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Abstract 

Background:  Heart failure with preserved ejection fraction (HFpEF) is thought to be highly prevalent yet remains 
underdiagnosed. Evidence-based treatments are available that increase quality of life and decrease hospitalization. 
We sought to develop a data-driven diagnostic model to predict from electronic health records (EHR) the likelihood 
of HFpEF among patients with unexplained dyspnea and preserved left ventricular EF.

Methods and results:  The derivation cohort comprised patients with dyspnea and echocardiography results. 
Structured and unstructured data were extracted using an automated informatics pipeline. Patients were retro-
spectively diagnosed as HFpEF (cases), non-HF (control cohort I), or HF with reduced EF (HFrEF; control cohort II). 
The ability of clinical parameters and investigations to discriminate cases from controls was evaluated by extreme 
gradient boosting. A likelihood scoring system was developed and validated in a separate test cohort. The derivation 
cohort included 1585 consecutive patients: 133 cases of HFpEF (9%), 194 non-HF cases (Control cohort I) and 1258 
HFrEF cases (Control cohort II). Two HFpEF diagnostic signatures were derived, comprising symptoms, diagnoses and 
investigation results. A final prediction model was generated based on the averaged likelihood scores from these two 
models. In a validation cohort consisting of 269 consecutive patients [with 66 HFpEF cases (24.5%)], the diagnostic 
power of detecting HFpEF had an AUROC of 90% (P < 0.001) and average precision of 74%.

Conclusion:  This diagnostic signature enables discrimination of HFpEF from non-cardiac dyspnea or HFrEF from EHR 
and can assist in the diagnostic evaluation in patients with unexplained dyspnea. This approach will enable identifica-
tion of HFpEF patients who may then benefit from new evidence-based therapies.
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Introduction
Heart Failure with preserved ejection fraction (HFpEF) 
is a highly prevalent yet under-diagnosed clinical syn-
drome [1, 2]. The hallmarks are the signs and symptoms 
of heart failure (HF) and a preserved left ventricular 
ejection fraction (LVEF). While the diagnosis of HFpEF 
is straightforward in acutely decompensated patients, 
stable euvolemic patients present a greater challenge 

†Nazli Farajidavar and Kevin O’Gallagher joint authors

*Correspondence:  ajay.shah@kcl.ac.uk

1 King’s College London British Heart Foundation Centre of Excellence, School 
of Cardiovascular and Metabolic Medicine and Sciences, King’s College 
London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12872-022-03005-w&domain=pdf


Page 2 of 13Farajidavar et al. BMC Cardiovascular Disorders          (2022) 22:567 

[3].  Exertional dyspnea is non-specific and occurs in 
many other conditions. Specialist diagnostic tests e.g. 
expert echocardiography for diastolic dysfunction or 
invasive cardiac catheterization to document raised LV 
filling pressures may not be immediately available to the 
non-specialist.  A recent study found that among more 
than 44,000 community-based patients likely to have 
HF, only 50% had a documented LVEF [4]. Furthermore, 
those eventually diagnosed as having HFpEF required 
many more pre-diagnosis investigations and consulta-
tions than HFrEF patients.

From a patient perspective, a diagnosis of HFpEF con-
fers a high degree of morbidity as well as mortality rates 
equivalent to many forms of cancer [5]. Rates of read-
mission to hospital are high [6] and are associated with 
adverse outcomes [7]. From a healthcare system perspec-
tive, HFpEF is associated with significant costs due to fre-
quent hospitalisation, with the median length of stay up 
to 19 days [8].

Until recently, no effective therapies were available for 
HFpEF [9–11], however recent clinical trial evidence 
suggests that sodium-glucose co-transporter 2 (SGLT-2) 
inhibitors are effective at decreasing hospitalization while 
increasing quality of life [12]. The presence of effective 
therapies highlights the need to identify patients who 
may derive benefit.

In previous epidemiological studies, identification 
and extraction of HFpEF cases from Electronic Health 
Records (EHR) has typically relied on diagnostic codes, 
additional medical record abstraction, and/or adjudi-
cation based on various expert criteria e.g. European 
Society of Cardiology criteria [13]. The EHR is however 
increasingly amenable to rapid and automated extrac-
tion of multiple clinical parameters, including the use of 
advanced natural language processing (NLP) algorithms 
to identify clinical concepts recorded in the unstructured 
text [14–16].

The aim of this study was to extract and analyze multi-
modality data from the EHR using a machine learning 
approach to develop an automated prediction tool to 
identify patients likely to have HFpEF.

