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Abstract 

Background To investigate the potential role of immune‑related genes (IRGs) and immune cells in myocardial infarc‑
tion (MI) and establish a nomogram model for diagnosing myocardial infarction.

Methods Raw and processed gene expression profiling datasets were archived from the Gene Expression Omnibus 
(GEO) database. Differentially expressed immune‑related genes (DIRGs), which were screened out by four machine 
learning algorithms‑partial least squares (PLS), random forest model (RF), k‑nearest neighbor (KNN), and support vec‑
tor machine model (SVM) were used in the diagnosis of MI.

Results The six key DIRGs (PTGER2, LGR6, IL17B, IL13RA1, CCL4, and ADM) were identified by the intersection of the 
minimal root mean square error (RMSE) of four machine learning algorithms, which were screened out to establish 
the nomogram model to predict the incidence of MI by using the rms package. The nomogram model exhibited the 
highest predictive accuracy and better potential clinical utility. The relative distribution of 22 types of immune cells 
was evaluated using cell type identification, which was done by estimating relative subsets of RNA transcripts (CIB‑
ERSORT) algorithm. The distribution of four types of immune cells, such as plasma cells, T cells follicular helper, Mast 
cells resting, and neutrophils, was significantly upregulated in MI, while five types of immune cell dispersion, T cells 
CD4 naive, macrophages M1, macrophages M2, dendritic cells resting, and mast cells activated in MI patients, were 
significantly downregulated in MI.

Conclusion This study demonstrated that IRGs were correlated with MI, suggesting that immune cells may be poten‑
tial therapeutic targets of immunotherapy in MI.
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Introduction
The mortality of coronary artery disease (CAD) has 
decreased in recent decades, but it remains the main 
cause of mortality worldwide [1]. For example, over the 
past 35  years, 1.7 million deaths annually have been 
attributed to CAD in the USA and Europe [2]. One of the 
biggest causes of mortality in CAD is MI [1]. With the 
accessibility of coronary interventions, coronary bypass 
surgery, and drugs, early diagnosis and risk stratifica-
tion can significantly reduce mortality in MI. Traditional 
biomarkers in the early diagnosis of MI, such as high-
sensitivity cardiac troponin T (hs-cTnT), high-sensitivity 
cardiac troponin I (hs-cTnI), and creatine kinase-MB, 
have been demonstrated with high sensitivity but with-
out specificity [3]. As a result, there is a need to screen 
out the novel diagnostic biomarkers of MI.

Patients with CAD can be classified as either chronic 
coronary syndromes (CCS) or acute coronary syndromes 
(ACS), depending on the clinical symptoms the patient is 
presenting [4]. The literature has demonstrated that the 
conversion from CCS to ACS is typically initiated by an 
acute atherothrombotic event, which results in the rup-
ture or erosion of atherosclerotic plaques [5]. Many con-
ventional risk factors, such as smoking, high cholesterol, 
obesity, diabetes mellitus, and hypertension, are respon-
sible for the incidence of CAD by participating in the 
immune microenvironment [6]. However, there is less 
evidence suggesting a relationship between the patho-
genesis of MI and immune genes or immune cells or 
inflammatory mediators.

With the advancement of microarray analysis, an 
increasing number of studies have demonstrated that 
genes can be targeted for early diagnosis, classification, 
prognosis, prediction of disease severity, and new drugs. 
For example, several genes in peripheral blood mono-
nuclear cells, such as ADAP2, KLRC1, MIR21, PDGFD, 
and CD14, were demonstrated as having a significant 
signature for categorizing MI patients and normal con-
trols [7]. ASCC2, LRRC18, and SLC25A37 have not only 
been demonstrated as the diagnostic biomarkers of CAD, 
but also have closely participated in the pathogenesis and 
advancement of CAD [8]. There is little research that has 
analyzed the immune genes of CAD and MI.

Many pieces of research have indicated that immune 
cell infiltration is closely related to the onset of MI. For 
instance, increased apoptosis of lymphocytes in periph-
eral blood and infiltrated proinflammatory Th1 lym-
phocytes was observed in pig hearts after reperfusion 
within 48  h, and circulating T lymphocytes were sig-
nificantly decreased in post-PCI MI patients within 
the first 24  h [9]. Cell type identification by estimating 
the relative subsets of RNA transcripts (CIBERSORT) 
has been widely implemented to portray immune cell 

ratios from RNA-seq data of samples from various dis-
eases [10]. However, there is little research on immune 
cell infiltration analysis in MI patients conducted using 
CIBERSORT.

