SVM, GB, 
GP, KNN

Clas-
sifica-
tion

Feature 
learning 
(InceptionV3)/ 
Handcrafted

A Morphologi-
cal feature
Flow 
features
Biometric 
features

Accuracy = 0.75 to 
0.983

High

Roguin 
et 
al.(2021)
[43]

XCA 31(LAD = 25, LCX = 3, RCA = 3) ANN Re-
gres-
sion

Feature 
learning

A - Accuracy = 0.9
Sensitivity = 0.88
Specificity = 0.93
PPV = 0.94
NPV = 0.87

High

Fossan et 
al. (2021)
[25]

CCTA 50(LAD = 26, LCX = 13, 
RCA = 11)/150
(LAD = 78, LCX = 39, RCA = 33)

FFNN Clas-
sifica-
tion

Handcrafted
(VMTK)

M(ITK-SNAP) Geometric 
features

Accuracy = 0.955
Sensitivity = 0.94
Specificity = 0.963

High

He et 
al.(2020)
[26]

CCTA 60 SVM Clas-
sifica-
tion

Handcrafted 
(PyRadiomics)

M((Velocity) left 
ventricular 
myocardial 
radiomics 
features

AUC = 0.8952
Accuracy = 0.855

High

Cha et 
al.(2020)
[42]

OCT 125(LAD) RF Clas-
sifica-
tion

Handcrafted - OCT 
Geometric 
feature
Biometric 
features
Clinical 
features

AUC = 0.98
Accuracy = 0.952
Sensitivity = 1
Specificity = 0.929
PPV = 0.875
NPV = 1

High

Kim et 
al., (2020)
[46]

OCT
CCTA

20 SVM Clas-
sifica-
tion

Handcrafted
(Boruta)

- Geometric 
feature
Flow 
features
Biometric 
features

Accuracy = 0.75
Sensitivity = 0.5
Specificity = 0.8
PPV = 0.83
NPV = 0.63

Mod-
erate

Gao et 
al., (2020)
[27]

CCTA 180/13,000 Synthetic RNN Re-
gres-
sion

Feature learn-
ing (RNN)

A(U-Net) Centerline 
Information

AUC = 0.93
Sensitivity = 0.84
Specificity = 0.89

Mod-
erate

Carson 
et al. 
(2020)
[28]

CCTA 25(LCA) FFNN, 
LSTM, 
MPR

Re-
gres-
sion

Handcrafted
(VMTK)

M(VMTK) Centerline 
Information

Accuracy = 0.72
Sensitivity = 0.9
Specificity = 0.6

High

Zreik et 
al.,(2019)
[29]

CCTA 126/2340 CNN Clas-
sifica-
tion

Feature learn-
ing (CAE)

A(CNN) LVM 
Computed 
features
Centerline 
Information

AUC = 0.74
Accuracy = 0.7
Sensitivity = 0.7
Specificity = 0.7

High

Table 1  Overview of FFR estimation studies included in this literature review
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Refer-
ence 
(Year)

Modality Number of patients/lesions AI 
Methods

Pre-
dic-
tion 
Task

Feature 
Engineering

Segmenta-
tion
Task

Features Performance Qual-
ity as-
sess-
ment

YIN et
al., (2019)
[30]

CCTA 13(LAD) GPR Re-
gres-
sion

Handcrafted M Physiologic 
parameters
Anatomic 
parameters

Sensitivity = 0.76 
to 0.91

Mod-
erate

Dey et 
al., (2019)
[31]

CCTA 254/484 LB Clas-
sifica-
tion

Handcrafted
(AutoPlaque)

M 
(AutoPlaque)

Patient 
factors
Quantitative 
CTA

Accuracy = 0.8
Sensitivity = 0.73
Specificity = 0.8

High

Zreik et 
al., (2019)
[32]

CCTA 137/192(LAD = 104, LCX = 52, 
RCA = 36)

SVM Clas-
sifica-
tion

Feature learn-
ing (CAE)

- Centerline 
Information

AUC = 0.87
Accuracy = 0.8

High

Lee et al., 
(2019)
[45]

IVUS 1328/1328(LAD = 891, LCX = 100, 
RCA = 337)

RF, SVM, 
ANN, LR, 
AdaBoost, 
CatBoost

Clas-
sifica-
tion

Handcrafted A (VGG16- 
Manually 
corrected 
by experts)

Com-
puted IVUS 
features
Clinical 
variables
Patient 
factors
Quantitative 
CTA

Accuracy = 0.85 
to 0.87

High

Kawa-
saki et 
al. (2020)
[33]