Methods
Derivation cohort
We performed a retrospective study using de-identi-
fied data of patients attending King’s College Hospital 
NHS Foundation Trust (KCH) in London (UK) between 
2000 and 2019. We focused on patients who had under-
gone echocardiography as part of their inpatient or out-
patient evaluation. With this starting point, a number 
of different patient cohorts were derived based on the 
LVEF, confirmed or possible HF, symptoms of dyspnea, 
and NT-proBNP (or BNP) level (see Additional file  1: 

Sections I and II). We identified confirmed HFpEF cases 
and two control cohorts: those with no evidence of HF 
(non-HF, Control cohort I) and those with HFrEF (Con-
trol cohort II). HFpEF cases were defined as patients with 
a preserved LVEF ≥ 50% (with no evidence of LVEF < 50% 
at any stage), a confirmed diagnosis of HF based on 
ICD10 codes I50.0, I50.1 or I50.9, dyspnea, and a raised 
NT-proBNP or BNP level (according to age-specific 
thresholds), in accordance with ESC diagnostic criteria 
[13]. Non-HF control cohort I was defined as no recorded 
diagnosis of HF, no dysponea, no reduced BNP and nor-
mal LVEF. HFrEF control cohort II was defined as having 
a recorded diagnosis of HF and reduced LVEF (i.e. < 50%). 
Patients with valvular heart disease (ICD10 codes I05-I09 
and I35) were excluded.

Test cohorts
We generated 4 test cohorts from patients who lacked at 
least one of the above diagnostic features for a confirmed 
diagnosis of HFpEF (see Additional file  1: Table  S1 and 
Flowchart S1). We randomly sampled 100 patients  from 
each of these four test subsets for analysis and removed 
samples where the clinical annotations disagreed or there 
was more than 70% missingness in signature predictors, 
leaving 269 in total.

Data extraction and evaluation
Clinical and demographic data were retrieved from the 
structured and unstructured components of the EHR 
using the CogStack informatics platform [15]. Automated 
parsing of the EHR was achieved with a state-of-the-art 
enterprise search and well-validated natural language 
processing (NLP) tools, including MedCAT [16] and the 
Unified Medical Language System repository [17] as pre-
viously used by our group [18]. Clinical term extraction 
was restricted to concepts which represent clinical find-
ings, diseases (apart from HF), medications,  and signs 
and symptoms. This was linked to searches of structured 
data from an internal database containing echocardio-
graphic data and ICD codes. Continuous variables were 
cleaned prior to cohort selection; e.g. conversion of text 
references of LVEF to numerical values and removal of 
measurement outliers (see Additional file 1: Section III). 
We used both platforms to arbitrate discrepancies in our 
derivation dataset as neither source proved to be com-
prehensive, in line with previous work [15, 16].

Echocardiographic data were based on formal studies 
performed according to British Society of Echocardiogra-
phy guidelines (which are consistent with American and 
European guidelines) [19, 20]. In addition to collecting 
structured data from the echocardiographic dataset, we 
also collected numerical data that had been reporteded 
in the EHR text. For situations where a numerical value 
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for LVEF had not been included in the echocardiogram 
report, we used a deep learning model to infer whether 
the LVEF was preserved based on written summary text 
of the echocardiogram report (see Additional file 1: Sec-
tion III).

BNP or NT-proBNP results were obtained from sam-
ples drawn at any time in the study period and the maxi-
mum value for each subject was used.

All cases in the derivation dataset that were identified 
by the data pipeline as HFpEF were validated by manual 
review of the EHR by a cardiologist.

Potential modeling predictors
A binary diagnostic outcome indicating the presence or 
absence of HFpEF was considered for modeling. Poten-
tial predictors to be included in a diagnostic signature 
included those used in previous HFpEF epidemiological 
studies [21, 22]. In addition, we adopted a comprehensive 
approach that included physiological variables, labora-
tory results, echocardiographic data and clinical concept 
references [23]. Structured data were collected within 
a two-month window around the last echocardiogra-
phy result (or NTproBNP/BNP test result if available). 
Unstructured data were analyzed from the entire EHR 
prior to the date of the echocardiography result for each 
patient.

We made a second level predictor grouping accord-
ing to whether the variables were initially recorded as (a) 
structured data: demographic and physiological param-
eters, and laboratory and echocardiography measure-
ments; or (b) unstructured text in the EHR, extracted 
via the NLP platform. We adopted the bag-of-words [24] 
approach to transform clinical concept annotation into 
word vectors for modeling purposes. Concepts which 
were mentioned in < 10% of the derivation cohort were 
excluded. Data from the other predictor categories were 
collected and imputed prior to training, using the k-near-
est neighbor (Scikit-learn python package v0.22) after 
min–max normalization. Following imputation, data 
items were rescaled into their original range to preserve 
the explainability of the final model.

Data modeling, feature selection and validation
We used the tree-based multivariable extreme gradient 
boosting [25] algorithm (XGBoost, python package v0.9) 
for modeling, enabling inclusion of mixed data types and 
smooth handling of missing values and sparsity issues. 
As such, when a value is missing in the sparse predictor 
vector, the instance is classified into a default direction 
(see [25] for further details) that is learnt as optimal using 
derivation data.