In our study, the raw gene expression profiling datasets 
of MI patients and normal controls were archived from 
the GEO database, and the intersections between IRGs 
and differentially expressed genes (DEGs) were identi-
fied for further analysis. Diagnostic biomarkers were 
identified using four machine learning algorithms. Sub-
sequently, the relative proportion of 22 different types of 
immune cells in patients with MI and in normal controls 
was calculated using CIBERSORT. Finally, the potential 
role of diagnostic IRGs associated with immune cell infil-
tration was verified in patients with MI using machine 
learning.

Material and methods
Microarray data source
The GEO database (http:// www. ncbi. nlm. nih. gov/ geo) 
was explored to download the datasets according to key-
words such as “coronary artery disease” or “Myocardial 
infarction.” The gene dataset was considered eligible 
according to the following inclusion criteria: (1) datasets 
belonging to humans and (2) the source of tissue was 
blood. The exclusion criteria were as follows: (1) dupli-
cated datasets, (2) without case control data, and (3) non-
human data. The GSE113079 contains 97 CAD patients 
and healthy controls. A new data cohort merged by four 
GEO datasets (GSE29111, GSE48060, GSE66360, and 
GSE97320) contains 101 MI patients and 74 healthy con-
trols. The information of five GEO datasets (GSE29111, 
GSE48060, GSE66360, GSE97320, and GSE113079) are 
included in Table 1. Here, 2,484 IRGs were archived from 
ImmPort (https:// www. immpo rt. org) [11]. The schematic 
diagram of our study is shown in Fig. 1.

Data processing and differentially expressed gene analysis
The DEGs with a threshold of a P value of < 0.05 and 
log(fold change) > 1 or log(fold change) < -1 between 
patients with CAD and normal controls in GSE113079 
were obtained by the limma package [12]. DIRGs were 
obtained by overlapping DEGs and IRGs, as shown in 
Fig.  2. The relationship between DIRGs and the inci-
dence of MI was verified using a new data cohort. First, 
the “RMA” function of the Affy package was applied to 
raw data in the new data cohort for background correc-
tion and quantile normalization [13], and the batch effect 
was removed by the “removeBatchEffect” function in the 
sva package [14]. The DEGs between MI patients and 
normal controls were screened by conducting the limma 
package. The volcano plot of DEGs was visualized by the 
ggplot2 package.

http://www.ncbi.nlm.nih.gov/geo
https://www.immport.org
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Functional enrichment analysis of DIRGs
To explore the mechanism of the incidence of MI, 
gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment [15–17] 
were performed to annotate the genes and gene 
products. GO analysis was conducted to identify the 

biological process (BP), cellular components (CC), 
and molecular function (MF) of key DIRGs. KEGG, 
consisting of chemical and systemic functional infor-
mation, was implemented to identify functional and 
metabolic pathways. DO (disease ontology) analy-
sis was conducted to combine biomedical data with 

Table 1 Information of the involved gene datasets

Abbreviations: N Normal control, MI Myocardial infarction, CAD coronary artery disease

ID Year Platform Region Tissue Sample

GSE29111 2011 GPL570 United Kingdom Peripheral blood N:MI = 0:18

GSE48060 2014 GPL570 USA Peripheral blood N:MI = 21:31

GSE66360 2015 GPL570 USA Peripheral blood N:MI = 50:49

GSE97320 2017 GPL570 China Peripheral blood N:MI = 3:3

GSE113079 2018 GPL20115 China Peripheral blood N:CAD = 48:93

Fig. 1 Schematic diagram of study
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human  disease. Metascape (www. metas cape. org) is 
an online website that provides a comprehensive gene 
annotation and analysis resource [18]. DIRGs were 
imported to Metascape to analyze the GO and KEGG 
pathway analysis, and the DOSE package was con-
ducted to investigate the DO analysis of DIRGs [19].