CCTA 47/60 RF, LR, SVM Clas-
sifica-
tion

Handcrafted 
(CCTA 
Analysis)

- Ana-
tomic CCTA 
Descriptors
Functional 
Descriptors

AUC = 0.698 to 
0.835

High

Kuma-
maru et 
al. (2020)
[34]

CCTA 1052
(131 labelled LAD = 118, 
LCX = 49, RCA = 40))

NN Clas-
sifica-
tion

Feature learn-
ing (cGAN1)

- - AUC = 0.78
Accuracy = 0.759
Sensitivity = 0.846
Specificity = 0.626
PPV = 0.777
NPV = 0.724

High

WANG et 
al. (2019)
[35]

CCTA 63/71 (LAD = 32, LCX = 21, 
RCA = 18)

BRNN Re-
gres-
sion

Feature learn-
ing (MLNN2)

- - AUC = 0.664
Accuracy = 0.873
Sensitivity = 0.9714
Specificity = 0.75
PPV = 0.8293
NPV = 0.9545

High

Denz-
inger et 
al. (2019)
[36]

CCTA 95/345 GRU Clas-
sifica-
tion

Feature learn-
ing (RCNN3) / 
Handcrafted 
(PyRadiomics)

- Radiomic 
features
Centerline 
Information

AUC = 0.88
Accuracy = 0.87
Sensitivity = 0.95
Specificity = 0.61
PPV = 0.9
NPV = 0.74

High

Cho et 
al. (2019)
[44]

XCA 1501/1501(LAD = 1017, 
LCX = 155, RCA = 329)

XGBoost Clas-
sifica-
tion

Handcrafted 
(CAAS-5)

M(CAAS-5) Computed 
angiograph-
ic features
Clinical 
features

AUC = 0.87
Accuracy = 0.81
Sensitivity = 0.84
Specificity = 0.89
PPV = 0.77
NPV = 0.79

High

Hamers-
velt et al. 
(2018)
[37]

CCTA 126 SVM Clas-
sifica-
tion

Feature learn-
ing (CAE4)

A(CNN) LVM 
Computed 
features

AUC = 0.76
Sensitivity = 0.846
Specificity = 0.484

High

Table 1  (continued) 
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Accuracy Studies (QUADAS-2) tool to assess the risk 
of bias and applicability of primary diagnostic accuracy 
studies. This tool categorizes the risk of bias for individ-
ual studies as “low,” “medium,” or “high” [23].

Results
The present study surveyed the title and abstracts of 384 
articles. The full text of 107 articles was carefully exam-
ined, and eighty-two articles were excluded for reasons 
such as lack of full text, use of methods other than AI, 
conference articles, articles other than English, and arti-
cles with unclear results, and twenty-five articles were 
included in the study (Fig. 1).

The overall quality of most included studies was high. 
The subject selection method and follow and timing may 
have introduced high bias and applicability concerns in 
the reviewed studies.

This study demonstrated that various imaging tools 
have been used, including CCTA [24–40], OCT [41–43], 
XCA [44], and IVUS [45]. Several studies used a com-
bination of CCTA with OCT [46], IVUS [47], and XCA 
[48], and a study combined IVUS and XCA [49] to esti-
mate the FFR. Most of the studies used CCTA to estimate 
the FFR. AI methods used include methods based on DL 
[25, 27–29, 34, 40, 41, 48] and ML [26, 42, 30, 32, 33, 37, 
39, 44, 46, 49]. Some studies have used a combination of 
DL and ML techniques [24, 32, 37, 38, 45, 47].

In addition to the features extracted from the images, 
other features such as morphological, flow, biometric, 
clinical, radiomic, and centerline information have been 
used to estimate the FFR.

The extraction of parameters from imaging tools has 
been done manually, automatically, and in some cases 
with semi-automatic methods. Additionally, some of 
these studies used the segmentation technique to extract 

Refer-
ence 
(Year)

Modality Number of patients/lesions AI 
Methods

Pre-
dic-
tion 
Task

Feature 
Engineering

Segmenta-
tion
Task

Features Performance Qual-
ity as-
sess-
ment

Hae et 
al. (2018)
[49]

XCA
IVUS

1132/1132(LAD = 718, LCX = 141, 
RCA = 273)

RF, SVM, 
LR, 
AdaBoost, 
CatBoost

Clas-
sifica-
tion

Handcrafted 
(CAAS-5/ 
EchoPlaque 
3.0)