SHAP [26] analysis (SHapley Additive exPlanations; 
SHAP python package v0.33) was used to order the 

predictors according to their prominence in discriminat-
ing cases from controls. Once the full model was created, 
we took a stepwise forward insertion scheme to include 
the more  significant variables one at a time, in order to 
determine the minimal number of predictors that gave an 
acceptable performance relative to the use of all predic-
tors. The final predictive models were trained and evalu-
ated using the obtained optimal subset of predictors.

Model validation was undertaken in the test cohorts 
described earlier, using clinical assessment criteria from 
the H2FPEF score [3] as a comparator. A random sam-
ple of 400 patients from the test datasets was manually 
reviewed by two teams each comprising two cardiolo-
gists, in order to validate diagnoses. Any cases of clinician 
disagreement were removed from the evaluation, leaving 
a total of 269 patients in the test datasets (see Results, 
Table 1).

Statistical analysis of predictors
Data are presented as mean and standard deviation (SD) 
or median and interquartile range (IQR) as appropriate. 
Differences between cases and controls were evaluated by 
the Mann–Whitney U test or unpaired t test, as appro-
priate. The area under the receiver-operating characteris-
tic curve (AUROC), F1-score (macro and weighted) and 
average precision (AP) were used as performance met-
rics. The F1 score measures the performance of a classi-
fer as the harmonic mean of precision (true positives as 
a proportion of all positive predictions) and recall (pro-
portion of all positives correctly identified by the model), 
placing equal importance on both. Average precision is 
the weighted mean of precision scores obtained as the 
classification threshold is adjusted (therefore changing 
the model recall), with the change in recall used as the 
weight.

A stratified fivefold cross-validation scheme (to ensure 
each fold is a good representative of the whole data in 
terms of class prevalence) was utilized for feature selec-
tion and derivation set validation. As such, the deriva-
tion data was  divided into five subsets, four of which 
were used for training the model and the final one for 
validation/testing. The derivation and test subsets were 
shuffled until all five subsets were evaluated. The final 
performance was then reported as mean and  standard 
deviation of all 5 tests (see Fig. 1).

The AUROC and AP were used as performance met-
rics and the Kappa statistic was used to measure the 
inter-rater agreement of proposed models. All tests were 
2-sided, with P < 0.05 considered significant.

To evaluate the generalizability of the model to a new 
sample, Harrell optimism was calculated with 1000 
boot-strap replicates [27]. To evaluate discrimination 
power of the proposed model beyond existing criteria, 
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Table 1  Baseline characteristics of patients

Non-HF 
controls 
(n = 194)

HFrEF controls 
(n = 1258)

HFpEF cases 
(n = 133)

P value 
cases 
versus
controls

Test cohorts
(n = 269, HFpEF cases = 68)

Set I (n = 61) Set II (n = 68) Set III
(n = 71)

Set IV
(n = 69)

Female, % 
(100%)

48.5% 36.8% 54.9% – 61.8% 67.1% 68.9% 61.2%

Age, y (100%) 54 ± 18 69 (22) 73 ± 12  < 0.0001 66 ± 13 56 ± 15 55 ± 15 61 ± 13

Body mass 
index, kg/m2 
(76%)

28.35 ± 8.07 28.75 ± 7.34 34.06 ± 10.07  < 0.0001 30.95 ± 8.15 32.18 ± 8.32 30.66 ± 7.58 31.67 ± 7.87

Hypertension, % 43.2% 81.6% 91.7% – 83.8% 89.5% 67.6% 79.6%

Diabetes mel-
litus, %

20.1% 42% 54.1% – 52.9% 31.6% 24.3% 34.7%

Atrial fibrilla-
tion, %

4.6% 47.6% 52.6% – 50% 19.7% 6.7% 37.8%

Pulmonary 
hypertension, %

 < 1% 12.2% 25.6% – 26.5% 7.9% 2.7% 11.2%

Kidney
disease, %

6.7% 35.5% 46.6% – 66.1% 21.1% 24.3% 25.5%

Antihypertensive 
drugs, n**

– – – – 2(10) 0 (4) 0(4) 0(0)

NT-proBNP, pg/
ml
(#)

46 (53) 138 (1676) 4181 (3620) – 873 (1359) 282 (181) NAN* 781 (1258)

BNP, pg/ml
(#)

54 (73) 76 (353) 1510 (4488) – NAN* NAN* NAN* 796 (656)

Creatinine, 
umol/l (99%)

82.8 ± 39.7 88.0 (34.0) 84.0 (28.0) 0.165 89.0 (40.0) 78.0 (25.5) 78.5 (24.0) 86.6 ± 19.6

Hemoglobin, g/
dl (96%)

12.6 ± 2.1 13.3 (2.6) 13.1 ± 1.8 0.836 12.7 ± 2.0 12.8 ± 1.7 12.6 ± 2.0 12.9 ± 2.1

White cell count, 
109/l (100%)

7.1 (4.33) 7.54 (3.99) 7.43 (3.76) 0.141 6.94 (3.57) 6.64 (3.4) 7.28 (4.43) 6.74 (3.16)

C-reactive pro-
tein, mg/l (96%)