Integration of PPI network to select hub genes
The STRING database (http:// string- db. org/) aims 
to investigate protein interactions, both known and 
predicted. The protein–protein interaction network 
(PPI) of DIRGs was constructed by the STRING data-
base. Cytoscape is one open-source software tool for 

Fig. 2 Differentially expressed gene analysis and protein–protein interaction networks. A Intersection of 668 DEGs and 2013 IRGs. B volcano plot in 
GSE113079. C volcano plot in merged GP570 datasets. D The PPI network of the 58 DIRGs

http://www.metascape.org
http://string-db.org/
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bioinformatics analysis, which is conducted for PPI net-
work visualization and analysis. The key modules of the 
PPI network, here identified by the molecular complex 
detection (MCODE) plug-in of Cytoscape software, 
were widely implemented to screen out significant parts 
according to the default parameter settings (Degree Cut-
off = 2, Node Score Cutoff = 0. 2, K-Core = 2,and Max 
Depth = 100).

Key DIRGs selected by the PLS, GLM, and SVM algorithms
To develop the diagnosis model for patients with MI, 
we conducted four machine learning algorithms,such 
as partial least squares (PLS), random forest model 
(RF), k-nearest neighbor (KNN), and support vector 
machine model (SVM).PLS is a multivariate statistical 
data analysis,considered as the combination of Princi-
pal Component Analysys and multiple linear regression 
analysis, which could develop accurate prediction model 
when variables significantly correlated [20]. RF is a 
learning  method for  classification,regression  and other 
tasks,which builds decision trees on different samples 
and scores the classification results, and RF model will 
use statistical analysis on the classification results to 
screen out high accuracy classification results of all sin-
gle trees [21]. SVM was a supervised machine-learning 
technique for classification and regression. It can filter 
out the feature subset of the highest accuracy results in 
a large amount of data [22]. KNN is a non-parametric, 
supervised learning classifier which uses proximity to 
make classifications about the grouping of an individual 
data point to find a predetermined number of training 
samples closest in the distance to a new point and pro-
vide a value for the data [23]. PLS, KNN, RF, and SVM 
were constructed in a new data cohort merged by four 
GEO datasets (GSE29111, GSE48060, GSE66360, and 
GSE97320) by the DALEX package in R. Significant 
DIRGs were used as explanatory features to distinguish 
MI patients and normal controls in a new data cohort. 
The residual distribution was shown to have the best 
model with minimal residuals, and the importance of the 
model in DIRGs was selected by the root mean square 
error (RMSE). Finally, the six most important DIRGs 
were selected by the above four models for further study.

A nomogram model constructed and assessed 
for a diagnosis of MI
A nomogram model consisting of six significant DIRGs 
was constructed using the rms package for predicting the 
incidence of MI. “Points” were demonstrated separately 
as the score of the six most important DIRGs, and “Total 
Points” was the summation of the above DIRGs. The Area 
Under Curve (AUC) was implemented to assess the dis-
crimination ability of nomogram model and each DIRGs. 

A calibration curve was constructed to plot the predictive 
and actual probability of the nomogram model. Finally, 
the clinical usefulness and effectiveness of the nomogram 
model were demonstrated by decision curve analysis.

Distribution of immune cells
As a computational deconvolution algorithm method, 
CIBERSORT can characterize the cell composition of 
complex tissue from gene expression profiles. Twenty-
two immune cell types in a new data cohort were calcu-
lated by CIBERSORT. We then compared the distribution 
of 22 types of immune cells between patients with MI 
and normal controls.

The association between key DIRGs and the immune cell 
infiltration of MI
Pearson correlation analysis was implemented to esti-
mate the association between key DIRGs and immune 
cell infiltration, here by using the psych package and as 
visualized by the ggplot2 package.

Results
Data processing and differentially expressed gene analysis
According to the following criterion of a P value < 0.05 
and log (fold change) > 1 or log(fold change) < -1,668, 
DEGs between patients with CAD and normal controls 
were archived in the GSE113079 dataset by the limma 
package. To determine the significant IRGs from the 
DEGs, 58 DIRGs were obtained after the intersection 
between 668 DEGs and 2013 IRG (Fig.  2A). Here, 58 
DIRGs were shown by volcano plot in GSE113079 and 
the new dataset (Fig. 2B, C). The PPI network of the 58 
DIRGs was investigated using STRING 11.0 and visual-
izing in Cytoscape 3.8.0 (Fig. 2D).