M (CAAS-5 
for XCA and 
EchoPlaque 
3.0 for IVUS)

Computed 
angiograph-
ic features
Com-
puted IVUS 
features
Clinical 
features

AUC = 0.84 to 0.91
Accuracy = 0.78 
to 0.84
Sensitivity = 0.76 
to 0.84
Specificity = 0.8 
to 0.85
PPV = 0.63 to 0.71
NPV = 0.88 to 0.92

High

Kim et 
al.,(2018)
[47]

IVUS 70/ 1447 XG-
Bensmble, 
ANN, 
XGBoost, 
RF

Clas-
sifica-
tion

Feature learn-
ing (VGG16)

M /A (
VGG16- 
Manually 
corrected 
by experts)

Com-
puted IVUS 
features
Patient 
factors

Accuracy = 0.73 
to 0.81
Recall = 0.63 to 
0.71
Precision = 0.61 
to 0.74
F1 score = 0.64 
to 0.73

High

Zreik et 
al., (2017)
[38]

CCTA 126 SVM Clas-
sifica-
tion

Feature learn-
ing (CAE)

A (CNN) LVM 
Computed 
features

AUC = 0.74
Sensitivity = 0.71

High

Han et 
al.,(2017)
[39]

CCTA 252/408 AdaBoost Clas-
sifica-
tion

Handcrafted 
(SmartHeart)

M 
(SmartHeart)

LVM 
Computed 
features

Accuracy = 0.683
Sensitivity = 0.527
Specificity = 0.846
PPV = 0.782
NPV = 0.63

High

Itu et al. 
(2016)
[40]

CCTA 87/125
(12,000 Synthetic)

DNN Clas-
sifica-
tion

Feature 
learning

A (DNN) Geometric 
features

AUC = 0.9
Accuracy = 0.832
Sensitivity = 0.816
Specificity = 0.839
PPV = 0.689
NPV = 0.912

High

1Conditional Generative Adversarial Network
2Multilevel Neural Network
3Recurrent Convolutional Neural Network
4Convolutional Auto-Encoder

Table 1  (continued) 
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parameters from the images. This study shows that in 
some of these studies, DL methods were used for seg-
mentation, and in others, the segmentation was done 
manually and using commercial software. Various param-
eters have been used to evaluate the diagnostic power of 
the models. The most used parameters are AUC, Accu-
racy, Sensitivity, Specificity, PPV, and NPV.

Discussion
CADs are one of the severe complications in recent years, 
leading to myocardial ischemia. Numerous shreds of 
evidence show that the functional severity of coronary 
artery stenosis is the main reason for myocardial isch-
emia. The FFR is the gold standard for the physiological 
evaluation of coronary artery stenosis and for deciding 
on the revascularization of coronary artery stenosis. 
However, despite considerable clinical evidence, the use 

of this method is minimal due to limitations such as cost, 
complexity, and invasiveness. In this research, twenty-
five studies have been systematically examined, and the 
findings are as follows:

1. AI methods
Various methods of AI, including methods based on DL 
and ML and a combination of them, have been used to 
estimate the FFR. A meta-analysis study needs to be con-
ducted to evaluate these methods, which is practically 
impossible due to the variety of datasets.

2. Imaging tools
This study revealed that various imaging tools, including 
CCTA, XCA, IVUS, and OCT, were used. In addition, 
some studies have used a combination of imaging tools 
to estimate the FFR. The mentioned imaging tools are 

Fig. 1  Flowchart of the study selection process (PRISMA)
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suitable for the anatomical assessment of coronary arter-
ies. However, CHU et al., in a systematic review study, 
showed that by using the anatomical data extracted from 
these imaging tools, estimating FFR is possible [50]. This 
study’s findings specifically show the use of AI methods 
to estimate the FFR using different imaging tools, which 
can help the physician diagnose by aggregating anatomi-
cal and physiological parameters regardless of the type of 
imaging tool and treating the disease, which can signifi-
cantly improve clinical performance for patients.

3. Type of vessels
Regarding frequency and type of vessels (Distribu-
tion of lesion types), angiographic interventions on the 
LAD branch are crucial [51]. This branch has the most 
CAD vulnerability, and the FFR is performed on it the 
most [25]. The present study findings also show that in 
most studies, the number of LAD branches is more than 
in other vessels, and since there is a better relationship 
between anatomical and functional parameters in this 
branch than in other branches, more studies are needed 
to generalize the results to other branches [52]. On the 
other hand, these vessels’ flow and anatomy differ [53]. 
Several studies show that the accuracy of predicting the 
FFR can be different according to the type of branches 
[54]. This study also shows that the results obtained sepa-
rately for each vessel and each segment (proximal, mid, 
and distal) are different [25, 32, 41, 48]. Therefore, the 
separation of the type of vessels and the separation of 
each vessel according to the type of segment to determine 
the accuracy of the FFR estimation model is essential.