6.5 ± 3.21 6.87 ± 3.12 7.4 (5.0) 0.254 6.93 ± 3.17 6.34 ± 3.01 6.62 ± 3.03 6.12 ± 3.11

Urea, mmol/l 
(99%)

5.73 ± 3.73 7.12 ± 4.43 6.4 (3.7) 0.687 6.85 (3.98) 5.3 (1.85) 4.65 (2.47) 5.95 (2.43)

Albumin, g/l 
(99%)

40.17 ± 6.98 41.13 ± 6.52 42.0 (3.0) 0.711 41.0 (6.0) 42.5 (4.25) 43.0 (6.0) 43.0 (3.0)

Sodium, mmol/l 
(99%)

138.34 ± 3.88 139.0 (4.0) 139.0 (3.0) 0.183 139.0 (3.25) 139.63 ± 2.52 139.34 ± 2.91 140.0 (3.0)

Potassium, 
mmol/l (99%)

4.57 ± 0.26 4.3 (0.6) 4.35 ± 0.58 0.720 4.2 (0.73) 4.28 ± 0.53 4.36 ± 0.52 4.31 ± 0.54

Calcium, mmol/l 
(98%)

2.28 (0.15) 2.29 (0.13) 2.31 ± 0.12 0.147 2.29 (0.17) 2.33 (0.14) 2.35 ± 0.13 2.34 ± 0.13

Systolic blood 
pressure, mmHg 
(63%)

132.93 ± 17.08 129.14 ± 21.9 139.54 ± 21.46  < 0.0001 140.89 ± 25.87 136.78 ± 17.84 138.63 ± 23.21 138.12 ± 18.65

Diastolic blood 
pressure, mmHg 
(67%)

79.15 ± 11.76 73.79 ± 13.36 74.96 ± 13.45  < 0.0001 73.16 ± 11.98 78.16 ± 13.09 80.68 ± 15.18 74.08 ± 13.73

Heart rate, beat/
min (65%)

81.38 ± 14.28 73.69 ± 14.74 76.47 ± 16.72 0.0008 67.35 ± 9.63 75.31 ± 14.1 75.0 ± 8.8 74.64 ± 18.15

Oxygen satura-
tion, % (52%)

98.1 ± 1.75 96.49 ± 5.05 96.22 ± 3.0  < 0.0001 96.36 ± 2.87 96.69 ± 2.87 97.89 ± 1.62 96.13 ± 4.66

LV end diastolic 
volume, ml 
(23%)

155.0 ± 61.89 152.46 ± 53.52 106.7 ± 26.52  < 0.0001 149.0 ± 16.97 124 ± NAN* 155.0 ± NAN * 110.83 ± 27.98
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Table 1  (continued)

Non-HF 
controls 
(n = 194)

HFrEF controls 
(n = 1258)

HFpEF cases 
(n = 133)

P value 
cases 
versus
controls

Test cohorts
(n = 269, HFpEF cases = 68)

Set I (n = 61) Set II (n = 68) Set III
(n = 71)

Set IV
(n = 69)

LV mass systolic, 
g (1%)

176.7 ± 
53.0

265.2 ± 155.2 225.2 ± 
74.5

 < 0.0001 118.9 ± nan* NAN * 210.3 ± 158.0 111.7 ± 89.9

LV ejection frac-
tion, % (100%)

60.4 ± 3.9 44.2 ± 11.5 58.0 ± 4.9  < 0.0001 55.5 ± 2.1 60.5 ± 0.7 61.5 ± 2.1 55.3 ± 4.1

LV internal 
diameter at end 
diastole, cm/m2 
(59%)

2.46 ± 0.24 2.71 ± 0.5 2.46 ± 0.36 0.0002 2.36 ± 0.26 2.46 ± 0.28 2.32 ± 0.24 2.45 ± 0.35

LV stroke vol-
ume, ml (4%)

92.5 ± 34.78 65.52 ± 19.78 55.0 ± 4.36  < 0.0001 82.0 ± 5.66 75.0 ± NAN * 93.0 ± NAN * 64.2 ± 19.7

LV outflow tract 
velocity time 
integral diam-
eter, cm (20%)

2.13 ± 0.28 2.16 ± 0.24 2.17 ± 0.34 0.1126 2.03 ± 0.2 2.14 ± 0.24 2.13 ± 0.12 2.07 ± 0.23

LV end systolic 
volume, ml 
(22%)

62.5 ± 27.2 87.32 ± 42.81 42.67 ± 3.21 0.1708 66.5 ± 12.02 49.0 ± NAN * 62.0 ± NAN * 49.4 ± 10.45

LA systolic vol-
ume, ml (31%)

60.0 ± 19.52 86.47 ± 38.77 143.67 ± 70.44  < 0.0001 120.5 ± 28.99 112.0 ± NAN * 69.0 ± NAN * 70.33 ± 21.4

TR max PG, 
mmHg (80%)