GO, KEGG, and DO pathway enrichment analysis
Fifty-eight DIRGs were imported to the Metascape 
website to explore the enrichment analysis visualized 
by the ggplot2 package. GO analysis, as explored by the 
Metascape online database, was conducted to cluster 
the functions of the BP, CC, and MF. The results demon-
strated that 58 DIRGs were enriched in the inflammatory 
response of BP, side of the membrane of CC, and sign-
aling receptor regulator activity of MF (Fig.  3A, B, C). 
The KEGG pathway showed that 58 DIRGs were mostly 
enriched in cytokine–cytokine receptor interactions 
(Fig. 3D). The DO pathway analysis was mainly enriched 
in atherosclerosis (Fig.  3E). These results indicated that 
inflammation may be significantly associated with the 
incidence of CAD.
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Analysis of the PPI network
A PPI network of 58 DIRGs was utilized on the STRING 
website and visualized by Cytoscape. MCODE plug-ins 
were performed to screen out the most vital function 
modules in the total protein–protein networks. Signifi-
cant modules consisted of key genes with 10 nodes and 
90 edges, including IL1B, IL1A, CXCL1, CXCL2, CXCL6, 
CXCL3, CXCL12, CX3CL1, CCL4, and CCL20 (Fig. 3F).

Significant DIRGs selected by PLS, GLM, and SVM 
algorithms
To investigate the connection between key IRGs and 
the prevalence of MI, PLS, RF, KNN, and SVM were 
independently constructed to narrow down key IRGs 
using the new data cohort. The importance of explana-
tory features and residual distribution of four models 
were analyzed and visualized by the DALEX package in 
the new data cohort. The PLS model was demonstrated 
to be the best suitable model with the lowest residual 
(Fig. 4A and B). The importance of 58 DIRGs based on 
the above four models is shown in Fig.  4C. The inter-
section of six genes in the four models of minimal 
RMSE was PTGER2, LGR6, IL17B, IL13RA1, CCL4, 
and ADM. These six genes were applied for further 
analysis.

Further analysis of six DIRGs
The six most vital explanatory variables (PTGER2, 
LGR6, IL17B, IL13RA1, CCL4, and ADM) were selected 
for further analysis. The expression of PTGER2 and 
ADM in MI patients was more highly expressed than 
in healthy patients, while the other four genes (LGR6, 
IL17B, IL13RA1, and CCL4) were low expressed in MI 
patients (Fig.  5A). The correlations of those genes are 
analyzed in Fig. 5B, in which IL13RA1 was found to be 
positively related to LGR6, IL17B, CCL4, and ADM, 
and IL17B was positively related to ADM and CCL4.

A nomogram model constructed and assessed 
for diagnosing MI
The nomogram model was implemented for diagnos-
ing MI based on six DIRGs (PTGER2, LGR6, IL17B, 
IL13RA1, CCL4, and ADM) using the rms package 
in R (Fig.  6A). The nomogram constructed by multi-
variable logistic regression.The result of multivariable 
logistic regression was shown in Table  2. Independent 
risk factors for incidence of MI included PTGER2 gene 
(OR:1.495,95%:1.239–1.866, p < 0.001), ADM gene 
(OR:5.817,95%:2.955–12.649, p < 0.001), IL17B gene 
(OR:0.322,95%:0.158–0.615, p = 0.001), IL13RA1 gene 
(OR:0.245,95%:0.098–0.562, p = 0.001), and CCL4 gene 

Fig. 3 GO, KEGG, and DO pathway enrichment analysis. A BP of 58 DIRGs. B CC of 58 DIRGs. C: MF of 58 DIRGs. D KEGG pathway of 58 DIRGs. E DO 
pathway of 58 DIRGs. F PPI of hub genes
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(OR:0.399,95%:0.226–0.673, p = 0.001). The Area Under 
Curve(AUC) was implemented to assess the discrimina-
tion ability of the nomogram model, which exhibited the 
highest predictive accuracy compared with the six above 
DIRGs (Fig.  6B), while the calibration curve demon-
strated a small error between the actual MI incidence and 
predicted incidence (Fig. 6C). The decision curve (DCA) 
demonstrated that the nomogram model exhibited better 
potential clinical utility than the other curves, indicating 
that patients with MI can benefit from the nomogram 

model at high-risk threshold probabilities ranging from 0 
to 0.8 (Fig. 6D).