4. Features and Feature Engineering
Extracting quantitative imaging biomarkers using DL 
methods has two significant advantages. Firstly, they 
always return the same qualitative results from a specific 
input; secondly, like humans, there is no variance due to 
fatigue [55]. This study also shows that in several studies, 
image segmentation steps and feature extraction using 
DL methods have been done [27, 29, 32, 34, 35, 37, 38, 
40, 41, 43]. In addition, in some studies, the parameters 
in the images were extracted using manual methods and 
commercial software [25, 28, 30, 42, 46, 30, 26, 45, 33, 44, 
49, 39]. Due to the advantages of using automatic meth-
ods to extract the features of images, most studies have 
used automatic methods to extract features in the past 
year. According to the clinical guidelines of the Ameri-
can Society of Cardiology and the European Society of 
Cardiology, parameters such as age, sex, heart rate, blood 
pressure (BP), and past medical history are used to make 
decisions about ischemic heart disease [56, 57]. This 
study also shows that some of these studies have consid-
ered parameters such as age, gender, and clinical data to 
estimate the FFR. However, this study demonstrates that 

the effective parameters for estimating the FFR depend 
on the type of AI model used. For example, age and gen-
der were essential parameters in the XGBoost model. 
However, they did not have much effect in RF [47], and 
the gender parameter in the model XGBoost was consid-
ered one of the critical parameters, but the age parameter 
was not influential [44]. In addition, in the RF model, age 
and gender are not important parameters, but BP is con-
sidered one of the influential parameters [42]. Numerous 
studies should evaluate these parameters with more data 
and different models to determine the effective param-
eters for determining the FFR.

5. Current challenges & future research
In recent years, end-to-end frameworks have been intro-
duced in the field of DL, and the benefits of using them in 
health have been investigated [58, 59]. The present study 
shows that several studies used this framework to esti-
mate FFR [27, 29, 32, 34, 35, 37, 38, 40, 41, 43]. Due to the 
need for the end-to-end framework for a large amount of 
data and the lack of data in these studies, the overfitting 
problem should also be considered [34], for which we 
need many data. Nevertheless, in this study, the number 
of patients in 85% of the studies is less than 250 people, 
which is a fundamental challenge because high-quality 
and large-volume data is needed in AI studies to achieve 
the desired result. Therefore, to solve this problem, some 
studies using accurate data have produced a synthetic 
coronary tree to train the model [27, 40]. In addition, the 
need for a dataset with labeled data and a large volume 
seems very necessary for studies of this kind. Another 
important challenge in these studies appears to be exter-
nal validation, and it is suggested that researchers pay 
attention to it in future studies so that by accurate valida-
tion of these techniques, they could be applied in practice 
in FFR estimation. The importance of performing non-
invasive FFR estimation with the aid of artificial intelli-
gence techniques and the significant implications cannot 
be underestimated. In the future, cardiologists could ben-
efit from the implications of AI in Estimation of FFR.

Eventually, the current study illustrates that AI meth-
ods for estimating the FFR have received the attention 
of researchers, and these methods are of great interest 
to cardiologists and patients due to their non-invasive 
nature and low cost.

Limitations
In this study, the research for finding the revelvant lit-
erature was limited to studies published in English, and 
conference articles were not included in this study. In 
addition, the diversity of datasets used in different studies 
could impact the comparsion of different AI techniques 
in FFR estimation.
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Conclusion
This study reveals that various AI methods, including 
ML and DL and hybrid methods for predicting the FFR, 
have been designed and developed in recent years. These 
methods use different parameters, such as parameters 
extracted from different imaging tools for non-invasive 
estimation of FFR have been taken into consideration. 
There are a variety of imaging tools that have been used 
for predicting FFR, though these tools have limitations 
for physiological assessment. Studies suggest the signifi-
cance of combining both anatomical and physiological 
parameters for diagnosing and treatment of the coronary 
disease in different stages of the disease. Due to the excel-
lent performance of these methods, AI methods are an 
ideal, non-invasive, and cost-effective solution to solve 
the existing problem, which can bring good clinical per-
formance for patients.
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