26.7 ± 10.2 29.4 ± 11.2 34.16 ± 12.9  < 0.0001 37.2 ± 13.8 24.9 ± 10.18 26.3 ± 8.3 32.3 ± 11.4

E/e’ lateral ratio 
(50%)

7.26 ± 3.11 10.70 ± 
6.07

11.59 ± 
5.96

 < 0.0001 13.54 ± 4.59 11.70 ± 5.16 9.35 ± 3.48 12.87 ± 7.27

E/e’ septal ratio 
(50%)

9.75 ± 4.99 14.51 ± 
7.71

14.37 ± 5.6  < 0.0001 16.83 ± 5.44 14.77 ± 6.2 11.5 ± 4.52 16.04 ± 7.53

RV V1 max, cm/
sec (6%)

82.28 ± 17.7 71.98 ± 22.65 80.41 ± 19.01 0.0001 95.37 ± 12.52 80.87 ± 17.42 71.34 ± 9.96 77.79 ± 18.88

RV V1 mean, cm/
sec (4%)

47.04 ± 5.91 47.38 ± 14.19 52.03 ± 11.62 0.0048 53.5 ± 10.47 59.05 ± 5.18 48.65 ± 6.76 50.6 ± 9.53

Mitral valve E/A 
ratio, (84%)

1.08 ± 0.42 1.37 ± 0.07 1.13 ± 0.61  < 0.0001 1.23 ± 0.76 0.9 ± 0.34 0.98 ± 0.36 1.04 ± 0.4

Mitral regur-
gitation max 
velocity, cm/sec 
(10%)

483.46 ± 68.77 495.48 ± 88.56 502.84 ± 93.06 0.021 592.08 ± 98.05 553.39 ± 31.3 NAN 505.68 ± 119.98

Tricuspid regur-
gitation max 
velocity, cm/sec 
(80%)

233.23 ± 31.74 264.47 ± 56.62 274.1 ± 56.34  < 0.0001 310.38 ± 61.48 254.82 ± 53.76 239.73 ± 41.81 277.2 ± 50.81

The mean and SD (standard deviation) were obtained where the predictor distribution follows a normal distribution, whereas for predictors with a skewed 
distribution, the median and interquartile range (25th–75th) were used to report the statistics. To evaluate the distributional differences between cases and controls, 
the Mann–Whitney U test or the t test was acquired, where appropriate. Values in parentheses next to each predictor name indicate the data availability percentage

Set I: patients with normal EF, no/normal BNP record, a HF ICD10 code and at least one HF and dyspnea reference in their EHR

Set II: patients with normal EF, no/normal BNP record, no HF diagnostic code and at least one HF and dyspnea reference in their EHR

Set III: patients with normal EF, no BNP record, no HF diagnostic code nor HF reference in the EHR, at least one report of their dyspnea in their EHR

Set IV: patients with normal EF, raised BNP result with HF and dyspnea reference in their EHR but no HF diagnosis documented

(HF: heart failure, EF: ejection fraction, rEF: reduced EF, BNP: brain-natriuretic peptide test, EHR: electronic health record)

The following ICD10 codes were used to define the comorbidities:

Hypertension: I10-I15, I60-I69; Diabetes mellitus: E10-E14; Atrial fibrillation: I48; Pulmonary hypertension: I27; Kidney Disease: N18, N28, I12-I15

*Constraint-free assumption on our test sets resulted in predictors with either a singular value or a high proportion of missing values. In such cases, the computation 
of common statistics was not pragmatic and hence the NAN (Not A Number) value was reported, instead

**This predictor is only computed in the test cohort to enable the comparison with the H2FPEF score

#92.45% of HFpEF cases and controls had a BNP or pro-BNP level available
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we compared the model’s AUROCs and AP performance 
against the recently proposed H2FPEF scoring system 
using the Random Forest (predecessor to XGBoost). We 
used a score of 3 points indicating > 50% probability of 
HFpEF.

Statistical analyses were performed in Python 3 using 
SciPy and Scikit-learn packages (v0.22).

Results
1854 patients were included in the study of whom 1585 
were in the derivation cohort (Table 1). HFpEF patients 
in the derivation cohort (n = 133) were older than those 
with HFrEF and those without heart failure (non-HF), 
with a higher proportion of females and a higher BMI. 
They also had a higher prevalence of hypertension, atrial 
fibrillation, diabetes and chronic kidney disease. Systolic 
and diastolic pressures were higher in the HFpEF group 
compared to HFrEF. Patients with HFpEF had lower end-
diastolic and end-systolic volumes and higher septal E/e’ 
ratios than the non-HF control group.

Diagnostic signatures for HFpEF diagnosis
Our first step was to determine model performance in 
predicting non-HF versus HFpEF and HFpEF versus 
HFrEF, and to identify the most useful features in each 
case.