Distribution of immune cells in MI
To explore the association between immune cell infiltra-
tion and the incidence of MI, the 22 types of immune cell 
infiltration in each sample were calculated by CIBER-
SORT and visualized by histogram (Fig. 7A). Twenty-two 
immune cell infiltration between MI patients and normal 

Fig. 4 Significant DIRGs of the RF, PLS, SVM, and KNN models. A Cumulative residual distribution of the RF, PLS, SVM, and KNN models. B Boxplots of 
the residuals in the RF, PLS, SVM, and KNN models. C The importance of significant DIRGs in the RF, PLS, SVM, and KNN models
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controls were visualized by boxplot (Fig. 7B). We found 
that plasma cells, T cells follicular helper, mast cells rest-
ing, and neutrophils were higher in MI patients than 
in healthy patients, while the T cells CD4 naive, mac-
rophages M1, macrophages M2, dendritic cells resting, 
and mast cells activated in MI patients were lower.

The association between diagnostic DIRGs and infiltrating 
immune cells of MI
The IL13RA1 gene was positively related to T cell CD4 
memory resting. The ADM gene was positively related to 
T cell CD4 memory resting. The CCL4 gene was nega-
tively related to Natural Killer (NK) cell resting. The 
PTGER2 gene was positively correlated with T cell CD4 
memory resting. The IL17B gene was negatively corre-
lated with neutrophils. The LGR6 gene was negatively 
correlated with T cells and the follicular helper (Fig. 8).

Discussion
MI, which is considered one of the most severe compli-
cations of CAD, is the main cause of mortality globally 
[1]. The short-term mortality of patients with MI can be 
improved by early diagnosis through appropriate medi-
cal therapy and revascularization blockage of the coro-
nary artery [2]. Infarction of cardiomyocytes can lead to 
left ventricular dilatation dysfunction, which eventually 
contributes to heart failure with high long-term mortal-
ity after MI [24]. MI is strongly related to the immune 
system, but the underlying mechanism of inflammatory 
mediators in the progress of MI is poorly understood. 

Thus, the role of inflammatory mediators has been inves-
tigated using machine learning. A nomogram model was 
constructed for the diagnosis of MI based on the DIRGs.

Injured cardiomyocytes can secrete damage-associated 
molecular patterns (DAMPs) containing heat-shock pro-
teins and mitochondrial DNA [25], which can initiate the 
immune response by recognizing and linking to extra-
cellular or intracellular pattern recognition receptors 
(PRRs) on immune cells [24]. However, the role of other 
inflammatory mediators remains unknown in MI. In our 
study, 58 DIRGs were enriched in the GO, KEGG, and 
DO pathway analysis. The six key IRGs (PTGER2, LGR6, 
IL17B, IL13RA1, CCL4, and ADM) were selected by four 
machine learning methods, such as PLS, RF, KNN, and 
SVM, and were constructed for further analysis.

PTGER2, which encodes a receptor for prostaglandin 
E2, can increase intracellular cAMP concentration and 
initiate smooth muscle cell relaxation [26]. Almudena 
reported that PTGER2 was significantly expressed in 
atherosclerotic plaques in humans. The chemokine pro-
duction of human macrophages was suppressed by PGE2 
through PTGER2 in the progression of atherosclerosis 
plaque [27]. Leitinger found that, when highly expressed 
in endothelial cells and monocytes, PTGER2 can induce 
vascular inflammation and atherogenesis [28]. PTGER2 
may be a drug target in atherosclerosis. PTGER2 was 
upregulated in MI patients compared with normal con-
trols in our study, which was positively related to T cell 
CD4 memory resting.

LGR6 is a subgroup of the leucine-rich-repeat-contain-
ing G protein–coupled receptor (LGR) superfamilies. 

Fig. 5 A Relative expression level of PTGER2, LGR6, IL17B, IL13RA1, CCL4, and ADM. B Correlation among PTGER2, LGR6, IL17B, IL13RA1, CCL4 and 
ADM
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Ruan et al. reported that LGR6 plays a significant role in 
the chemoresistance of ovarian cancer by potentiating 
the Wnt/β-catenin signaling [29]. Chiang et al. reported 
that LGR6 can enhance phagocytosis and efferocytosis of 
MΦ and initiate intracellular phosphorylation signaling 
in neutrophils by binding to maresin 1 [30]. Our study 
showed that LGR6 was downregulated in MI and that 
LGR6 was positively related to NK cell activation.