The minimum number of features required to distin-
guish HFpEF from non-HF was 30, while the minimum 
number required to distinguish HFpEF from HFrEF was 
29. These features and their relative importance in dis-
criminating HFpEF from non-HF and HFrEF are shown 

in Fig.  2. Dyspnea and ‘pharmacologic substance’ were 
the most prominent predictors in discrimination against 
non-HF whereas LVEF was most important for discrimi-
nation against HFrEF. However, many of the features (e.g. 
age, patient address) were common to the two groups. 
The text references to “patient address” and “pharmaco-
logic substance” (detected when the text refers to medi-
cation) were interpreted as surrogate predictors of the 
number of complete hospital attendances. (Fig. 2).

We found that a combined model using both structured 
and unstructured data has better performance compared 
to using either structured or unstructured data alone 
(Table  2). This enhanced performance is more noted in 
discriminating HFpEF from HFrEF than discriminating 
HFpEF from non-HF (due to the dominancy of unstruc-
tured predictors in the HFpEF v non-HF model, see Fig. 2 
and Table 3).

Selection of the final model and evaluation in test cohorts
The final model that was used for test evaluations aggre-
gates the HFpEF versus HFrEF and HFpEF versus non-
HF signature likelihood predictions through an averaging 
operation. It therefore uses all features from both com-
ponent models (Table 4). In the final “aggregated” model, 
a patient is predicted to have HFpEF if the average pre-
dicted probability of HFpEF versus non-HF and versus 
HFrEF is >  = 0.5. The idea of the aggregated model is to 
aid discrimination between HFpEF and related condi-
tions. We used this aggregate model to make predictions 
on the test sets. Additional file 1: Figure S5 summarises 

Fig. 1  Feature selection analysis. Features were incrementally utilized for training the models to ensure a performance within ± 2 units of the 
AUROC and f1-macro metrics in fivefold cross-validation setup. Blue: f1-macro, Red: AUROC
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the entire processing and model training pipeline, while 
Additional file 1: Figure S6 gives details of model adapta-
tion [28].

The performance of both proposed base models and the 
final aggregated model remained robust in the test cohort 
as compared to expert clinical consensus, with an 

Fig. 2  Feature importance using SHAP analysis in combined signatures. Denser distribution of red points at the positive quadrant of the 
plot is representative of higher values of a given predictor’s contribution in characterizing the positive class distribution i.e. in characterizing 
HFpEF. Allfeature names in upper case are structured features (blood tests, observations,echocardiogram values), all other features are derived from 
NLP

Table 2  Multivariable model performance using the fivefold cross-validation in derivation dataset

Model Control set f1_macro ± 95% CI f1_weighted ± 95% CI AUROC ± 95% CI

Structured signature Non-HF 84.05 ± 2.7 84.18 ± 2.7 92.04 ± 1.4

HFrEF 75.75 ± 2.1 87.22 ± 1.42 90.31 ± 3.5

Unstructured signature Non-HF 98.81 ± 1.3 98.82 ± 1.3 99.7 ± 0.5

HFrEF 78.59 ± 4.9 88.99 ± 2.1 94.38 ± 1.4

Combined signature Non-HF 98.57 ± 1.4 98.59 ± 1.4 99.8 ± 0.3

HFrEF 83.03 ± 2.8 90.91 ± 1.6 95.67 ± 2.0
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AUROC performance of 0.86 (95% CI  ± 0.002) and 0.85 
(95% CI  ± 0.001) in HFpEF vs non-HF and HFpEF versus 
HFrEF models, respectively and an enhanced aggregate 
performance of 0.90 (95% CI  ± 0.002) in our final aggre-
gate model (Fig. 3).

Lastly, we compared the final aggregate model as well 
as the baseline HFpEF versus non-HF and HFpEF ver-
sus HFrEF models with the recently described H2FPEF 
model. The AUROC and average precision of both the 
aggregate model and the individual baseline models was 
higher than the H2FPEF model (Table 5). We additionally 
used the Cohen’s kappa score to report on the agreement 
between the predictions made by our proposed baseline 
HFpEF versus non-HF and HFpEF versus HFrEF models 
to better highlight the efficiency of the aggregate model 
over the individual base models discriminating HFpEF 
from non-HF and HFrEF. The positive kappa score of 0.3 
indicates a weak agreement between the two base models 
(i.e. can make different predictions for whether HFpEF 
is present in the same patient). This was expected as the 
test cohort had lower availability of clinical assessments 
compared to the derivation cohort. Together with the 
improved overall performance, this result supports the 
use of the aggregated model.

Discussion
In this study, we have developed an automated pipeline 
for EHR-based data collection, processing and modeling 
to identify patients with a high likelihood of HFpEF. We 
incorporated multi-modality data, including both struc-
tured and unstructured predictors, to generate a dis-
ease diagnostic signature. The proposed signature was 
validated in a separate cohort of patients and performed 
favourably as compared either to expert clinical consen-
sus or the recently proposed H2FPEF score [3].

Analysis of the signatures that distinguished HFpEF 
from non-cardiac causes of dyspnea (non-HF) revealed 
anticipated predictors such as atrial fibrillation, hyper-
tension, diabetes mellitus, kidney failure and obesity, in 
accordance with previous literature [3]. In addition, sur-
rogate measures of multiple previous clinical encoun-
ters detected by the NLP algorithm as frequent text 
references to terms such as “pharmacologic substance” 

(a reference to drug treatment but not a specific medi-
cation) or “patient address” were very useful. This may 
reflect the fact that patients with HFpEF may require 
multiple clinical visits and investigations, often with 
different specialities, before a diagnosis is established 
[4]. Apart from LVEF itself, features that distinguished 
HFpEF from HFrEF included age, peripheral edema, and 
other echocardiographic measures. An advantage of the 
approach that we employed may be that it is unbiased 
and comprehensive and identifies variables for inclusion 
in the diagnostic signature based purely on the results 
of the objective feature selection process. This may be 
one reason why our algorithm outperforms the H2FPEF 
score, which is based on the evaluation of selected vari-
ables rather than a comprehensive unbiased analysis. In 
this regard, it is of interest that echocardiographic pre-
dictors that contributed to the differentiation of HFpEF 
from HFrEF included maximum flow velocity across the 
aortic valve, aortic insufficiency and LA volume whereas 
E/e’ (which is part of the H2FPEF score) did not feature in 
the selected predictors. Indeed, we note that several indi-
ces from a standard echocardiographic dataset that are 
typically used to identify HFpEF do not feature as predic-
tors differentiating HFpEF from HFrEF. These include LV 
cavity dimensions; LV wall thickness and mass; and E/e’ 
as mentioned above. However, given the defining features 
of HFpEF versus HFrEF, it is perhaps not surprising that 
the top differentiating features are variations of quantify-
ing LVEF.

A major underlying problem in efforts to develop or 
test new treatments for HFpEF is the difficulty in con-
sistently diagnosing the syndrome [4]. Many different 
approaches are used in the literature based on varying 
criteria published by national and international societies, 
and diverse inclusion criteria have been used in clinical 
trials [29–31]. The problem is compounded by the likeli-
hood that HFpEF is a heterogenous syndrome in which 
sub-populations may have differing underlying patho-
physiology and outcomes [21, 22, 29]. The approach we 
present enables rapid identification of likely HFpEF cases 
among which further specific phenotyping could be per-
formed to refine the diagnosis and potentially test or tar-
get defined interventions, or to identify potential subjects 
for research studies. In practice, the output of each of our 

Table 3  Additive SHAP feature importance for each category of predictors in the combined signatures

Model Unstructured data Structured data

Symptoms Echocardiography 
parameters

Vitals Age & Sex Lab results

Summed importance of grouped features HFpEF versus non-HF 0.953 0.036 0.011 0.033  < 0.001

HFpEF versus HFrEF 0.551 0.334 0.115 0.058  < 0.001
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models is a predicted probability in the range 0–1, for 
example the HFpEF vs non-HF model could return 0.89, 
indicating a predicted 89% probability of HFpEF. Impor-
tantly, this approach aims to identify both compensated 
and decompensated HFpEF cases, using an automated 
and data-driven approach that is effective even where 
structured data (e.g. NT-proBNP measurements) are 
scarce. The approach may be considered complementary 
to scores such as H2FPEF. Our signature is ideally suited 
to rapidly identify a large number of possible HFpEF 
cases from EHR whereas H2FPEF is better suited for use 
by the clinician evaluating an individual patient who is 
suspected to have HFpEF.

This study is the first to use SHAP analysis for fea-
ture selection in this context. We comprehensively vali-
dated all variations of the derived models in multiple 
datasets with underlying variational distributions. We 
demonstrated a significant improvement in HFpEF diag-
nostic performance when discriminating the patients 
with HFpEF from those with HFrEF or no HF history. A 
key strength of our approach is that modeling numerical 
assessment data (structured results signature) and EHR 
concept references separately makes the models applica-
ble in scenarios where one of these sources of data may 
be scarce. Moreover, the dual modeling of HFpEF sepa-
ration from non-HF and HFrEF subjects increases the 
utility of the proposed pipeline in distinguishing among a 
wider group of clinical conditions.

Limitations
The UMLS clinical concept encoding that was used to 
extract unstructured observations does not support dis-
tinct encoding of different disease stages and could there-
fore cause some inaccuracy. In a more general aspect, 
the a priori assumptions that we made to identify defi-
nite HFpEF cases in the derivation dataset influenced the 
characterisation of the cohort. For example, we utilised 
ICD-10 diagnostic codes in the identification of patients 
with heart failure. Previous studies have demonstrated 
inaccuracy in identifying incident heart failure using 
ICD-10 coding as the sole source [32]. It is possible that 
such inaccuracy is present in our coding system; however 
the use of additional features (symptoms, LVEF, BNP/
NTproBNP) in case classification mitigates this risk in 
our study. Similarly, it is possible that for some patients 
an HF diagnosis is known but not recorded in the records 
we accessed, or was recorded but not detected by our 
NLP algorithm (i.e. a false negative). As we combined a 
number of other features, including symptoms and blood 
tests, in assigning our final HF diagnosis labels, we expect 
the overall impact on the results to be minimal.