IL-17B is a proinflammatory cytokine. Irez-Car-
rozzi et  al. demonstrated that IL-17B is associated with 
inflammatory disease, which can trigger type 2 immune 
responses from NKT, CD4 + CRTH2 + Th2, and innate 

Fig. 6 Validation and assessment of a nomogram model for MI diagnosis. A Nomogram model. B The AUC of the nomogram model in predicting 
the incidence of MI. C Calibration curve to assess the predictive value. D DCA curve to evaluate the clinical value

Table 2 Results of multivariable logistic regression

OR 2.50% 97.5% 95%CI P value

PTGER2 1.495 1.239 1.866 1.495(1.239–1.866) p < 0.001

ADM 5.817 2.955 12.649 5.817(2.955–12.649) p < 0.001

IL17B 0.322 0.158 0.615 0.322(0.158–0.615) 0.001

LGR6 0.739 0.418 1.276 0.739(0.418–1.276) 0.282

IL13RA1 0.245 0.098 0.562 0.245(0.098–0.562) 0.001

CCL4 0.399 0.226 0.673 0.399(0.226–0.673) 0.001
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Fig. 7 A Distribution of the immune cells of all samples. B Different distribution of 22 immune cells between patients with MI and healthy controls

Fig. 8 Correlation between IL13RA1 (A), ADM (B), CCL4 (C), PTGER2 (D), IL17B (E), LGR6 (F) and infiltrating immune cells in myocardial infarction
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type 2 lymphocytes (ILC2s) [31]. Zhou et  al. found 
that the expression of IL-17B was significantly highly 
expressed in patients with community-acquired pneu-
monia, and IL-17B could upregulate the expression of 
IL-8 by initiating p38 mitogen-activated protein kinase 
(MAPK) and extracellular signal-regulated kinase (ERK) 
in human bronchial epithelial cells [32]. IL-17B was 
found to be downregulated in MI patients in the current 
study, and this was found to be positively related to NK 
cell activation.

IL-13 is a cytokine participating in normal immune 
function. Gwiggner et  al. suggested that IL-13 was 
secreted by activated type 2  T helper (Th2) cells. The 
mechanism of IL-13 signaling, here via binding to IL-13 
receptor α-1 and IL-13 receptor α-2, started by initiat-
ing phosphorylation of the signal transducer and acti-
vating transcription 6 (STAT6) via Janus kinases (JAK) 
[33]. Amit et  al. reported that IL-13RA1 participated 
in the homeostasis and repair of the myocardium. IL-
13RA1 signaling was significant for cardiac, including 
extracellular matrix integrity. Stimulation of IL-13RA1/
STAT3 signaling can induce the excessive accumulation 
of included extracellular matrix, cardiac fibrosis, chronic 
cardiac stress, and heart failure [34]. The IL-13RA1 was 
found to be downregulated in MI patients in the current 
study, and IL-13RA1 was positively associated with T cell 
CD4 memory resting.

CCL4 is a significant chemotactic mediator for recruit-
ing macrophages [35]. CCL4 is related to the pathogen-
esis of several diseases, including sarcoidosis [36], cystic 
fibrosis [37], and multiple sclerosis [38]. Kalinskaya et al. 
reported that non-ST-elevation myocardial infarction 
(NSTEMI) patients demonstrated significantly higher 
expression of CCL4 compared with ST-elevation myocar-
dial infarction (STEMI) patients. The synergy of TNF-a 
and CCL4 in STEMI patients can be lowly expressed in 
monocytes that are mediated and increased through the 
adhesion of leukocytes by TNF-a [39]. CCL4 was down-
regulated in MI patients in the current study and was 
positively associated with NK cell activation.

Various tissues, such as the myocardium, adrenal 
medulla, and central nervous system, can secrete ADM 
[40]. ADM plays a prominent role in vasodilation, stim-
ulation of angiogenesis, and the production of NO [41]. 
Ali reported that the ADM expression levels were highly 
elevated in the plasma of hypertension patients [42]. 
Previous studies have demonstrated that the vasodila-
tion effects of ADM were mediated by cyclic adenosine 
3,5-monophosphate and nitric-oxide-dependent mecha-
nisms. ADM can regulate myocardial protection by dis-
rupting mitochondrial metabolism and lowering the 
renin-aldosterone system levels in cardiovascular dis-
eases [43]. The ADM was highly regulated in MI patients 

in the current study and positively associated with T cell 
CD4 memory resting.