The inclusion of a raised BNP criterion restricts the 
cohort to a subgroup of HFpEF subjects (a proportion 

Table 4  All variables used in the final model

The columns “HFpEF versus HFrEF” and “HFpEF versus non-HF” indicate use of 
a variable in either model where 1 = used and 0 = unused. Asterisks indicate 
the top 5 most important variables in each model according to SHAP analysis. 
All variables in upper case are structured features, all other features are derived 
from NLP

Variable HFpEF 
versus HFrEF

HFpEF 
versus 
non-HF

AGE 1 1

AO V2 MAX 1* 0

Aortic Valve Insufficiency 1 0

Atrial Fibrillation 1 1

BMI 1 1

Bisoprolol 0 1

Ca 0 1

Diabetes Mellitus, Non-Insulin-Dependent 1 0

Dilated 0 1*

Disease 1 1

Diuretics 1 1

Dyspnea 0 1*

EF(CUBED) 1* 1

EF(MOD-BP) 1* 0

EF(MOD-SP2) 1 0

EF(MOD-SP4) 1* 0

Edema 0 1

Fasting 1 1*

Full blood count normal 1* 1

Furosemide 1 1*

Furosemide 40 MG 1 1

Furosemide Oral Tablet 0 1

HEIGHT 1 0

Hypertensive disease 1 1

Hypokinesia 1 0

Increase dose 0 1

Kidney Failure, Acute 0 1

LA VOLUME (2D BIPLANE) 1 0

Little LOS 0 1

MV A MAX VEL 0 1

Mobility as a finding 0 1

Never smoked tobacco 0 1

Nitroglycerin 0 1

O/E—blood pressure reading 1 0

Patient address 1 1

Pharmacologic Substance 0 1*

Pitting edema 1 0

Pulmonary Edema 0 1

RR 1 0

SBP 1 1

Severe (severity modifier) 1 0

Swelling of lower limb 1 1

Tachycardia, Ventricular 1 0

WEIGHT 1 0

Risk factors 0 1
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Fig. 3  Performance of base and aggregate models. Panel A: Receiver Operating Characteristic curves for base models, aggregate model, and 
H2FPEF score. Panel B: Precision Recall curves for base models, aggregate model, and H2FPEF score. Panel C: Calibration curve for aggregate model. 
Panel D: Efficiency curve for aggregate model. Panel E: Aggregate model performance in the 4 test subsets
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of HFpEF patients have a normal BNP), which was evi-
dent in test cohorts where many of the subjects did not 
have BNP measurements. This issue could be success-
fully handled through transfer learning techniques but 
would require some labelled data from a new domain 
to facilitate such a feedback training loop. The choice 
of data imputation technique could be another source 
of minor but systematic error. The discriminant power 
of the model to detect HFpEF is lower in test subsets 
where the missing data rate is higher and HFpEF cases 
are a small proportion of the overall number. Finally, 
the applicability of our model in patients with HFpEF 
who have never required hospital evaluation or admis-
sion is unknown. However, a strength of our approach 
is that a dedicated specialist assessment for HF is not 
required to assess the probability of HFpEF among 
patients undergoing general hospital evaluation (e.g. 
non-cardiological), even in the absence of commonly 
used diagnostic data such as NTproBNP levels. The 
lack of independent validation is a limitation of this 
study. Evaluation of the derived model’s performance in 
independent datasets from other centres and in com-
munity-based datasets will be informative in future 
studies. Although we compared performance of the 
model with the H2FPEF score [3], due to its stated aim 
of estimating the likelihood that HFpEF among patients 
with unexplained dyspnea to guide further testing, we 
did not compare performance to the HFA-PEFF algo-
rithm which is a multi-step diagnostic algorithm [33]. 
Furthermore, the comparison of our algorithm’s perfor-
mance with the H2FPEF should be confirmed in a sepa-
rate validation cohort.

The HFrEF group (Control Cohort II) comprised 
patients with a diagnosis of HF and reduced LVEF on 
echocardiogram using a cut-off value of < 50%. As such, 
this cohort combines HFrEF and HFmrEF cases as 
decribed in ESC guidelines [13]. Finally, in our analy-
sis we focus on performance at the group level. Future 
work should establish the applicability of this method 

on an individual level, such as focusing on older or 
younger patients.

Conclusion
In this study, we have developed a rapid and automated 
data-driven approach that is effective at identifying 
patients from EHR who are likely to have HFpEF. This 
algorithm affords significant potential to rapidly iden-
tify patients for more detailed analyses and access to 
evidence-based therapies that are known to improve 
quality of life and decrease rates of hospitalisation. The 
approach that we report could in principle be readily 
applied to other diseases and conditions that are simi-
larly difficult to diagnose.
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