Acute myocardial infarction (AMI) is generally diag-
nosed by typical symptoms, electrocardiographic 
changes, and traditional biomarkers, such as hs-cTnT,hs-
cTnI, and creatine kinase-MB,but traditional biomarkers 
have been demonstrated with high sensitivity but with-
out specificity. Previous studies have shown that ncRNAs 
appears to provide better sensitivity and specificity in 
diagnosis of MI. MiR-1 participates in regulation of car-
diac development and differentiation of other cell types 
to cardiomyocytes [44]. miR-1 was highly correlated 
with cTnT in MI patients and demonstrated with a high 
specificity value (0.82), and sensitivity value (0.73) [45]. 
miR-499 plays a significant role in cardiac cell recov-
ery and stem cell differentiation [46]. miR-499 had the 
most accurate predictive value (AUC of 0.91, sensitivity 
of 0.83, and specificity of 0.90) in distinguishing MI and 
control [47]. LncRNA H19 had the relatively high predic-
tive value (AUC of 0.753, sensitivity of 0.609, and speci-
ficity of 0.817) in MI patients and healthy control,and 
positively correlated with troponinT (r = 0.344, p < 0.001), 
CK(r = 0.261, p = 0.001) and CKMB (r = 0.24, p = 0.002) 
[47, 48]. Compared to ncRNAs, the six DIRGs had shown 
the relatively high predictive value, and the nomogram 
model exhibited the highest predictive accuracy (AUC 
of 0.892, sensitivity of 0.881, and specificity of 0.838) in 
my study. The nomogram model was constructed for MI 
diagnosis using PTGER2, LGR6, IL17B, IL13RA1, CCL4, 
and ADM. The model had the highest predictive accu-
racy to distinguish MI and normal patients, which could 
be applied to identify high-risk groups from 0 to 1(0 for 
normal,1 for MI).

The distribution of 22 immune cells in patients with MI 
and normal controls was calculated using CIBERSORT. 
The ratio of T cells follicular helper, mast cells resting, 
and neutrophils was higher in MI patients, while the ratio 
of T cells CD4 naive, macrophages M1, macrophages M2, 
dendritic cells resting, and mast cells activated was lower. 
The correlation analysis between six key IRGs (PTGER2, 
LGR6, IL17B, IL13RA1, CCL4, and ADM) and immune 
cells all were shown to be associated with T cell CD4 
memory resting, NK cells activated, and macrophages 
M2. Admittedly, inflammatory mediators, such as IRGs 
and immune cells, have been shown to play an impor-
tant role in the progression of MI. Intercellular adhe-
sion molecule 1 was involved in lymphocyte migration 
into the intima. T lymphocytes were found to activate to 
secrete various cytokines that interact with macrophages. 
T lymphocytes and macrophages can be activated by the 
engagement of CD40/CD40L to initiate the production 
of tissue factor and cytokines that enhance the body’s 
inflammatory responses [49].
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Ortega-Rodríguez reported that the total level of NK cells 
was elevated in MI patients compared with normal con-
trols. The various phenotypes of NK cells play a different 
role in the progress of MI. The level of natural killer group 
2, member D(NKG2D) + NK cells in peripheral blood tends 
to decrease in MI patients, which may demonstrate that 
NKG2D cells migrate to the injured myocardium [50]. The 
other phenotypes of NK cells mobilize from the myocar-
dium to the peripheral blood to mediate the inflammatory 
response. The evidence demonstrated that several types of 
infiltrating immune cells play significant roles in the progress 
of MI and can be the focus of future therapeutic targets [51].

There are also some limitations to our study. First, the 
sample size of the merged datasets of MI patients and 
normal controls was relatively small. Second, the expres-
sion of PTGER2, LGR6, IL17B, IL13RA1, CCL4, and 
ADM should be validated in datasets with a larger sample 
size by quantitative polymerase chain reaction or West-
ern blot. Third, the characteristics of clinical informa-
tion did not exist in the GEO datasets, and the predictive 
value of the nomogram model and traditional biomark-
ers in the diagnosis of MI could not be compared. Finally, 
immune cells inferred from the DIRGs may have a prog-
nostic utility in the clinic to identify high risk MI patients, 
although this needs to be validated in larger cohorts.

Conclusion
The six IRGs, such as PTGER2, LGR6, IL17B, IL13RA1, 
CCL4, and ADM, were selected by machine learning 
associated with the occurrence of MI. The nomogram 
constructed by the six IRGs above was demonstrated as 
having higher predictive accuracy in the diagnosis of MI. 
T cell CD4 memory resting, NK cells activated, and mac-
rophages M2 may participate in the advancement of MI.
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